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Abstract

A new modal testing technique using magnetomechanical sensors is proposed in this paper. To list some
advantages of this technique, sensors are cost-effective and require no direct physical contact with a
structure. The specific application made in this paper is the modal testing for the bending vibration of a
solid circular beam. The theoretical analysis explaining the principle of the magnetostrictive sensor-based
modal testing is presented for beam bending. The present results are compared with those obtained by the
use of standard accelerometers. Although the application of this technique is made to relatively simple
problems, the potential of magnetomechanical sensors for modal testing has been revealed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Modal testing is one of the most important procedures for dynamic system identification [1]. In
modal testing, accelerometers or strain gauges are popular sensors, but they require the physical
contact with structures to be tested. For non-contact sensing of vibration signals, laser-based
measurement techniques may be applied. Although the laser-based techniques have been succesful
in many applications, the sensing system is quite expensive. In an attempt to develop a cost-
effective non-contact modal testing scheme, we propose to employ magnetomechanical sensors for
vibration signal measurements. The main part of the sensors simply consists of inexpensive coils
and bias magnets.

The principle of magnetomechanical sensors is based on the Villari effect [2]. This effect
represents the phenomenon of the magnetic flux change of ferromagnetic materials when they are
subjected to mechanical stress. These sensors were applied for the construction of delay lines of
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electric signals [3]. The most successful applications of the sensors in mechanical systems are the
measurements of (ultrasonic) elastic waves [4–8]. The typical frequency range considered lies
between a few kHz and 300 kHz; but there has been no attempt to use the sensors in modal testing
where relatively low-frequency (below 10 kHz) vibration responses are of a major concern.
Furthermore, there is no theoretical analysis justifying the use of the magnetomechanical sensors
for modal analysis.

The goal of this paper is to develop a modal testing method based on magnetomechanical
sensors and to present a simplified theoretical analysis justifying the feasibility of the
magnetomechanical sensor-based modal testing method. The specific application in this work is
made in the modal testing of bending vibrations of a freely supported beam made of steel. The
first lowest eigenfrequency considered is in the order of 102 Hz: For the modal testing, the
beam structure is excited by an impact hammer. The eigenfrequencies and bending mode
shapes determined from the present method are compared with those obtained by the use of
typical accelerometers. Although the present application is rather limited to simple beam
problems, the present method may be extended to other types of structures such as plate and shell
structures.

2. Modelling of magnetomechanical effects in a rod under bending

When a piece of ferromagnetic materials is placed in a time-varying magnetic field, its physical
dimension varies. This effect is known as the magnetostriction effect or the Joule effect [9]. Joule
has showed that the length of an iron rod increases or decreases when it is magnetized in the
longitudinal direction.

When a piece of ferromagnetic material under a magnetic field is subjected to a change of a
stress field, it exhibits the change in the amount of the magnetization. This reverse phenomenon is
usually referred to as the inverse magnetostriction effect or the magnetomechanical effect [10,11].
In particular, the longitudinal inverse magnetostriction effect is called the Villari effect [12]. For
small reversible changes in stress, the following relation [13] holds:

@e
@H

�
s
¼

@B

@s

�
H

;

where B and H denote the magnetic flux density and the magnetic field strength, respectively. The
strain and stress of the material are expressed by e and s; respectively. Recently, Jiles [11] has
proposed a theory explaining the magnetomechanical effect in which hysteresis and irreversibility
are considered.

At the crystalline level, magnetostrictive materials contain many magnetic domains that have
the same direction of the atomic moment. The applied stress to the materials changes the
directions of magnetic domains (see Fig. 1). When a coil encircles a part of a rod made of
magnetostrictive materials, the change of the magnetic flux density caused by elastic waves
propagating in the bar can be converted to the voltage potential output of the coil. In this case, the
coil serves as the main element of a sensor, which is usually referred to as a magnetomechanical
sensor.
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Since our work is mainly concerned with the use of magnetomechanical sensors in a slender
beam, the following linearized model [14,15] may be considered:

B ¼ BH þ Bs ð1Þ

and

BH ¼ msH; ð2Þ

Bs ¼ qs: ð3Þ

ARTICLE IN PRESS

Fig. 1. The schematic description of the magnetostriction effects.

(a)

(b)

Fig. 2. Typical distributions of the bias magnetic field applied to a beam: (a) uniform field, and (b) non-uniform field.
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In Eq. (2), ms is the permeability for a constant stress and q represents the magnetoelastic coupling
coefficient. Here, B and H represent the components in the direction of the beam axis.

When the applied magnetic field in a beam is uniform across its cross-section as shown in
Fig. 2(a), the magnetoelastic coupling coeffecient q can be assumed to be constant along the
y-axis. However, q cannot be assumed to be constant when a non-uniform magnetic field is
applied as shown in Fig. 2(b).

When a beam is slender and bends in the xy plane (see Fig. 3), the distribution of the bending
stress may be assumed to be linear in y: Since bending in the xz plane is not considered, BH and Bs

may be assumed to be independent of z:

BH ¼ BH ðx; yÞ ¼ msHðx; yÞ; ð4Þ

Bs ¼ Bs ðx; y; tÞ ¼ qðBHðx; yÞÞsðx; y; tÞ: ð5Þ

The magnetic flux density BH results from a static magnetic field strength H: Unless Hðx; yÞ is
uniform across the beam cross-section, the variation of Bs in the y-axis must be taken into
account.

3. Modal analysis using a magnetomechanical sensor

Based on the discussions given in Section 2, an experimental setup shown in Fig. 4 is prepared. A
permanent magnet is used to magnetize the area of the beam encircled by a magnetomechanical
sensor. Although an optimal distribution of the magnetic field strength may be found, we here
choose the simplest magnet arrangement for bending vibration measurements, which is shown in Fig.
4. (Similar magnet configurations have been used in earlier investigations of wave dispersions [4,5].)

In this section, we will present an analysis to justify the usefulness of magnetomechanical
sensors for modal testing. Neglecting non-linearity and hysteresis, the magnetoelastic coupling
coeffecient q in Eq. (5) may be expanded as

qðx; yÞ ¼ c0ðxÞ þ c1ðxÞy þ c2ðxÞy2 þ?: ð6Þ

This approximation can be useful in the analysis of bending vibrations in a slender beam.
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Fig. 3. The schematic diagram of a turn of a coil around a circular beam with a coordinate system shown.
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The longitudinal displacement uxðx; y; tÞ predicted by a beam theory is given by (see, e.g.,
Ref. [16])

uxðx; y; tÞ ¼ u0ðx; tÞ � yy ðx; tÞ; ð7Þ

where u0 and y denote the average displacement across the beam cross-section and the rotation of
a normal about the z-axis. (See Fig. 3 for the definition of the positive directions.)

The resulting stress s due to the displacement ux is written as

sx ¼ E
@ux

@x
¼ E

@u0

@x
� y

@y
@x

� �
; ð8Þ

where E is Young’s modulus. When the bending strain (thus stress) is dominant inside the beam,
Eq. (8) can be simplified to

sxðx; y; tÞ ¼ �Ey
@yðx; tÞ
@x

: ð9Þ

Substituting Eqs. (6) and (9) into Eqs. (1)–(3) yields

Bðx; y; tÞ ¼ �Eðc0ðxÞy þ c1ðxÞy2 þ?Þ
@y
@x

þ msHðx; yÞ: ð10Þ

The magnetic flux fðx; tÞ passing through a turn of the coil is given by (in case of n turns, the
following result is multiplied by n):

fðx; tÞ ¼
Z

A

B dA

¼ � E
@y
@x

c0ðxÞ
Z

A

y dA þ c1ðxÞ
Z

A

y2 dA þ?
� �

þ
Z

A

msHðx; yÞ dA; ð11Þ

where A is the cross-sectional area of the beam. For a circular cross-section,Z
A

y dA ¼ 0;

Z
A

y2 dA � I ; ð12Þ
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Fig. 4. The schematic diagram of the experimental arrangement for a circular steel beam (length =916 mm, and

diameter =25 mm).
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where I is the moment of inertia about the z-axis of the beam cross-section. Since ms and Hðx; yÞ
in Eq. (11) are time independent, the output voltage vðx; tÞ measured by the coil at location x is
given by

vðx; tÞ ¼ �
@f
@t

¼ EIc1ðxÞ
@2y
@t@x

þ ðhigher order termsÞ: ð13Þ

Since the bending moment Mðx; tÞ is approximated by

M ¼ EI
@y
@x

; ð14Þ

Eq. (13) reduces to

vðx; tÞ ¼ c1ðxÞ
@Mðx; tÞ

@t
þ ðhigher order termsÞ: ð15Þ

Eq. (15) states that the measured voltage output through the coil is equivalent to the time
derivative of the bending moment of the beam. It is clear from Eq. (15) that the presence of c1ðxÞ;
i.e., the linear bias field, must be ensured for bending vibration measurement. Furthermore, the
present analysis is valid for slender beams.

For a given harmonic excitation force f ðx; tÞ

f ðx; tÞ ¼ F ðxÞ eiot; ð16Þ

the steady state forced-vibration responses may be written as [16]

wðx; tÞ ¼ W ðxÞ eiot ¼
XN
r¼1

CrðoÞW ðrÞ eiot; ð17Þ

yðx; tÞ ¼ YðxÞ eiot ¼
XN
r¼1

CrðoÞYðrÞ eiot; ð18Þ

Mðx; tÞ ¼ NðxÞ eiot ¼
XN
r¼1

CrðoÞN ðrÞ eiot; ð19Þ

where W ðrÞ;YðrÞ; and NðrÞ are the rth mode shapes of the transverse displacement, the rotation of
the normal, and the moment. The unknown coefficient CrðoÞ can be found from the orthogonality
condition [18], Z L

0

rA½W ðrÞðxÞW ðsÞðxÞ þ r2g Y
ðrÞðxÞYðsÞðxÞ� dx ¼ drs; ð20Þ

where L is the beam length and r is the mass density of the beam.
The resulting expression for NðxÞ is

NðxÞ ¼
XN
r¼1

N ðrÞðxÞ

O2
r � o2

Z L

0

W ðrÞðxÞFðxÞ dx; ð21Þ

where Or is the rth eigenfrequency. If F ðxÞ is a point force applied at x ¼ xj as

F ðxÞ ¼ Fjdðx � xjÞ; ð22Þ
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the frequency response of the bending moment at x ¼ xi is given by gij ;

gij �
NðxiÞ

Fj

¼
XN
r¼1

N
ðrÞ
i W

ðrÞ
j

O2
r � o2

; ð23Þ

where N
ðrÞ
i ¼ N ðrÞðxiÞ; and W

ðrÞ
j ¼ W ðrÞðxjÞ:

If the voltage output vðx; tÞ is put into the following form:

vðx; tÞ ¼ V ðxÞ eiot; ð24Þ

and Eq. (15) is used, the frequency response xij of the measured voltage output can be finally
written as

xij �
V ðxiÞ

Fj

¼ c1ðxiÞ
XN
r¼1

ioN
ðrÞ
i W

ðrÞ
j

O2
r � o2

: ð25Þ

From Eq. (25), it is clear that the bending mode shape N ðrÞ can be determined if the
measurement locations vary while the excitation location is fixed. On the other hand, if the
excitation location varies with the measurement location fixed, the displacement mode shape W ðrÞ

can be determined. Since typical modal analysis requires the displacement mode shape W ðrÞ; we
will consider only the determination of W ðrÞ: The present mode shapes determined by the use of a
magnetomechanical sensor will be compared with those obtained by the use of an accelerometer.

4. Experimental results

Fig. 4 shows a schematic diagram of the present experimental arrangement. For the verification
of the present modal testing technique, a freely supported beam is considered. In actual
experiments, the beam is suspended at its ends by elastic cords having very low stiffness. A coil-
type magnetomechancial sensor has been prepared. The length and the inside diameter of the coil
are 9 and 33 mm; respectively. The coil has 150 turns made of 0:3 mm thick wires.

The center of the magnetomechanical sensor is placed 412 mm away from an end. After the bias
magnet has been placed at one side of the coil for the magnetization of a part of the beam (see
Fig. 2(b)), it is removed in order not to bend the beam during the measurement.

To determine the displacement mode shape W ðrÞ; the impact point locations are changed while
the sensor location remains unchanged. More specifically, the beam is excited at 29 locations
which are uniformly spaced with the distance of 30:5 mm:

The impact hammer signal is amplified by the PCB 432A16 amplifier and the detected signal at
the sensor is amplified by the SR560 low-noise amplifier. The amplified signal is then digitized in
the LeCroy 9310M oscilloscope.

For the present verification, two experiments are conducted. Case 1 corresponds to an
experiment without applying the bias magnetic field. Case 2 corresponds to the experiment on a
beam whose sensing part has been magnetized by a permanent magnet. In the present experiment,
the flux density near the pole surface of the magnet is only 0:33 T:

The magnetization level will affect the sensor output, but it may be treated as a calibration
constant. When mode shapes and eigenfrequencies are of a main concern, the exact calibration
constant does not need to be determined. However, the effects of the magnetization level and the
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material hysteresis on the sensor output have been investigated by Lee [17]. It is also remarked
that a few percent demagnetization in typical ferromagnetic materials usually requires several
days or longer, so the magnetization level remains virtually unaltered during modal testing.

The experimental results obtained by the two cases are compared with those obtained by a
conventional modal testing method based on an accelerometer. Fig. 5 shows the frequency
response function for the excitation made at point 1 obtained by the present technique. The results
corresponding to Cases 1 and 2 are shown in Figs. 5(a) and 5(b), respectively. When no bias field
is applied, the resulting frequency response function (FRF) is not as good as the one obtained
with pre-magnetization, but it is still reasonable. The same behavior is observed for FRFs at all
other locations. However, the comparison of these two figures demonstrates the role of the bias
magnetic field, which has also been discussed in similar applications [4].

The eigenfrequencies obtained by the present magnetomechanical sensor-based method are
compared in Table 1 with those by the modal testing method using an accelerometer. The two
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Fig. 5. The frequency response functions (FRFs) of a free–free beam shown in Fig. 4 for (a) case 1 (without

pre-magnetization and (b) case 2 (with pre-magnetization).
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values are virtually indistinguishable. The lowest first four vibration mode shapes are also
compared in Fig. 6.

5. Conclusions

Magnetomechanical sensors are suggested as non-contact, cost-effective sensors for modal
testing. The theory of the magnetomechanical sensor-based modal testing was presented for the
bending vibration measurement of a beam. The experimental results obtained for a beam
confirmed the validity and the effectiveness of the present method. Although the present
application was made in a relatively simple problem, the present work suggests the possibility of

ARTICLE IN PRESS

Table 1

Eigenfrequencies of the beam shown in Fig. 4 (unit: Hz, resolution 0.1 Hz)

Mode number 1 2 3 4

Accelerometer 136.1 374.1 729.1 1197.9

Magnetomechanical sensor 136.1 374.2 729.5 1198.3
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Fig. 6. The displacement mode shapes W ðrÞ of a free–free beam shown in Fig. 4 (solid lines: by an accelerometer; circles:

the present result by a magnetostrictive sensor).
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the application of the magnetostrictive sensors for modal testing of more complex structures made
of ferromagnetic materials.
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