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Abstract

The problem of detecting local/distributed change of stiffness in bridge structures using ambient
vibration data is considered. The vibration induced by a vehicle moving on the bridge is taken to be the
excitation source. A validated finite element model for the bridge structure in its undamaged state is
assumed to be available. Alterations to be made to this initial model, to reflect the changes in bridge
behaviour due to occurrence of damage, are determined using a time-domain approach. The study takes
into account complicating features arising out of dynamic interactions between vehicle and the bridge,
bridge deck unevenness, spatial incompleteness of measured data and presence of measurement noise. The
inclusion of vehicle inertia, stiffness and damping characteristics into the analysis makes the system time
variant, which, in turn, necessitates treatment of the damage detection problem in time domain. The
efficacy of the procedures developed is demonstrated by considering detection of localized/distributed
damages in a beam-moving oscillator model using synthetically generated vibration data.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The occurrence of damage in a structure produces changes in its global dynamic characteristics
such as its natural frequencies, mode shapes, modal damping, modal participation factors,
impulse response and frequency response functions. An understanding of these changes can lead
to the detection, location, and the characterization of the extent of the damage. Such studies
currently form the subject of active research in the field of aerospace, mechanical and civil
structural health monitoring. In civil engineering applications, these studies are of immediate
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relevance to the health monitoring of ageing civil infrastructures, such as buildings and bridges, in
assessment of these structures after natural disasters, and in evaluation of effectiveness of
retrofitting/repair measures. The essential underlying principle here is to compare the structural
behaviour in the damaged and undamaged states. If interest is focussed on determining the
location of damage and the extent of damage, the analyst would require a satisfactory model for
the structure in its undamaged state. The construction of such reliable models can be achieved by
comparing experimentally obtained data on structure in its initial state with corresponding
predictions made from an initial mathematical model [1]. The developments in the field of
structural damage detection using vibration data have been recently reviewed by several authors.
Thus Farrar et al. [2] have outlined steps for implementing structural health monitoring
programme using vibration data. They have also discussed the damage detection problem as a
problem in statistical pattern recognition. Doebling et al. [3,4] have presented comprehensive
review of literature mainly focusing on frequency-domain methods for damage detection in linear
structures. The relationship between model updating methods and damage detection problem has
been explored by He [5]. A discussion on methods of damage detection and location using natural
frequency changes has been presented by Salawu [6]. Staszewski [7] has reviewed the literature
related to the use of wavelets in structural damage detection problems.
Some recent studies on the use of vibration data in damage assessment of civil structures are

briefly described in the following. Mazurek and DeWolf [8] conducted theoretical and laboratory
experimental studies on simple two-span girders under moving loads to study structural
deterioration by vibration signature analysis. Structural damages were artificially introduced by
release of supports and insertion of cracks. Hearn and Testa [9] conducted studies on fatigue
damaged welded steel building frames and wire ropes with saw-cuts and studied the changes in the
frequency spectra caused due to damage. Yao et al. [10] considered the redistribution of energy
upon the occurrence of damage and discussed the concept of strain mode shape in characterizing
the damage. Alampalli and Fu [11] and Alampalli et al. [12] conducted laboratory and field studies
on bridge structures to investigate the feasibility of measuring bridge vibration for inspection and
evaluation. These studies focused on sensitivity of measured modal parameters to damage. Cross
diagnosis using multiple signatures involving natural frequencies, mode shapes, modal assurance
criteria and co-ordinate modal assurance criteria was shown to be necessary to detect the
damages. Casas and Aparicio [13] studied concrete bridge structures and investigated dynamic
response as an inspection tool to assess bearing conditions and girder cracking. Their study
showed the need to investigate more than one natural frequency and also to determine mode
shapes in order that the damage could be successfully detected and located. Issues related to
mismatch between measured and modelled degrees of freedom (d.o.f.’s) in large-scale building
frame structures have been examined by Koh [14] in the context of damage detection problems.
Liu [15] examined the identifiability of inverse problems and influence of input errors on
identification process in the context of identification and damage detection in truss structures.
Combined experimental and finite element modelling studies has been carried out by Chen et al.
[16] on steel channel beams, to detect reduction in load carrying capacity using dynamic response.
Law et al. [17,18] measured vibrational response of concrete bridge deck models when loaded to
destruction at different stages of cracking and spalling. The possible absence of base line models
for existing structures and its consequence on problem of damage detection has been noted by
Topole and Stubbs [19]. These authors developed a method to characterize the damage from the
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data on modal characteristics of the damaged structure. The study by Salawu and Williams [20]
describes full-scale vibration tests conducted before and after structural repairs on a multi-span
RCC highway bridge. Correlations between repair works and changes in dynamic characteristics
of the bridge were studied. Waheb and Roeck [21] describe the results of field vibration tests on
three concrete bridges with a view to correlate finite element models with test results. The use of
residual force vector and a sensitivity analysis has been made by Kosmatka and Ricles [22] in their
study on 10-bay space truss. This study also takes into account statistical confidence factors for
structural parameters and potential experimental instrumentation error. Capecchi and Vestroni
[23] address the problem of understanding, when it is sufficient to measure and use only natural
frequencies and avoiding mode shape measurements in damage detection problems. Farrar and
Doebling [24] discuss application of damage detection methods that are based on changes in free
vibration characteristics and also statistical pattern recognition tools to characterize damages to
bridges and concrete columns.
In view of long-term health monitoring requirements of structures, such as bridges, it is

desirable that the damage detection techniques must employ operating loads, such as vehicular
loads, as excitation sources. There are a few studies which address the problem of modal
testing and analysis of structures under operational loads [25–27]. The use of these studies to
develop a procedure for detection of structural damages does not seem to have received wide
attention. It must be emphasized that the success of damage detection procedures using
vibration data requires that the in-built analytical procedures to be accurate enough to discern
changes in response due to damages that could be small. This would mean that the analytical
models employed here need to be more refined than what otherwise is needed in a routine
response analysis. It is to be noted in this context that the bridge–vehicle system constitutes a
time-varying system. Consequently, modal domain descriptors of bridge structure, such as natural
frequencies, mode shapes, modal damping and frequency response function are not directly
relevant to detect damages in such systems. Of course, if one ignores the vehicle structure
interactions and treats the moving vehicle as a moving force, the system becomes time invariant in
nature and, modal domain descriptors could still be used for damage detection purposes. In this
case, however, the errors due to ignoring vehicle structure interactions would introduce
unknown errors into damage detection procedures. In fact, it is not obvious on how modal
information of bridge structures could be extracted based on measurement of vibration
induced by vehicular traffic if one includes vehicle–structure interaction effects into the
analysis. The focus of the present study is therefore to develop a time-domain approach to
detect damages in bridge structures by analyzing the combined system of bridge and vehicle. The
study assumes that the structural properties and motion characteristics of the moving vehicle are
known. This assumption can be considered acceptable if the vehicle to be used in generating the
test signal is a test vehicle whose structural properties are known before hand and it is driven with
specified velocity and acceleration. The study combines finite element modelling for bridge vehicle
system with a time-domain formulation to detect changes in structural parameters. Different
damage scenarios, such as local/distributed loss of stiffness and bearings becoming partially
immobile are examined. Questions on spatial incompleteness of measured data, influence of
measurement noise and influence of bridge deck unevenness are also addressed. The feasibility of
the procedures developed is demonstrated by using synthetic vibration data from damaged bridge
models.
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2. Finite element model for the bridge–vehicle system

We begin by considering the bridge–vehicle system shown in Fig. 1. The bridge deck is modelled
approximately as a Euler–Bernoulli beam and the vehicle is modelled as a single d.o.f. system with
sprung and unsprung masses. Furthermore, the bridge deck is assumed to possess a surface
unevenness denoted by rðxÞ: The bridge, in its undamaged state, is taken to be simply supported
and is allowed to have spatially varying flexural rigidity. The types of damages that are considered
in this study include local/distributed loss of stiffness and the possibility of the bearings becoming
partially immobile. The effect of partially immobile bearings is represented by a rotary spring at
the ends as shown in Fig. 1. For the bridge in its undamaged state, the value of the rotary springs
at the ends would be zero. The vehicle is assumed to travel with a velocity v and an acceleration a:
The vehicle enters the bridge at t ¼ 0 and exits the bridge at t ¼ tf : The structure is assumed to
behave linearly and the vehicle is assumed to be in contact with the bridge deck at all times while it
traverses the bridge. Under these assumptions, the governing equation of motion for the bridge–
vehicle system, for 0otptf ; can be shown to be given by [28,29]
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Here m1;m2; k1; c1 are vehicle parameters as shown in Fig. 1, yðtÞ the vertical deflection of the
vehicle sprung mass, wðx; tÞ the transverse deflection of the beam, EIðxÞ the flexural rigidity of the
beam, m the mass per unit length of the beam, c the coefficient of viscous damping for the beam, g
the acceleration due to gravity, and dð
Þ the Dirac’s delta function. The total derivative D=Dt

appearing in the above equations takes into account the Coriolis effect arising from the rolling of
the vehicle mass on the deflected profile of the beam. The boundary conditions appropriate for the
system shown in Fig. 1 reads

wð0; tÞ ¼ 0;
@
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In the present study, we adopt the framework of finite element method to formulate the damage
detection strategy. Accordingly, we begin by expressing the displacement field as

wðx; tÞ ¼ ½NðxÞ�fdðtÞg: ð5Þ

Here NðxÞ is the matrix of interpolation functions and fdðtÞg is the vector of nodal degrees of
freedom associated with the beam nodes. Following the steps as outlined by Filho [29] the
governing equation for the bridge–vehicle system for 0otptf is obtained as
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where

½m�n ¼ m2½N�T½N�; ½c�n ¼ 2m2 ’x½N�½N�x þ c½N�T½N�;

½k�n ¼ m2ðv þ at2Þ2½N�T½N�xx þ cðv þ atÞ½N�T½N�x þ m2½N�T½N�xao þ k1½N�T½N�: ð7Þ

The superscript T in the above equations denotes the matrix transpose. The matrices M; C and K ;
respectively, denote the mass, damping and stiffness matrices of the beam structure. Furthermore,
½N�x and ½N�xx; respectively, denote the first and the second derivative with respect to x of the
matrix ½N�: Upon the exit of the vehicle from the bridge, that is, for tXtf ; the governing equation
of motion for the bridge reads

½M�f .dg þ ½C�f ’dg þ ½K �fdg ¼ 0: ð8Þ

The initial conditions for these equations, at t ¼ tf ; are obtained from solution of Eq. (6) at t ¼ tf :
It must be noted that the governing equations of motion, as given in Eq. (6), constitute a set of
coupled linear ordinary differential equations with time-varying coefficients. Consequently, these
equations cannot be uncoupled using the traditional normal mode expansions. It may be noted
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that the formulation of Eqs. (1)–(8) largely follows the approach outlined by earlier researchers
[28,29].

3. Damage detection algorithm

Attention is focussed in the present study on two types of damage scenarios. Firstly, we assume
that the flexural rigidity, EIi; of the ith finite element of the beam, upon the occurrence of damage,
becomes aiEIi: Secondly, we consider the possibility of the bearings becoming partially immobile.
This is modelled by emergence of rotary stiffnesses, represented by the springs with stiffness ky1

and ky2; (see Fig. 1) at the beam ends which otherwise are absent in an undamaged beam. The
problem of damage detection thus can be stated as finding ðaiÞ

ne

i¼1; ky1 and ky2 based on
measurement of yðtjÞ; ’yðtjÞ; .yðtjÞ; fdðtjÞg; f ’dðtjÞg; and f .dðtjÞg for j ¼ 1; 2;y; s: Here ne is the
number of finite elements into which the beam structure is divided. Clearly, for the undamaged
structure, ai ¼ 1 for i ¼ 1; 2;y; ne and ky1; ky2 ¼ 0: Thus, any departure in the values of ai; from
the reference value of unity, and, in the values of ky1 and ky2; from the reference value of zero,
indicates the occurrence of damage. It is also clear that the determination of these variables also
helps to locate the damage and also to quantify its severity. It is assumed in the present study that
the characteristics of the vehicle, namely, m1; m2; c1; k1 and its velocity and acceleration are
known. It is also assumed that the bridge mass and damping matrices are unaffected by
occurrence of the damage and hence are taken to be known a priori.
To describe the damage detection algorithm, we begin by considering the case of ky1 ¼ ky2 ¼ 0:

The beam itself is taken to have undergone changes in its flexural rigidity. The stiffness matrix of
the damaged beam structure is expressed in the form

K ¼
Xne

i¼1

ai½A�Ti ½ %K�i½A�i: ð9Þ

Here ½ %K�i ¼ the n-d:o:f :� n-d:o:f : stiffness matrix of the ith element in its undamaged state in the
global co-ordinate system and ½A�i ¼the n-d:o:f :� n matrix of extended element nodal
displacement that facilitates automatic assemblying of global stiffness matrix from the constituent
element stiffness matrix. Based on the values of the beam and vehicle responses measured at t ¼ tj;
Eq. (6) can be re-cast to read

½K �fdðtjÞg ¼ fFðtjÞg; ð10Þ

where

F ðtjÞ ¼ � ½½M� þ ½mðtjÞ�n�f .dðtjÞg � ½½C� þ ½cðtjÞ�n�f ’dðtjÞg

þ c½N�Tf ’yðtjÞg � ½kðtjÞ�nfdðtjÞg þ k½N�TfyðtjÞg þ ðm1 þ m2Þg½N�T; 0otptf ; ð11Þ

FðtjÞ ¼ �½M�f .dðtjÞg � ½C�f ’dðtjÞg tXtf : ð12Þ

Using Eq. (9), Eq. (10) can be re-cast asXne

i¼1

aifBðtjÞgi ¼ fF ðtjÞg; ð13Þ
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where fBðtjÞgi is a n � 1 vector given by

fBðtjÞgi ¼ ½A�Ti ½K �i½A�ifdðtjÞg: ð14Þ

Eq. (13) can also be written as

BðtjÞfag ¼ fF ðtjÞg; ð15Þ

where BðtjÞ is a n � ne matrix given by

BðtjÞ ¼ ½B1ðtjÞ B2ðtjÞ?Bne
ðtjÞ� ð16Þ

and fag is a ne � 1 matrix of damage indicator factors. If response measurements are made for the
time instants t ¼ t1; t2;y; ts; equations governing a; as given by Eq. (15), can be written for each
of these time instants. Consequently, one gets the set of equations

½L�fag ¼ fFg; ð17Þ

where ½L� is a sn � ne matrix given by

½L�T ¼ ½Bðt1Þ Bðt2Þ?BðtsÞ� ð18Þ

and fFg is a sn � 1 vector given by

fFgT ¼ ½F ðt1ÞF ðt2Þ?F ðtsÞ�: ð19Þ

Eq. (17) represents sn number of linear algebraic equations for the unknowns ai; i ¼ 1; 2;y; ne:
These equations would most often be overdetermined and, consequently, an optimal solution can
be obtained as

fag ¼ ½L�þfFg: ð20Þ

Here ½L�þ represents the left pseudo-inverse of the rectangular matrix and is given by

½L�þ ¼ ½LTL��1LT: ð21Þ

It is of significant interest to note that Eq. (17), governing the unknown fag; constitutes a set of
linear algebraic equations. This fact is of significance, given that modal domain damage detection
procedures invariably lead to non-linear equations for the damage parameters.
The above equations for the damage indicator factors a have been derived by assuming that

ky1; ky2 ¼ 0: This would mean that the above procedure would not apply to detect the possibility
of the bearings becoming partially immobile. In this context it must be noted that the damage
indicator factor, ai; essentially multiplies the stiffness parameter in the undamaged state to yield
the corresponding stiffness parameter in the damaged state. Since, in the undamaged state ky1 ¼ 0
and ky2 ¼ 0; introducing a multiplying parameter to detect a non-zero ky1 and ky2 is clearly
infeasible. To overcome this difficulty, the notion of a reference structure is introduced. This
structure has two hypothetical rotary springs, with respective stiffnesses kn

y1 and kn
y2; attached to it

at the two ends. To detect the possibility of bearings becoming partially immobile, two parameters
al and ar are introduced, such that, the bearing stiffness against rotation in the damaged state is
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given by

ky1 ¼ alk
n

y1; ky2 ¼ ark
n

y2: ð22Þ

With this additional feature, the detection of damage can now be carried out using the steps as
described in deriving Eq. (17). The damage indicator vector a in this case reads

a ¼ fa1 ¼ al ; a2;y; an�1; an ¼ arg: ð23Þ

Clearly, the estimates of al and ar depend upon the values chosen for the reference parameters kn
y1

and kn
y2: To make an optimal choice, a non-dimensional quantity

eðkn

y1; k
n

y2Þ ¼
Xn

j¼1

Xs

i¼1

fdjðti; kn
y1; k

n
y2Þ � dM

j ðtiÞg
2

½dM
j ðtiÞ�2

ð24Þ

is introduced. Here djðti; kn
y1; k

n
y2Þ is the estimated displacement at jth d.o.f. at t ¼ ti with ky1 ¼ kn

y1;
ky2 ¼ kn

y2 and dM
j ðtiÞ the measured response of the damaged structure at jth d.o.f. at time t ¼ ti:

The best choice for kn
y1 and kn

y2 is taken to be the one that minimizes eðk
n
y1; k

n
y2Þ: This minimization

itself could be carried out by conducting a parametric study on eðkn
y1; k

n
y2Þ by varying ky1 and ky2:

4. Problem of spatial incompleteness of measurements

The formulation presented in the previous section is based on the implicit assumption that it is
possible to measure the response at all the d.o.f.’s considered in the finite element model. This
clearly is an unrealistic assumption given that

* it is not easy to measure rotational d.o.f.’s,
* number of d.o.f.’s that could be measured simultaneously is limited by the number of channels
available in the measurement set-up, and

* not all d.o.f.’s need be accessible for measurement.

The consequent difficulties arising out of these limitations could be addressed by adopting a
model reduction scheme to approximate the d.o.f.’s that are not measured in terms of those that
are measured. There exists several reduction schemes in the literature, such as, static and dynamic
condensation techniques and system equivalent reduction and expansion process (SEREP), that
could be used in this context [30,31]. To implement these schemes for the problem on hand, we
assume that vehicle response yðtÞ is measured and we designate all the beam d.o.f.’s that are
measured as master d.o.f.’s and denote them by dmðtÞ; and, the remaining beam d.o.f.’s are called
the slave d.o.f.’s, and are denoted by dsðtÞ: Thus, the beam d.o.f.’s are partitioned as

fdðtÞgT ¼ ½fdmðtÞgfdsðtÞg�: ð25Þ
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Accordingly, the bridge mass, stiffness and modal matrices also get partitioned as

K ¼
Kmm Kms

Ksm Kss

" #
;

M ¼
Mmm Mms

Msm Mss

" #
;

½F� ¼
Fm

Fs

" #
: ð26Þ

The reduction scheme here is proposed to be applied only to the beam d.o.f.’s. The essence of all
the alternative reduction schemes is to introduce the transformation

fdðtÞg ¼ ½W �fdmðtÞg: ð27Þ

Here ½W � is the n � nm transformation matrix that relates the n � 1 beam d.o.f.’s with the nm � 1
master d.o.f.’s. Eq. (27) can also be viewed as a model interpolation scheme to relate unmeasured
d.o.f. to the measured d.o.f. If one adopts the static condensation technique, the transformation
matrix can be shown to be given by

½W � ¼
I

�K�1
ss Ksm

" #
: ð28Þ

Similarly, if one adopts the dynamic condensation technique for reduction, one gets

½W � ¼
I

�D�1
ss Dsm

" #
: ð29Þ

Here, D is the dynamic stiffness matrix given by D ¼ ½K � o2M� and o is the frequency at which
the reduction is made. Finally, if one adopts the SEREP for reduction, the transformation matrix
reads

½W � ¼
Fm

Fs

" #
½FT

mFm��1FT
m: ð30Þ

In arriving at this transformation matrix, the displacement vector fdðtÞg is expressed in terms of
the generalized co-ordinates fzðtÞg as fdðtÞg ¼ ½F�fzðtÞg: Upon partitioning the displacement
vector into master and slave d.o.f.’s, as in Eq. (25), and partitioning the modal matrix as in
Eq. (26), it follows that fdmðtÞg ¼ ½Fm�fzðtÞg and fdsðtÞg ¼ ½Fs�fzðtÞg: This leads to the expression
for the generalized co-ordinate vector fzðtÞg ¼ ½Fm�þfdmg where ½Fm�þ ¼ ½FT

mFm��1½Fm�T is the
pseudo-inverse of ½Fm�: This leads to the transformation matrix as given in Eq. (30). The relative
merits of the above mentioned reduction schemes are widely discussed in the literature, see, for
instance, Ref. [31]. The accuracy of static and dynamic condensation techniques is affected by the
choice of active d.o.f.’s. On the other hand, SEREP provides features that the other two reduction
schemes do not such as [31]:

* The arbitrary selection of modes that are to be preserved in the reduced system model.
* The quality of the reduced model is not dependent upon the location of the selected active d.o.f.
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* The frequencies and the mode shapes of the reduced system are exactly equal to the frequencies
and mode shapes (for the selected modes) of the full system model.

Upon the reducing the d.o.f.’s as indicated in Eq. (26), the reduced mass, stiffness and damping
matrices for the beam structures are obtained as

½Mr� ¼ ½W �T½M�½W �; ½Kr� ¼ ½W �T½K �½W �; ½Cr� ¼ ½W �T½C�½W �: ð31Þ

In the damage detection procedure outlined in the previous section, we now need to use the above
reduced matrices in place of the structural matrices ½M�; ½C� and ½K �: Since the reduced matrices
are dependent on the transformation matrix W ; which, in turn, depends on the unknown
structural stiffness matrix, the final set of equations governing the damage indicator vector a
(Eq. (17)) becomes non-linear in nature. It is proposed in this study to solve these equations in an
iterative manner. Here, in the first iteration, the transformation matrix W is derived by using the
stiffness matrix that is valid for the undamaged structure. This leads to a first approximation of
the damage indicator vector a: This is used to update the transformation matrix W and the
process is repeated till satisfactory convergence on the elements of vector a is achieved. It is to be
noted that the W matrix that would be eventually used in arriving at the converged a depends
upon F matrix of the damaged structure.

5. Effect of measurement noise

Given that the measured response vector fdmðtÞyðtÞg
T is likely to be corrupted by measurement

noise, it is of interest to determine the influence of this noise on the estimated damage indicator
vector a: In our study, we model the measurement noise from different channels as a vector of
zero mean, stationary, mutually independent, Gaussian random processes. Accordingly, the
measured responses are now represented as

fdmðtÞg ¼ fdm0ðtÞg þ fxdðtÞg; ð32Þ

fyðtÞg ¼ fy0ðtÞg þ fxyðtÞg: ð33Þ

Here the subscript zero indicates mean values and the vector fxdðtÞg and the process fxyðtÞg are,
respectively, the measurement noise associated with bridge response and vehicle response. It
follows that vector a is now a vector of random variables. In this study, a first order perturbation
scheme is proposed to be employed to obtain approximations to the mean and covariance matrix
of the vector a: Assuming the noise intensity to be small, and, using first order perturbation
formalism, it can be shown that

/aS ¼ a0; ð34Þ

/aaTS ¼ ½Lþ
o �½/DFDFTSþ/DLoLoDFTSþ/DLoLoL

T
oDF

TS�½Lþ
o �

T; ð35Þ

½DLo�T ¼ ½Krfxdðt1Þg;Krfxd ðt2Þg;y;KrfxdðtsÞg�; ð36Þ

½DF�T ¼ ½DFðt1ÞDFðt2Þ?DF ðtsÞ�; ð37Þ
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DF ðtjÞ ¼ ½½M� þ ½mðtjÞ�n�fxdðtjÞg þ ½½C� þ ½cðtjÞ�n�f’xdðtÞg þ c1½N�T ’xyðtjÞ

þ k1½N�TxyðtjÞ ð j ¼ 1; 2;y; sÞ: ð38Þ

Here / 
S denotes the mathematical expectation operator and the quantities a0 and Lo refer to
the respective quantities when noise is absent. The expectations appearing on the right-hand of
Eq. (34) can be expressed in terms of covariance matrix xðtjÞ; ’xðtkÞ and .xðtlÞ; j; k; l ¼ t1; t2;y; ts:
The evaluation of these expectations can be carried out by using standard theory of stationary
random processes [32]. The details of these formulations are available in the thesis by Majumder
[33].

6. Numerical results and discussions

To illustrate the formulations presented in the previous section, we consider the system shown
in Fig. 1. It is assumed that the beam has uniform cross-sectional properties with L ¼ 45 m;
EI ¼ 1:62� 1011 Nm2; m ¼ 4625 kg=m; c ¼ 1850 N s=m: For the vehicle, it is assumed that
m1 ¼ m2 ¼ 500 kg; k1 ¼ 40� 107 N=m and c1 ¼ 160 N s=m: The vehicle is assumed to travel with
a velocity of 15 m=s and acceleration a ¼ 0: The bridge deck unevenness rðxÞ in the study is taken
to be deterministic and, following the study by Honda et al. [34], rðxÞ is taken to be a sample that
is compatible with the power spectral density function given by

SrðOÞ ¼
%a

On þ bn: ð39Þ

In the numerical work it is assumed that %a ¼ 0:98� 10�4 m2=m=cyc; n ¼ 1:92; and b ¼
0:06 cyc=m: These parameters being representative of deck unevenness of girder-type bridges.
The elements of noise vector fxdðtÞg and fxyðtÞg are taken to be a set of mutually independent
band limited white processes spanning a frequency range of 2p–500p rad=s: The noise intensity
was selected such that the standard deviation of the noise was about 1/30 of the peak bridge
displacement in the absence of noise. The finite element model employed in this study for the
bridge deck is as shown in Fig. 2. Here the bridge deck is divided in to 5 elements and each
element is modelled as a Euler–Bernoulli beam. The model thus has 10 d.o.f.’s. The first three

ARTICLE IN PRESS

Fig. 2. Finite element model of the damaged bridge; numbers within circles indicate the element number.
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natural frequencies of the bridge deck turn out to be 28:85; 115:57; 261:67 rad=s; respectively
and, similarly, the vehicle natural frequency is 894:43 rad=s: The synthetic data for the
damaged bridge response were obtained by integrating Eq. (6) using Newmark’s-b method [30]
with a step size of Dt ¼ 1:71� 10�4 s: Given the perceived merits of reduction scheme using
SEREP, this method of reduction was employed in the damage detection algorithm. In all the
instances when the reduction was carried out, the first four modes of vibration were retained and
all rotational d.o.f.’s were treated as slave d.o.f.’s. Furthermore, as can be deduced from Eq. (17),
the predicted value of a depends upon the length of observation made on the damaged structure
response. In the numerical work, it was observed that the observation length of about 1:5tf

resulted in lowest level of errors in predicted a: Accordingly, an observation time of 1:5tf has
been used. It may be emphasized in this context, that the governing equations for the time
interval 0otptf is given by Eq. (6) and for tXtf by Eq. (8). With a view to bring out different
aspects of the formulation presented in the previous sections, the following investigations have
been carried out.

Case A: We begin by considering measured response from an undamaged structure. The
damage detection procedure in this case is expected to report no false alarms. The synthetic
measured data, with all stiffness parameters fixed at their respective initial values, were inputed to
the damage detection algorithm. The predicted damage vector, together with the details of error
of detection, is reported in Table 1. The effect of using reduced set of measurements, that contains
only displacement d.o.f.’s and the effect of possible presence of measurement noise are also
studied in this table, see the first four rows in the table. In cases where the effect of noise is
included, results on predicted mean as well as standard deviation of damage vector are included in
this table (rows A.3 and A.4). Using criterion given in Eq. (24), it was found that, kn

y1 ¼ kn
y2 ¼

1:07� 10�7 Nm=rad yielded minimum value for eðkn
y1; k

n
y2Þ: A comparison of the predicted

damage vectors (column 2) with the induced damage vectors (column 3) reveals that the damage
detection algorithm performs satisfactory. The last column in this table reports the maximum
percentage error between the induced damage vector and predicted mean damage vector. This
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Table 1

Induced and predicted damage indicator vectors of an undamaged bridge

Sl. no. Induced damage Detected damage Max error

vector vector ðEmaxÞ%

A.1 aT ¼ f0; 1; 1; 1; 1; 1; 0g aT ¼ f0:0; 0:9959; 0:9980; 0:9956; 1:0011; 1:0032; 0:0g 0.4400

A.2 aT ¼ f0; 1; 1; 1; 1; 1; 0g aT ¼ f0:0; 0:9924; 0:9980; 1:0001; 1:0039; 1:0095; 0:0g 0.9500

A.3 aT ¼ f0; 1; 1; 1; 1; 1; 0g /aST ¼ f0:0; 0:9959; 0:9980; 0:9956; 1:0011; 1:0032; 0:0g 0.4400

sTa ¼ f0:0; 0:0234; 0:0916; 0:1263; 0:1142; 0:1189; 0:0g
A.4 aT ¼ f0; 1; 1; 1; 1; 1; 0g /aST ¼ f0:0; 0:9924; 0:9980; 1:0001; 1:0039; 1:0095; 0:0g 0.9500

sTa ¼ f0:0; 0:0297; 0:0916; 0:13693; 0:1202; 0:1191; 0:0g
A.5 aT ¼ f0; 1; 1; 1; 1; 1; 0g aT ¼ f0:0; 0:7916; 1:14; 1:309; 0:8328; 0:7654; 0:0g 30.9

A.6 aT ¼ f0; 1; 1; 1; 1; 1; 0g aT ¼ f0:0; 0:7209; 1:01; 1:318; 0:8708; 0:6703; 0:0g 31.8

Case A.1—response at all d.o.f.’s measured, measurement is not noisy. Case A.2—response at 2,4,6,8 measured,

measurement is not noisy. Case A.3—response at all d.o.f.’s measured, measurement is noisy. Case A.4—response at

2,4,6,8 measured, measurement is noisy. Case A.5—response at all d.o.f.’s measured, measurement is not noisy. Case

A.6—response at 2,4,6,8 measured, measurement is not noisy. ðkn
y1 ¼ kn

y2 ¼ 1:83� 10�8 Nm=rad:)
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error is computed using

Emax ¼ max
1pipn

aI
i � aD

i

aI
i

� �
� 100; ð40Þ

where aI
i is the ith induced damage parameter and aD

i the ith detected damage parameter. It is
observed that, even with a reduced analytical model in damage detection, the maximum error
remains less than 1%: It may also be noted that for the assumed intensity of measurement noise
the highest coefficient of variation in the predicted damage vector is about 0.1368. The 5th and 6th
rows in Table 1 shows the results of damage detection that neglects the dynamic interaction
between vehicle and the bridge. Here, in identifying the vector a; the moving vehicle was modelled
as a moving force. The maximum error in the predicted damage vectors in this two cases is clearly
seen to be much higher than those predicted in cases A.1–A.4. This clearly brings out the need for
including bridge–vehicle interaction models for the problems considered in this paper.

Case B: The efficacy of the damage detection procedure, when the structure has suffered a local
loss of stiffness is studied in Table 2. Two discrete damages are introduced into the model: firstly,
the flexural rigidity of element 6 (Fig. 2) is reduced by 10% and, secondly, the left support bearing
is taken to become partially immobile with resulting ky1 ¼ 4:0� 1011 Nm=rad: The results on
predicted damage vector are shown in Table 2. The organization of this table is as in Table 1. In
this case the maximum error in predicting damage is observed to occur when the measured d.o.f.’s
include only d.o.f. 2 and 4 case (B.5). These d.o.f.’s, as may be seen from Fig. 2, are remotely
placed from the location of damage. The magnitude of error in this case is 1.32% which can still
be considered to be acceptably small. The smallness of errors observed in this case points towards
the effectiveness of SEREP reduction scheme that is in-built into the damage detection algorithm.

Case C: The damage scenario assumed here involves a loss of stiffness in element 2 by 5%, and
in element 6 by 10% and also both the bearings becoming partially immobile with ky1 ¼ ky2 ¼
4:0� 1011 Nm=rad: Using criterion given in Eq. (24) it was found that the minimum value of
eðkn

y1; k
n
y2Þ occured when kn

y1 and kn
y2 were in the neighbourhood of kn

y1 ¼ 4:0� 1011 Nm=rad: This
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Table 2

The case of damage due to loss of local stiffness and one bearing becoming partially immobile

Sl. no. Induced damage Detected damage Max error

vector vector ðEmaxÞ%

B.1 aT ¼ f1; 1; 1; 1; 1; 0:9; 0:0g aT ¼ f0:9969; 0:9969; 0:9979; 0:9992; 1:0004; 0:8979; 0:0g 0.3081

B.2 aT ¼ f1; 1; 1; 1; 1; 0:9; 0:0g aT ¼ f1:0054; 0:9962; 0:9927; 1:0026; 1:0030; 0:9051; 0:0g 0.7266

B.3 aT ¼ f1; 1; 1; 1; 1; 0:9; 0:0g /aST ¼ f0:9969; 0:9969; 0:9979; 0:9992; 1:0004; 0:8979; 0:0g 0.3081

sTa ¼ f0:0521; 0:0234; 0:0782; 0:1014; 0:1142; 0:1189; 0:0g
B.4 aT ¼ f1; 1; 1; 1; 1; 0:9; 0:0g /aST ¼ f1:0054; 0:9962; 0:9927; 1:0026; 1:0030; 0:9051; 0:0g 0.7266

sTa ¼ f0:0374; 0:0563; 0:0921; 0:1363; 0:1142; 0:1189; 0:0g
B.5 aT ¼ f1; 1; 1; 1; 1; 0:9; 0:0g /aST ¼ f0:9954; 0:9925; 0:9956; 1:0012; 1:0132; 0:9064; 0:0g 1.320

sTa ¼ f0:0491; 0:0443; 0:0916; 0:1123; 0:1381; 0:1187; 0:0g

Case B.1—response at all d.o.f.’s measured, measurement is not noisy. Case B.2—response at 2,4,6,8 measured,

measurement is not noisy. Case B.3—response at all d.o.f.’s measured, measurement is noisy. Case B.4—response at

2,4,6,8 measured, measurement is noisy. Case B.5—response at 2,4 measured, measurement is noisy. ðkn
y1 ¼

4:0� 1011 Nm=rad; kn
y2 ¼ 1:83� 10�8 Nm=rad:)
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can be seen from Fig. 3 where eðkn
y1; k

n
y2Þ; along the line kn

y1 ¼ kn
y2 is shown as a function of kn

y1:
Accordingly, it was assumed in detecting damage that kn

y1 ¼ kn
y2 ¼ 4:0� 1011 Nm=rad: The

results shown in the 5th row (case C.5) correspond to the case that includes the effect of deck
unevenness in the measured response. The error of damage detection in this case marginally
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Fig. 3. Selection of kn
y1 and kn

y2 for case C (see Table 3); eðkn
y1; k

n
y2Þ is shown here along the line kn

y1 ¼ kn
y2:

Table 3

The case of damage detection using alternative reduction schemes and considering effect of deck unevenness

Sl. no. Induced damage Detected damage Max error

vector vector Emax%

C.1 aT ¼ f1; 0:95; 1; 1; 1; 0:9; 1g aT ¼ f0:9970; 0:9472; 0:9983; 0:9996; 1:0009; 0:9092; 1:0025g 0.2966

C.2 aT ¼ f1; 0:95; 1; 1; 1; 0:9; 1g aT ¼ f0:9916; 0:9452; 1:0020; 1:0025; 1:0022; 0:9076; 0:9932g 0.8400

C.3 aT ¼ f1; 0:95; 1; 1; 1; 0:9; 1g /aST ¼ f0:9970; 0:9472; 0:9983; 0:9996; 1:0009; 0:9092; 1:0025g 0.2966

sTa ¼ f0:0421; 0:0234; 0:0902; 0:1011; 0:1182; 0:1189; 0:0441g
C.4 aT ¼ f1; 0:95; 1; 1; 1; 0:9; 1g /aST ¼ f0:9916; 0:9452; 1:0020; 1:0025; 1:0022; 0:9076; 0:9932g 0.8400

sTa ¼ f0:0563; 0:0223; 0:0961; 0:1134; 0:1349; 0:1187; 0:732g
C.5 aT ¼ f1; 0:95; 1; 1; 1; 0:9; 1g /aST ¼ f0:9862; 0:9402; 0:9880; 0:9895; 0:9897; 0:9089; 0:9896g 1.3819

sTa ¼ f0:0413; 0:0223; 0:0805; 0:1134; 0:1427; 0:1091; 0:672g
C.6 aT ¼ f1; 0:95; 1; 1; 1; 0:9; 1g aT ¼ f1:0515; 0:943; 0:9974; 1:0071; 0:9955; 0:9147; 0:9814g 5.1476

Induced damage is due to distributed loss of stiffness and the two bearings becoming partially immobile. Case C.1—

response at all d.o.f.’s measured, measurement is not noisy. Case C.2—response at 2,4,6,8 measured, measurement is

not noisy. Case C.3—response at all d.o.f.’s measured, measurement is noisy. Case C.4—response at 2,4,6,8 measured,

measurement is noisy. Case C.5—response at 2,4,6,8 measured, measurement is noisy and deck is uneven. Case C.6—

response at 2,4,6,8 measured, measurement is not noisy and deck is smooth.
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increases to 1.38% from a value of 0.84%, that occurs when bridge deck is smooth (case C.2). The
last row in Table 3 illustrates predicted damage vector when Guyan’s reduction scheme is
employed for model reduction. The error of damage detection in this case becomes greater than
5% which is substantially higher than errors that occur when SEREP is used for reduction.

7. Assumptions and limitations of the present study

1. The damage scenarios studied in this paper are limited to localized/distributed loss of stiffness.
While these scenarios might be illustrative of idealizations of damages due to discrete cracking
or loss of pre-stress in pre-stressed concrete girders, further work is needed to model the
damages more realistically. Specifically it is of interest to detect changes in mass and damping
properties of the structure caused due to occurrence of damage. The treatment of changes to
damping perhaps need to be treated probabilistically given the wide variations that occurs in
characterization of damping.

2. The method has been illustrated using numerically simulated data from theoretical models.
Although these data have been seeded with random noise, there is bound to exist differences
between such artificial data and experimental/field data. In a field study, additional
complications due to environmental effects such as those caused due to wind and temperature
fluctuations would arise. Furthermore, there are going to exist other sources of uncertainty,
such as intrinsic uncertainty associated with structural and vehicular properties, uncertainties
associated with guideway uneveness and modelling uncertainty associated with structural
modelling and vehicle–structure system and model reduction adopted in the study. Further
work is needed to develop the proposed approach to incorporate these features so that the
approach becomes practically applicable. Some of the recent studies on Bayesian methods for
structural damage detection and model updating by Beck and Katafygiotis [35], Katafygiotis
et al. [36], and Yuen and Katafygiotis [37] are likely to be of relevance in advancing the scope of
the present study.

3. The proposed procedure has been illustrated with reference to a highly idealized beam-moving
oscillator system. Treatment of real-life bridge–vehicle systems would require more elaborate
finite element models for both the bridge and the vehicle. It may be noted that the form of the
finite element equilibrium equations, as outlined in Eqs. (6)–(8), would remain broadly valid
even for these more general applications. Consequently, the damage detection algorithm
outlined in Section 2 remains applicable for these situations also.

4. The present study assumes that, upon the occurrence of damage, the structure continues to
behave linearly. This assumption could be relaxed by adopting a non-linear finite element
model for the structure. The damage detection algorithm would consequently become non-
linear in nature. An initial effort to address this problem is reported in the paper by Majumder
and Manohar [38].

5. The method proposed in this study requires measurements to be made on the moving vehicle
also. This necessitates the use of an instrumented vehicle to generate the test signals to set the
bridge into vibration. From an application point of view, it is desirable to eliminate this
requirement. The present authors are currently exploring a study aimed at achieving this by
using model reduction strategies.
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8. Concluding remarks

A time-domain approach, within the framework of finite element modelling, has been
developed in this study to detect damages in bridge structures using data on vibration induced by
a moving vehicle. In studies of this kind it is important to recognize that the accuracy of damage
detection crucially depends upon the ability of finite element model employed to capture changes
in structural response caused due to damages. This calls for greater sophistication in finite element
modelling than what perhaps is needed in problems of response prediction. The study reported in
this paper accounts for several complicating features associated with response of bridge–vehicle
system. This includes the effects due to dynamic interaction between vehicle and bridge, spatial
incompleteness of measured data, deck unevenness and presence of measurement noise. The
governing equations of motion in this case constitutes a set of coupled linear differential equation
with time-varying coefficients. Consequently, the damage detection problem is not amenable for
solution using modal domain techniques. The time-domain approach developed in this study
leads to a set of overdetermined linear algebraic equations for the damage indicator variables
which are solved using pseudo-inverse theory. The limited set of numerical illustrations reported
in this paper demonstrates the accuracy of the method developed. Using the procedures
recommended in this study, the maximum error that is found to occur in detection of damage is
seen to remain less than about 1.5% for all the cases reported in this investigation.
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