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Abstract

A control scheme for a four-bar linkage with all the links flexible is proposed and tested both numerically
and experimentally. The control strategy consists in selecting a reduced number of measurable variables
through which performing position and vibration are controlled independently. The controlled variables
are the crank angle and the link curvatures, which provide an adequate description of the temporal
evolution of the mechanism position and vibrational phenomena. Position control is performed through a
proportional integral and differential (PID)-like regulator while proportional controllers are employed to
damp the fundamental components of the link oscillations. A force of gravity compensator is introduced to
increase the control system performances and appropriate devices are proposed to avoid coupling effects
among the controlled variables.

The control scheme is first tested and tuned in simulation, where the dynamic behaviour of the flexible
linkage is reproduced through a fully coupled non-linear model based on the finite element theory. The
performances of the control scheme are assessed by studying the step response of the closed-loop system.
The numerical results attained prove that the proposed control scheme achieves efficient positioning and
vibration suppression performances. The experimental validation of the control scheme is carried out on an
instrumented prototype of the flexible four-bar linkage. Experimental recordings are in good agreement
with the numerical results therefore confirming both the effectiveness of the control scheme and the
accuracy of the dynamic model.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In order to reduce manufacturing costs and increase productivity, automatically controlled
machines and robot manipulators are being designed to operate at higher speed and with greater
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position accuracy. High-speed mechanisms need to employ light-weight links to reduce inertia
forces, and consequently driving torque requirements. Light-weight links may however originate
vibrational phenomena which are not negligible. The effects of such undesired vibrations can be
partially reduced by adopting dynamic models accounting for link flexibility during the simulation
and the design process. Nevertheless, active control is often necessary for a further reduction of
these effects.

Most researchers’ investigations in the field of flexible mechanisms are focused on the definition
of accurate mathematical models, both for single-link flexible mechanisms and multi-body
systems. Numerous contributions can be found in literature as well as thorough reviews of the
early studies [1–3]. The prevalent approach is based on the use of discretization techniques to
model the elastic links of a mechanism as discrete systems with a finite number of elastic degrees
of freedom, and assumes that the total motion of the system be the superposition of a large-
amplitude rigid-body motion and a small-amplitude elastic deformation (vibration). Turcic
et al. [4] verified experimentally that accurate dynamic models should include coupling terms
representing not only the effect of the rigid-body motion on the elastic motion, as in Ref. [5–8],
but also the effect of the elastic motion on the rigid-body motion. Finite-element-based and fully
coupled dynamic models for multi-body mechanisms have been proposed for instance by
Nagarajan and Turcic [9,10], and Giovagnoni [11].

In the last decades a significant effort has also been directed towards developing control
schemes for the efficient positioning and vibration damping of flexible mechanism. The
complexity of the analytical models that can accurately reproduce flexible mechanism dynamics
makes real-time control a difficult task. Linear control schemes have been widely employed with
varying degrees of success. In particular, linear quadratic optimal control strategies have been
adopted by several researchers both to control single-link [12–14] and multi-body [15,16] systems.
In these works approximate state-space formulations of the dynamic models are used, and the
control action is based on the values assumed by the state variables of the system. Zhou et al. [14],
Book et al. [15], and Caracciolo et al. [16] assume that full state vectors are available for feedback
and report numerical results which refer respectively to a one-link mechanism, a two-link arm,
and a four-bar linkage. However the direct measurement of all the state variables of a system is
almost always impossible, hence, in order to practically employ such control strategies it is
necessary to design an observer which reconstructs the state vector from the values assumed by
the sensed output (i.e., the measured variables). The use of a state observer has allowed attaining
satisfactory experimental results in the control of a one-link flexible robot through linear
quadratic regulators [12,13]. Yet the experimental validation of the control schemes designed
following this approach is rather difficult when the complexity of the system increases.

Other linear control strategies have been proposed. A feedforward torque predictor and a
position and velocity error feedback regulator are used in Ref. [17] and in Ref. [18] to control
respectively the joint position and the tip position of a single-link flexible mechanism. The tip
control of a single-link flexible mechanism through conventional PD regulators has also been
proposed by Park and Asada [19] along with an actuator relocation method for improving flexible
mechanism dynamics. Actually the problem of positioning the actuators and the sensors of a
flexible mechanism has aroused considerable interest. Lee and Chen [20], for instance, have
suggested an optimal design method, based on an energy minimization criterion, which allows an
integrated determination of sensor and actuator locations as well as velocity feedback gain. The
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application of smart materials featuring distributed sensors and actuators of flexible link
mechanism represents another interesting opportunity. Two recent works adopting this concept
are those by Liao and Sung [21] and Choi et al. [22].

Non-linear controllers have been less investigated: an example is in the work by Fung and Chen
[23] where a method characterized by discontinuous control action is used to control the crank
speed and the vibrational phenomena of a slider–crank mechanism with a flexible connecting rod.
The use of adaptive control system [24] and of a neural network [25] have also been proposed for
the control of single-link flexible mechanisms, while more recently satisfactory experimental
results have been achieved by Park et al. [26] in the control of a single-link flexible robot arm with
a voice coil-type actuator. The authors suggest using an hybrid control scheme combining fuzzy
logic and HN control.

The above references are by no means a complete listing. They are nevertheless representative of
the research conducted to date in the field of flexible mechanism position and vibration control.
So far the synthesized control schemes have been tested chiefly numerically and on simple
mechanisms, which are either single link mechanisms or multi-body systems with usually only one
flexible link. Very little is currently present in literature as regards position and vibration control
of mechanisms with two or more flexible links, and in particular of closed chain-mechanisms.

The primary objective and contribution of the research described in this paper are to design and
test, both numerically and experimentally, a control scheme for a four-bar linkage with all the
links flexible. The main problem to be faced when similar mechanisms are considered is that the
dynamic models which can represent effectively the real systems are too complicated to be used in
the implementation of real-time control schemes. In fact, accurate models are always non-linear
and need to be linearized about an equilibrium position to design computationally efficient
control schemes. Yet, linearized models may provide inaccurate system dynamics descriptions
when large-amplitude displacements are considered.

The discrete model adopted in this work is based on the theory proposed in Ref. [11], and
experimentally validated in Ref. [11] and [27] with reference, respectively, to a four-bar and a five-
bar linkage. In accordance with such theory each flexible link of a mechanism is subdivided into
finite elements and an equivalent rigid-link system (ERLS), defined as in Ref. [28], is utilized as a
moving reference configuration from which elastic displacements are measured. The global
motion of the mechanism is thereby separated into the large-amplitude rigid-body motion of the
ERLS and the superimposed small-amplitude motion due to the link elastic deflections. The
differential equations of motion are obtained by direct application of the principle of virtual
works and include inertia coupling terms which account for the mutual influence between rigid-
body motion and vibration.

This theory is employed to reproduce the dynamic behaviour of a flexible four-bar linkage
which moves on a vertical plane driven by an electric motor. A five-beam finite-element
representation of the mechanism is adopted, which is characterized by 32 state variables. Because
of the high number of state variables, and the practical difficulties in designing state observers for
non-linear systems, the control strategy proposed in Ref. [29] is adopted: position and vibration
control are performed independently by selecting a reduced number of controlled variables
providing a satisfactory description of the mechanism rigid-body motion and vibrational
phenomena. In Ref. [29] it is proved, only numerically and referring to the case study reported in
Ref. [11], that the simultaneous position and vibration control of a flexible four-bar linkage is
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feasible through standard regulators if appropriate devices are adopted to avoid coupling effects
among the controlled variables. Moreover a parameter tuning procedure is suggested and the
system performances at different sampling times are tested in simulation.

On the basis of the results achieved in Ref. [29], in this paper a control scheme is synthesized for
the studied flexible four-bar linkage. The scheme consists of a set of separated controllers
operating simultaneously. Position control is performed by means of a regulator derived from a
classical PID controller; the controlled variable is the crank angle measured at the motor shaft. A
force of gravity compensator is also employed to increase position control performance. Vibration
control is achieved through independent proportional regulators, feeding back link curvature
signals. The objective is to suppress the highest amplitude oscillations of the mechanism links,
which are associated to the link first natural frequencies. All the regulators comprising the control
scheme operate simultaneously and effectively because suitable devices are adopted to reduce
coupling effects among the controlled variables and to achieve stability. An experimental
validation of the control scheme is carried out on a prototype of the flexible linkage. The linkage is
driven by a brushless motor, a simplified dynamic model of which is introduced in the simulator,
and instrumented so as to measure the desired controlled variables. The control scheme is first
tested and tuned in simulation by studying the dynamic response of the closed-loop system to a
step input. The numerical results attained prove that the proposed control scheme achieves
efficient positioning and vibration suppression performances. The experimental results confirm
the effectiveness of the control scheme and are in good correspondence with the numerical results,
therefore proving the accuracy of the analytical model in reproducing the fundamental dynamics
of the linkage.

2. Dynamics of a flexible link mechanism

2.1. Kinematic relations

The following kinematic definitions are adopted for the ith element and with respect to a
common fixed reference frame {X ; Y ; Z}: ui is the nodal displacement vector, bi is the nodal
position vector, ri is the nodal position vector for the corresponding element of the ERLS, vi is the
displacement vector of a generic point of the element, pi is its position vector, and wi is the
position vector of the corresponding point in the ERLS. It holds that

bi ¼ ri þ ui; pi ¼ wi þ vi: ð1; 2Þ

The definitions mentioned are schematically summarized in Fig. 1, where a planar case is
considered in accordance with the case study. As it is shown in the figure, beside the fixed
reference frame, a local coordinate system {xi, yi, zi} is associated with the ith element and follows
the motion of the ERLS, whose position is defined by the generalized coordinates contained in a
vector denoted q:

The position and orientation of every local system can be uniquely determined through the
ERLS kinematics. The position of the ERLS, as well as its velocity and acceleration, can be
defined according to the ordinary rules adopted for analyzing rigid-link mechanisms. In
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particular, by making use of the sensitivity coefficient concept, it is possible to write

dr ¼ SðqÞdq; ’r ¼ SðqÞ’q; .r ¼ SðqÞ.qþ ’Sðq; ’qÞ’q ¼ SðqÞ.qþ
X

k

’qk@SðqÞ=@qk

 !
’q; ð325Þ

where SðqÞ; is the sensitivity coefficient matrix for all the nodes of the ERLS, and vector r
accounts for the positions of all the nodes of the ERLS (ri is a subset of r). If, accordingly, the
positions and the elastic displacements of all the nodes are grouped into unique vectors, after
differentiating Eq. (1) and employing Eq. (3), the infinitesimal nodal displacement vector db
becomes
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where I is the identity matrix. The coefficient matrix of the foregoing equation is not square. If e is
the dimension of the vector q of the ERLS generalized coordinates and n is the number of the
elastic degrees of freedom contained in vector u; then [     ]SI has n rows and n þ e columns. As a
consequence a given configuration db of infinitesimal nodal displacements corresponds to more
sets of infinitesimal variations [             ]TT dd qu of the generalized coordinates of the system. To
eliminate this redundancy the coefficient matrix must be square, which can be obtained forcing to
zero e elements of du: By doing so, the position of the ERLS with respect to the actual deformed
mechanism is defined univocally. If du is partitioned into its independent part (duin) and into its
zeroed part (du0), and if S is correspondingly partitioned, the removal from Eq. (6) of the elements
forced to zero allows writing
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As pointed out in Ref. [11], a correct ERLS definition requires not only that the square matrix
of coefficients of Eq. (7) be non-singular, but also that the generalized co-ordinates of the ERLS
be chosen so as to avoid encountering singular configuration during the motion.

The finite element theory is employed to compute the virtual displacement and the real
acceleration of a generic point within an element, which are to be determined to apply the
principle of virtual work. If Niðxi; yi; ziÞ denotes the shape function matrix of the ith element,
Eq. (2) can be rewritten as

pi ¼ wi þ RiðqÞNiðxi; yi; ziÞTiðqÞui: ð8Þ

Ni is commonly defined in the local reference frame of the ith element, hence two matrices are
introduced in Eq. (8) to perform co-ordinate transformations: TiðqÞ is a block-diagonal matrix
expressing the transformation from the global reference frame to the local one of the ith element;
RiðqÞ is a matrix expressing the local-to-global transformation.

Virtual displacements (dpi) can be obtained by taking variations of Eq. (8). Both the virtual
elastic displacements of the nodes (dui) and the virtual displacements of the generalized
co-ordinates (dq) are considered. Moreover the requirement of completeness (which the elements
must satisfy to encounter monotonic convergence to the exact solution as the number of elements
is increased) allows employing the shape function matrices not only to compute elastic
displacements inside the elements but also to represent rigid-body displacements. The following
equation is obtained from the complete expression of dpi by neglecting the terms with the lowest
order of magnitude and is employed to interpolate virtual displacements from

dpi ¼ RiðqÞNiðxi; yi; ziÞTiðqÞdri þ RiðqÞNiðxi; yi; ziÞTiðqÞdui: ð9Þ

An analogous reasoning allows obtaining the following simplified expression of the acceleration
from the complete expression of .pi:

.pi ¼RiðqÞNiðxi; yi; ziÞTiðqÞ.ri þ RiðqÞNiðxi; yi; ziÞTiðqÞ.ui

þ 2 ’RiðqÞNiðxi; yi; ziÞTiðqÞ þ RiðqÞNiðxi; yi; ziÞ ’TiðqÞ
� �

’ui: ð10Þ

The complete expressions of dpi and .pi; and an investigation of their negligible terms are reported
in Ref. [11].

The expressions of real and virtual strains also have to be computed to apply the principle of
virtual work, since they allow estimating the elastic contributions to the total virtual work. By
letting Biðxi; yi; ziÞ denote the strain–displacement matrix, in the local moving frame

ei ¼ Biðxi; yi; ziÞTiðqÞui; dei ¼ Biðxi; yi; ziÞdTiðqÞui þ Biðxi; yi; ziÞTiðqÞdui: ð11; 12Þ

2.2. Governing equations of motion

The governing equations of motion are obtained by expressing the dynamic equilibrium of the
system through the principle of virtual work. For an undamped system, the virtual works due to
the inertial, elastic and external forces should be considered. The total virtual work can be
computed summing up the elemental contributions. ThusX

i

Z
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Z
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dpT
i gri dv þ ðduT þ drTÞf; ð13Þ
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where vi denotes the ith element volume, ri is the mass density for the element, Di is the stress–
strain matrix, g is the gravity acceleration vector, f is the vector of the concentrated external forces
and torques applied to all the nodes of the model, and the virtual displacements du and dr refer to
all the nodes of the model. Invoking the virtual displacement theory, Eq. (13) can be split into two
independent equation asX

i

duT
i Mi .ri þ .uið Þ þ 2

X
i

duT
i MGi ’ui þ

X
i

duT
i Kiui ¼

X
i

duT
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X
i

drTi Mið.ri þ .uiÞ þ 2
X
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drTi MGi ’ui þ
X

i
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X
i

drTi fgi þ drTf; ð15Þ

where the Eqs. (9)-(12) are employed and the following definitions, described in detail in Ref. [11],
are introduced for the ith element:Z
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When the elastic displacements are small in comparison with the link dimensions, the termP
i u

T
i dUiKiui of Eq. (15) becomes negligible, because its order of magnitude is much smaller than

that of the other terms. Therefore, if Eq. (3) is employed to express the ERLS virtual
displacements by means of the sensitivity coefficient matrix, and if unit virtual displacements are
imposed, the following expressions holds in terms of assembled matrices and vectors:

Mð.rþ .uÞ þ ð2MG þ bMþ gKÞ’uþ Ku ¼ fg þ f; ð21Þ

STMð.rþ .uÞ þ ð2STMG þ bSTMÞ’u ¼ STðfg þ fÞ; ð22Þ

where the Rayleigh coefficients b and g multiplying the mass and the stiffness matrix have been
introduced to take into account damping forces. Finally, by making use of Eq. (5) and by
gathering into vector t ¼ tð’u; ’q; u; qÞ all the forces excluding those directly related to the second
derivatives of the generalized co-ordinates, Eqs. (21) and (22) can be grouped together and
rearranged in matrix form as
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Eq. (23) only includes the nodal elastic displacements which are not forced to zero, and the
corresponding matrix elements. Inertia coupling between the accelerations of the ERLS
generalized co-ordinates and the elastic accelerations is accounted for through the elements of
the submatrices ðMSÞin and ðSTMÞin: Hence, the mutual influence between rigid-body motion and
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vibration is taken into consideration: the dynamic behaviour of the ERLS is not independent
from vibration and vice versa.

3. Model of the flexible four-bar planar linkage

The above equations of motion are derived for general mechanisms and elements. In this work
they have been employed to develop a finite element computer code for the dynamic analysis and
simulation of planar elastic mechanisms modelled with classical two-node and six-degree-of-
freedom beam elements. The shape function (Ni), mass (Mi), and stiffness (Ki) matrices for two-
dimensional Euler beam elements are common knowledge. The Coriolis matrix (MGi) can be
effectively computed through the antisymmetric inertia matrix described in Ref. [8].

The finite element code has been written using Matlab and has been implemented as a S-
function in order to allow its incorporation into Simulink models. Simulink provides a number of
efficient solvers for stiff problems which can be employed for the numerical integration of Eq. (23).

Through the implemented code it has been possible to simulate the dynamic response of the
flexible mechanism shown in Fig. 2. The mechanism is a planar four-bar linkage with all the links
flexible except for the ground link. A brushless servomotor connected to the fixed frame drives the
mechanism, which moves on a vertical plane. The links are straight and slender steel bars with a
square cross-section. All the link lengths are different to make it possible to distinguish the link
vibration frequencies in the system response. The crank of the mechanism (link1) is screwed into
an aluminum wheel (A) rigidly connected to the motor shaft through a collar. Direct coupling of
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the motor shaft to the mechanism crank has been preferred in order to prevent the non-linear
dynamic phenomena introduced by reduction gears. The kinematic couplings at joints B and C
are made of steel roller bearings with negligible clearance and friction losses; the links are tightly
screwed into these joints. The revolute joint in D is created by means of a steel shaft supported by
two self-aligning ball bearings, whose outer rings are rigidly connected to the fixed frame. A
threaded hole has been made on the shaft to allow screwing the follower (link 3). Friction losses in
the ball bearings may reasonably be neglected as well as clearance. Further details concerning the
experimental apparatus are reported in Section 5.

Fig. 3 illustrates the finite element model of the elastic four-bar mechanism. The model is
comprised of five beam elements, and eight nodes: two elements of the same length are used to
model links 2 and 3 while for link 1, which is the shortest, a single beam element is employed.
Lumped masses are used to account for the moving joints B and C, whose inertias are neglected
because of their small dimensions. A concentrated inertia at joint A accounts for the inertia of the
brake and the rotor of the brushless motor, and for the inertia of the aluminum wheel and collar.
Another concentrated inertia in D accounts for the moving parts of the revolute joint fixed to the
frame. The 15 elastic degrees of freedom of the model are shown in Fig. 3, as well as the
generalized co-ordinate q (the crank angle) of the ERLS. The dynamic model has therefore 16
degrees of freedom. The elastic degree of freedom forced to zero to define the position of the
ERLS with respect to the deformed mechanism is the horizontal displacement at joint C. This
definition of the ERLS meets the requirement defined in the previous section for a correct ERLS
definition. The same discrete model making use of five beam elements has been employed for a
similar four-bar linkage in Ref. [11]. Such work proves that the model gives an accurate prediction
of the fundamental dynamics of the mechanism, which depends on the large-amplitude rigid-body
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motion of the mechanism and on its primary elastic modes, coinciding approximately with the
first modes of the single links, considered pinned–pinned slender beams.

4. Controller design

4.1. Control approach

If one denotes z ¼ ½’uin; ’q; uin; q� the state vector of a system modelled by the differential
equations of motion (23), on the basis of the considerations made in the previous section, it can be
inferred that the studied flexible-link planar four-bar linkage has 32 state variables. Such a high
number of state variables makes it impossible to instrument the mechanism so as to get a direct
measurement of z: Moreover the classical feedback control techniques developed to design state
observers cannot be applied because the mechanism dynamic model is non-linear.

In this work the design of the control system prescinds from the knowledge of the state vector
and has been carried out synthesizing independent regulators for position and vibration control.
The approach to be followed is based on the selection of a reduced number of controlled
variables, which can be easily measured experimentally, and provide an adequate description of
the temporal evolution of the mechanism position and of the vibrational phenomena.

4.2. Controlled variables

Different controlled variables are employed by the position and vibration regulators. The
proposed dynamic model splits the global motion of the flexible mechanism into two separated,
superimposed, and coupled motions: the large-amplitude rigid-body motion of the ERLS, which
basically outlines the position of the mechanism, and the small-amplitude elastic motion of the
links, which essentially describes the vibrational phenomena. The selected controlled variables for
rigid-body and elastic motion control are, respectively, the crank angle and the curvatures of the
links. There follows a description of the reasons for the choice.

A complete description of the ERLS motion is provided by its generalized co-ordinate q: This
co-ordinate cannot be measured directly, since the position of the ERLS is defined zeroing an
elastic degree of freedom of the mechanism model. However, when large displacements of the
mechanism are considered and under the hypothesis of small elastic deflections of the links, it can
be assumed that q coincide with the crank angle a measured at joint A (see Fig. 3), which is the
sum of q and the elastic angular displacement f1 at node 1.

The angle a can be measured by means of an optical encoder sensing the angular position of the
motor shaft. In this work the use of a brushless motor simplifies the apparatus: the motor drive
delivers the motor shaft angular position converted to a digital form simulating the output of an
incremental encoder.

Because the mechanism links are slender beam-like bars and no external forces acts on the
mechanism, apart from gravity loads and the driving torque applied by the motor at one end of
the crank, the axial strains in the links are negligible in comparison with transverse deflections. By
monitoring the link curvatures it is therefore possible to get an adequate description of the elastic
deformations, and consequently of the vibrational phenomena.
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Eq. (11) expresses the relation between strain distribution ei in the ith element and the elastic
displacements ui at the nodes. For the six-degree-of-freedom Euler beam elements employed to
model the mechanism links, the small strain theory assumes that axial displacements are
independent of transverse displacements and that strains are expressed in terms of axial strains
and curvatures. The curvature of the ith element at a particular position can therefore be
computed by means of Eq. (11). The curvature is a component of vector ei which is a function of
the space co-ordinates.

The curvature of a link can be measured experimentally by means of calibrated strain gages. On
every link, the curvature should be measured in the location where it reaches the highest
amplitude. By doing so, the possibility of detecting even small elastic deflections is guaranteed
during the experiments, and the effect of signal noise on the measurements made by the strain
gages is kept to a minimum. The choice of most suitable location is driven by the dynamic
behaviour of the links which has been investigated through the mathematical model. The
curvatures of links 2 and 3 (C2 and C3) are measured at the bar midpoints since these links are
characterized by a dynamic behaviour very similar to that of a pinned–pinned beam. As for link 1,
since it is the crank of the mechanism, a location closer to joint A has been chosen to measure the
curvature (C1): such a location is at 40% of the link total length.

4.3. Control scheme

The synthesized control scheme consists of a set of separated feedback regulators operating
simultaneously and designed for an unrelated control of the mechanism rigid-body motion and
vibrations. The control signal is the torque (M) applied by the motor to the mechanism, and it is
obtained by summing the contributions of all the independent components of the scheme. The
simultaneous use of all the regulators comprising the control scheme is made possible by some
appropriate devices which have been introduced to reduce coupling effects among the controlled
variables.

4.3.1. Position control

Position (rigid-body motion) control is performed by means of a PID-like regulator. The
controlled variable is the crank angle a; which is required to follow an externally-set path over time.

The controller employed is based on a classic PID regulator which is modified to increase
performance, reduce sensitivity to vibrational phenomena, and achieve stability. As a matter of fact,
inertia coupling between rigid-body motion and vibrations prevents an effective utilization of
standard PID regulators, mainly because of the high sensitivity of the derivative action to fluctuations
in the value of the position error ðeðtÞÞ: A considerable reduction of the effects of vibrations on the
derivative of the position error (velocity error: ’eðtÞ) is obtained by using the transfer function

DðsÞ ¼ s=ð1 þ sTcÞ; ð24Þ

to compute the Laplace transform of the velocity error while attenuating unwanted error signal
components above the cut-off frequency (1=Tc). The derivative control therefore provides the
following contribution to the overall control signal by

Md ¼ KdL
�1½DðsÞL½eðtÞ��; ð25Þ
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where the symbol L denotes the Laplace transform of a function. In order to avoid that a high
derivative action determines an excessive perturbation of the system when the position reference
changes abruptly, a limit is imposed on the absolute value of the derivative signal (‘‘derivative
saturation’’) such that

’eðtÞj j ¼ L�1½DðsÞL½eðtÞ��
�� ��pS1: ð26Þ

If the angular displacement which the crank undergoes is high in comparison with the vibration
amplitude, which is often the case when flexible linkages are considered, the effects of vibrations on
the proportional control are generally negligible. No filters are therefore used for smoothing the
position error signal, and the following standard relation is employed for computing the contribution
of the proportional control to the overall control signal

Mp ¼ KpeðtÞ: ð27Þ

For the same reason no filtering of unwanted signals is adopted in the integral-mode controller.
The approximate discrete-time expression utilized for calculating the integral of the error signal isZ t

0

eðtÞ dt ¼ T
Xk

j¼1

ej; ð28Þ

where T is the time between successive measurements of the controlled variable (sampling time), ej is
the value of the position error computed at the jth time interval, k is the time interval within which
the instant t falls. The following relation is therefore employed for computing the contribution of the
integral control to the overall control signal at the kth time interval, namely

Mk
i ¼ KiT

Xk

j¼1

ej: ð29Þ

In order to make integral control perform effectively, bounds have been imposed on the range of
the error calculated at each sampling interval (‘‘input saturation’’) and on the summation of all errors
(‘‘output saturation’’):

ej

�� ��pS2;
Xk

j¼1

ej

�����
�����pS3: ð30; 31Þ

These bounds reduce the effect of the integral control on the system transient response thus
permitting increase of the value of the integral constant and consequently improving the system
stability at steady state. Moreover the use of the limitation defined by Eq. (31) increases the integral
control reactivity to changes in the position error sign.

Finally, so as to increase the efficiency of the position regulator, the influence of the force of
gravity on the mechanism has been compensated separately by computing the value of the torque
that counteracts gravity at each angular position a: To compute such a torque is a straightforward
kinetostatic problem, whose solution is contained in Ref. [29].

4.3.2. Vibration control
Vibration control is performed by means of autonomous proportional regulators whose

controlled variables are the link curvatures. The vibration control problem is subdivided into a set
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of independent regulation problems: the objective is the prompt decrease to zero of the amplitude
of the elastic oscillations measured on each link.

The values about which link curvature signals oscillate depend on the mechanism position
(because the mechanism is under the influence of gravity) and on the torque applied by the motor
at each time. However, in order to get accurate information concerning the vibrational
phenomena, curvature signals should be processed so as to remove low frequency components
and hence to isolate the oscillations at the system natural frequencies. This is basically a data
detrending problem which has been solved by subtracting from the actual curvature value, the
moving average of the previous values, computed over a fixed number of samples (n). Further
details can be found in Ref. [29]. The use of a data detrending filter generates a short delay that
only affects the mean value of the curvature but not the amplitude and the frequency content of
the elastic oscillations.

Let %Cik denote the value of the ith link curvature estimated at the kth time interval, the
contribution to the overall control signal provided by the proportional regulator of the ith link is
computed as follows:

Mk
ci ¼ Kci %Cik: ð32Þ

Fig. 4 shows a block diagram of the synthesized control scheme where all the independent
regulators are represented. It is noticable that, as far as vibration control is concerned, the
controlled variables are C1 and C3: No vibration control is provided for the second link (the
coupler) since a strain gage carrier amplifier with just two-channels was available for this
experimental investigation. Actually the coupler oscillations are negligible in comparison with
those of the other two links, owing to the mechanism geometry and the case study chosen to assess
the control scheme performance.
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Fig. 4. Block diagram of the control scheme.
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5. Case study

Table 1 reports the geometric and inertial characteristics of the flexible link mechanism to which
the theory developed in the foregoing sections has been applied. A first description of the
mechanism has been provided in Section 3. Additional information is concerning the driving motor,
the instruments used for measuring the values of the controlled variables, and the controller follows.

The brushless motor is an Indramat type MKD with a maximum torque of 11 Nm. The motor
operating mode is set to torque regulation with analog interface (710V) in accordance with the
features of the control scheme designed. The motor shaft angular position (a), is delivered directly
by the motor drive with a resolution of 2.197	 10�2 degrees, and read by a 24-bit encoder card.

Half-bridge strain gages are located on the crank and on the follower at the positions set in
Section 4.2, and are calibrated for measuring the link curvatures in the plane of motion. The
signals produced by the strain gage bridges are conditioned by a HBM MGC carrier with two
one-channel amplifier modules. To eliminate measurement noise and to prevent aliasing
problems, the strain-gage signals are passed through a low-pass filter having a Butterworth
characteristic and a cut-off frequency of 1000Hz. Analog signals from the carrier are acquired by
means of a 12-bit ADC/DAC card. The same card is also employed to generate the analog input
of the motor drive.

The control scheme is implemented and run on a PC where a real-time kernel that interfaces
with the operating system is installed through The MathWorks Real-Time Windows Target. In
order to prevent aliasing problems, the sampling time adopted is 2ms, corresponding to a
frequency of 500Hz, approximately six and a half times higher than the maximum frequency
measured (see Table 2).
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Table 1

Mechanical parameters of the prototype

Link 0: Ground 1: Crank 2: Coupler 3: Follower

Length (m) 0.3588 0.3728 0.5250 0.6320

Width (m) – 6	 10�3 6	 10�3 6	 10�3

Thickness (m) – 6	 10�3 6	 10�3 6	 10�3

Total mass (kg) – 0.1014 0.1413 0.1801

Flexural stiffness: EJ (Nm2) – 21.6 21.6 21.6

Joint A B C D

Lumped mass (kg) – 72.4	 10�3 71.3	 10�3 –

Concentrated inertia (kgm2) 490	 10�6 – – 120	 10�7

Table 2

First natural frequencies of links 1 and 3

First natural frequency (Hz) Link 1 Link 3

Numerical results 76.17 36.13

Experimental results 75.92 35.88
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The control scheme has been first tested and tuned in simulation by studying the step response
of the closed-loop system: starting from the equilibrium configuration in which the crank is
horizontal (a ¼ 0
), the controlled variable a is required to follow a reference path characterized
by a step change of 45
 taking place at time 0.1 s. The values of the regulator parameters have
been determined so as to meet the dynamic performance requirements defined in terms of time
response specifications as

setting time of a : o0:8 s; overshoot of the final value of a : o15%;

and to ensure an effective reduction of the amplitudes of the link elastic oscillations, while keeping
the maximum value of the control signal below the torque limit of the brushless motor adopted.

6. Numerical results

The dynamic simulator of the complete experimental apparatus comprises the model of the
four-bar flexible linkage described in Sections 2 and 3, and a simplified model of the driving motor
on the basis of the motor operating mode, the ratio of the torque exerted to the signal voltage
applied to the input terminal of the motor drive is assumed to be constant, at any position and
rotational speed. The motor inertial characteristics are accounted for in the dynamic model of the
mechanism through the concentrated inertia at joint A (Table 1). Moreover, a first order low-pass
filter with a cutoff radian frequency of 250 rad/s, is introduced to reproduce the attenuation of the
high frequency components of the position feedback signal delivered by the motor drive. The
value of the cut-off frequency has been determined experimentally through an identification
procedure. The simulated signals of the controlled variables and the control signal have been
sampled at 500Hz to match the experimental conditions.

The parameters of the position and the vibration controllers have been tuned separately, by
adopting a procedure similar to the one described in Ref. [29]. No optimization techniques have
been employed to improve the value chosen, since determining the best values for the parameters
is beyond the scope of this work. Table 3 reports the values of the parameters which have allowed
meeting the performance requirements defined in the previous section.

The time-histories of the controlled variables and of the control signal computed analytically
carrying out the experiment with the controller parameter values set as in Table 3 are plotted as
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Table 3

Controller parameters

Position control Vibration control

Kp 480	 10�6 Kc1 12

Kd 140	 10�6 Kc3 60

S1 (sectors/s) 12	 103 n (samples) 35

Tc (s) 5	 10�2

KI 1.5	 10�2

S2 (sectors/step) 5

S3 (sectors/step) 150
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solid lines in the Figs. 5–8. The major features of the system step response are reported in Table 4
and are inferred from the time-history of the crank angle a plotted in Fig. 5. The time-histories of
the link curvatures C1 and C3 are shown in Figs. 6 and 7, where a shorter time scale is adopted to
for clarity.

The comparison of the aforementioned time-histories with those plotted as dashed line, which
are obtained without vibration control (i.e., setting Kc1 ¼ Kc3 ¼ 0 and the position control
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Fig. 5. Comparison of the crank angles computed analytically with (solid line) and without (dashed line) vibration

control.
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Fig. 6. Comparison of the crank curvatures computed analytically with (solid line) and without (dashed line) vibration

control.
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parameters as in Table 3), demonstrates the effectiveness of the control scheme. In fact, when no
vibration control is performed, oscillations of a not negligible amplitude are clearly visible not
only in the link curvature plots, but also in the crank angle plot. The fundamental components of
the motion of the crank and the follower are at the frequencies reported in Table 2. These
frequencies are mean frequencies during the motion because they slightly change in virtue of the
change in the boundary conditions of the links. Having introduced simple Rayleigh damping in
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Fig. 7. Comparison of the follower curvatures computed analytically with (solid line) and without (dashed line)

vibration control.
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the numerical model (b ¼ 8:7	 10�2 and g ¼ 4:5	 10�5) the amplitudes of the oscillations
decrease gradually, but slowly. Vibration control remarkably reduces the duration of the
undesired vibrational phenomena: Figs. 6 and 7 prove that the fundamental components of the
oscillations in both the links are damped in about 0.25 s, hence before reaching the target angular
position.

Fig. 8 allows comparing the torque computed by the control scheme, and consequently applied
to the crank of the mechanism, with and without vibration control. The time-history of the torque
computed without vibration control (dashed line) clearly shows both the effect of the derivative
saturation immediately after the step change occurs, and the persisting oscillations of the torque
values at the crank first natural frequency. These oscillations disappear when vibration control is
performed (solid line). The additional contribution provided by the vibration controller greatly
modifies the control signal, and in particular the maximum value achieved. Such value is
considerably higher than the one computed without vibration control, but still below the motor
torque limit.

The satisfactory results achieved in simulation highlight that all the controllers can operate
simultaneously without interfering significantly, and consequently prove the effectiveness of the
devices adopted to avoid coupling effects among variables.

7. Experimental results

A consistent experimental validation of the synthesized control scheme and of the dynamic
model adopted is obtained by analyzing the dynamic response of the experimental apparatus to
the step input defined previously, and by comparing the experimental recordings with the results
achieved in the numerical analysis. Figs. 9–12 include the comparison between the time-histories
of the controlled variables and of the control signal recorded experimentally (solid line) and
computed in the simulation (dashed line). The experimental investigation is carried out using the
same controller parameters employed in the simulation, and reported in Table 3. The main
features of the real system step response are reported in the third column of Table 4. They meet
the performance requirements defined previously, as well as the maximum torque exerted which is
below the motor torque limit.

The numerical results and the experimental recordings are in good agreement, which proves the
accuracy of the numerical model and the effectiveness of the control scheme. As a matter of fact
the numerical model reproduces accurately the fundamental dynamics of the linkage both when
vibration control is performed and when it is not; moreover the fundamental vibrational
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Table 4

Major features of the system dynamic response

Numerical results Experimental results

Overshoot of the final value 5:78
B12:84% 2:88
B6:4%
Settling time (75%) 0.718 s 0.482 s

Transient rise time (10–90%) 0.180 s 0.186 s

Response time (50%) 0.122 s 0.116 s
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phenomena are damped by the control scheme in approximately the same time as in the
simulation. The accuracy of the numerical results achieved is also a consequence of the chosen
ERLS definition, which minimizes elastic displacements and rotations at the nodes because the
crank undergoes large deformations, forcing to zero the horizontal elastic displacement at joint C
is a better choice than forcing to zero the elastic rotation at the motor shaft as in Ref. [8].

Fig. 9 and Table 4 show that the real system performs better than was predicted by the
numerical model, both the settling time and the overshoot values are lower. Only negligible
differences can be discriminated in the time-histories of the link curvature values (Figs. 10 and 11),
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Fig. 9. Comparison of the crank angles recorded experimentally (solid line) and computed analytically (dashed line)

with vibration control.
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Fig. 10. Comparison of the crank curvatures recorded experimentally (solid line) and computed analytically (dashed

line) with vibration control.
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while the different torque values keeping the mechanism in equilibrium at the target position in
the simulated and the experimental tests are referable to the simplifying assumptions in the
dynamic model concerning the mechanism geometric and inertial characteristics.

Spectrum analyses of the curvature waveforms recorded when no vibration control is
performed have allowed identifying the frequency of the fundamental component of each signal.
These frequencies are reported in the third row of Table 2. They are slightly lower than those
predicted by the theoretical model, which yields a stiffer idealized system compared to the actual
system. This is in accordance with the principles of the finite element theory. Figs. 13 and 14 allow
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Fig. 11. Comparison of the follower curvatures recorded experimentally (solid line) and computed analytically (dashed

line) with vibration control.
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Fig. 12. Comparison of the driving torques recorded experimentally (solid line) and computed analytically (dashed line)

with vibration control.
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comparing link curvatures computed in the simulation and recorded experimentally without
vibration control. As can be seen from the plots, the experimental and numerical results show a
very good agreement both in terms of frequency and amplitude. Nonetheless an abrupt decrease
in the amplitude of the crank vibrations has been recorded experimentally after about 0.35 s since
the beginning of the experiment (Fig. 13). Such an unforeseen damping effect can be traced back
to the motor dynamics, which is not reproduced with exhaustive accuracy by the simplified model
employed in the simulator. The fact that no unexpected decrease in the vibration amplitude can be
observed in the time-history of the follower curvature (Fig. 14) corroborates this evidence.
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Fig. 13. Comparison of the crank curvatures recorded experimentally (solid line) and computed analytically (dashed

line) without vibration control.
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Fig. 14. Comparison of the follower curvatures recorded experimentally (solid line) and computed analytically (dashed

line) without vibration control.

A. Trevisani / Journal of Sound and Vibration 268 (2003) 947–970 967



8. Conclusions

In this work a scheme for the position and vibration control of a four-bar linkage with all the
links flexible has been designed and tested, both numerically and experimentally.

The control scheme has been first tested and tuned in simulation, where the dynamic behaviour
of the flexible linkage is reproduced through an accurate non-linear mathematical model based on
the finite element theory. An equivalent rigid-link system (ERLS) is used in the model as a moving
reference configuration for elastic displacement measurements. The actual mechanism motion is
therefore split into a large-amplitude rigid-body motion with a superimposed small-amplitude
elastic motion. The equations of motion are obtained by applying the principle of virtual work
and include inertia coupling terms accounting for the mutual influence between rigid-body motion
and vibration.

Because of the high number of state variables characterizing the model of the mechanism and
the practical difficulties in designing state observers for non-linear systems, a reduced number of
easily measurable controlled variables is selected to perform position and vibration control
independently. Position control is performed by means of a PID-like regulator; the controlled
variable is the crank angle measured at the motor shaft. Vibration control is performed by means
of independent proportional regulators; the curvatures of the links are the controlled variables.
Moreover, at each position the torque produced by gravity is computed and counteracted by a
separate force of gravity compensator. The use of appropriate devices allows partially avoiding
coupling effects among the controlled variables therefore permitting the simultaneous use of all
the independent feedback regulators.

The performance of the control scheme has been assessed in simulation by studying the step
response of the closed-loop system. The numerical results achieved show that the scheme ensures a
rapid arrival at the target position and a prompt damping of the undesired vibrational
phenomena. The comparison with the results obtained without vibration control proves the
effectiveness of the scheme.

An instrumented mechanism prototype has been set up to get a consistent experimental
validation of the synthesized control scheme. The experimental step response of the system is in
good conformity with the one predicted analytically, which confirms the effectiveness of the
control scheme and the accuracy of the dynamic model. In particular, very good agreement has
been shown to exist between the frequency content of the experimental and simulated signals of
the controlled variables. However when no vibration control is performed some discrepancies
have arisen between the amplitudes of the oscillations of the crank curvature values. It is quite
likely that a more accurate mathematical model of the brushless motor driving the mechanism
could improve the above comparisons attenuating the remaining discrepancies.
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