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Abstract

In this paper, the vibration behavior and control of a clamped–free rotating flexible cantilever arm with
fully covered active constrained layer damping (ACLD) treatment are investigated. The arm is rotating in a
horizontal plane in which the gravitational effect and rotary inertia are neglected. The stress–strain
relationship for the viscoelastic material (VEM) is described by a complex shear modulus while the shear
deformations in the two piezoelectric layers are neglected. Hamilton’s principle in conjunction with finite
element method (FEM) is used to derive the non-linear coupled differential equations of motion and the
associated boundary conditions that describe the rigid hub angle rotation, the arm transverse displacement
and the axial deformations of the three-layer composite. This refined model takes into account the effects of
centrifugal stiffening due to the rotation of the beam and the potential energies of the VEM due to
extension and bending. Active controllers are designed with PD for the piezosensor and actuator. The
vibration frequencies and damping factors of the closed-loop beam/ACLD system are obtained after
solving the characteristic complex eigenvalue problem numerically. The effects of different rotating speed,
thickness ratio and loss factor of the VEM as well as different controller gain on the damped frequency and
damping ratio are presented. The results of this study will be useful in the design of adaptive and smart
structures for vibration suppression and control in rotating structures such as rotorcraft blades or robotic
arms.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The application of active constrained layer damping (ACLD) for vibration suppression in
structures has been extensively investigated by numerous researchers. The ACLD treatment is
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usually a three-layer composite consisting of a viscoelastic damping layer sandwiched between a
piezoelectric actuator layer (constraining layer) and a piezoelectric sensor layer. The treatment is
bonded to the beam structure and acts as an effective smart treatment for vibration suppression
and control. The viscoelastic material (VEM) properties can be measured and in general are both
frequency and temperature dependent over a broad range of values [1]. There are different
methods to model the VEM behavior. Some typical ones are the standard linear model [2],
fractional derivatives model [3], Golla–Hughes–McTavish (GHM) model [4], anelastic displace-
ment fields (ADF) model [5], modal strain energy (MSE) model [6], and the complex shear
modulus model [7,8]. For the vibration analysis and control of beams with ACLD treatment the
frequently used models are the complex shear modulus model [7–11] and the GHMmodel [12–14].
The beams under investigation in Refs. [10–15] are all considered to be non-rotating. The

vibration of rotating beams or structures without ACLD treatment was studied extensively in
Refs. [18–23]. When ACLD is applied in rotating beams or structures, the centrifugal stiffening
effect due to the rotation [23] is significant. Also, the equations of motion governing the axial
deformation and the chordwise bending are coupled through the gyroscopic coupling terms while
the equation of motion for the flapwise bending is not coupled [19]. Modal analysis for gyroscopic
systems is complex but the complex eigenvalue problem can be transformed into real one by using
the method in Ref. [21]. Furthermore, if damping is included the system becomes a damped
gyroscopic system with non-self-adjoint eigenvalue problem [17,22].
The vibration control of the axial deformation and the flapwise bending of rotating beam with

ACLD was studied in Ref. [9]. The present paper investigates the vibration behavior and control
of the axial deformation and chordwise bending of a clamped–free rotating flexible cantilever arm
with fully covered ACLD treatment. The arm is rotating in a horizontal plane in which the
gravitational effect and rotary inertia are neglected. The stress–strain relationship for the VEM is
described by a complex shear modulus [8–11]. Hamilton’s principle in conjunction with finite
element method (FEM) is used to derive the governing equations of motion which takes into
account the effects of centrifugal stiffening due to the rotation of the beam. PD controllers are
designed for the piezosensor and actuator. The closed-loop equation of motion for the system is
derived and the characteristic complex eigenvalue problem is solved numerically. The effects of
different rotating speed, thickness ratio and loss factor of the VEM as well as different controller
gain on the damped frequency and damping ratio are presented. The results of this study will be
useful in the design of adaptive and smart structures for vibration suppression and control in
rotating structures such as rotorcraft blades or robotic arms.

2. Theory and formulation

A finite element of a clamped–free flexible arm with fully covered ACLD treatment is shown in
Fig. 1. The arm is of length L and is rotating in a horizontal plane at an angular velocity ’y about
the clamped axis. The axial deformation and the transverse displacement (chordwise bending) of
all three layers are in the plane of rotation. It is assumed that the gravitational effect and the
rotary inertia are negligible. The shear deformations in the piezoelectric sensor/actuator layers
and the base beam are negligible. The transverse displacement w is the same for all three
layers. Linear theories of elasticity, viscoelasticity, and piezoelectricity are applicable in all three

ARTICLE IN PRESS

E.H.K. Fung, D.T.W. Yau / Journal of Sound and Vibration 269 (2004) 165–182166



layers. Also, the piezoelectric sensor and the base beam are perfectly bonded together and is
considered to be reduced to a single equivalent layer. The layers are perfectly continuous and there
is no slip in the interfaces. It is also assumed that thickness and density are uniform over the beam.
From the kinematic relationships between the piezoelectric (PZT) layer and the base beam the

following relationship is derived:

u2 ¼
u1 þ u3

2
þ

h1 � h3

4
wx; ð1Þ

g ¼
u1 � u3

h2
þ

h

h2
wx; ð2Þ

where h ¼ h2 þ h1=2þ h3=2 and subscript x denotes partial differentiation with respect to x:

2.1. Potential energies

The potential energies associated with the extension, bending and shearing of the different
layers of the beam/ACLD system are
Constraining layer:

extension U1 ¼
1

2

Z L

0

E1bh1u
2
1x dx; ð3Þ
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Fig. 1. A finite element of a rotating flexible arm with fully covered ACLD treatment.
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bending U2 ¼
1

2

Z L

0

E1I1w
2
xx dx: ð4Þ

Viscoelastic layer:

extension U3 ¼
1

2

Z L

0

E2bh2u
2
2x dx; ð5Þ

bending U4 ¼
1

2

Z L

0

E2I2w
2
xx dx; ð6Þ

shearing U5 ¼
1

2

Z L

0

G2bh2g2 dx; ð7Þ

where G2 ¼ G0
2ð1þ iZÞ is the complex shear modulus of the viscoelastic material, G0

2 is the storage
modulus and Z is the loss factor.
Sensor/beam layer:

extension U6 ¼
1

2

Z L

0

E3bh3u
2
3x dx; ð8Þ

bending U7 ¼
1

2

Z L

0

E3I3w
2
xx dx: ð9Þ

Centrifugal stiffening effect:

U8 ¼
1

2

Z L

0

Pðx; tÞw2
x dx; ð10Þ

where

Pðx; tÞ ¼
Z L

x

mb’y2x dx ¼
1

2
mb’y2ðL2 � x2Þ: ð11Þ

2.2. Kinetic energies

The position vector rk of a spatial point in the kth layer at a distance x from the origin of the
beam is given by

rk ¼ ðx þ ukÞiþ wj; ð12Þ

’rk ¼ ð ’uk � w’yÞiþ ðx’yþ uk
’yþ ’wÞj; ð13Þ

where the dot denotes differentiation with respect to time t.
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The total kinetic energy T of the system is

T ¼
1

2

Z L

0

X3
k¼1

rkhkb’rTk ’rk dx þ
1

2
J ’y2

¼
1

2

Z L

0

X3
k¼1

rkhkb½ ’u2k þ ’w2 þ ðx þ ukÞ
2 ’y2 þ w2 ’y2 þ 2ðx þ ukÞ ’w’y� 2 ’ukw’y� dx þ

1

2
J ’y2: ð14Þ

2.3. Work done

The work done W1 by the external transverse loads q acting on the beam/ACLD system is given
by

W1 ¼
Z L

0

qbw dx: ð15Þ

The work done W2 by the piezoelectric control forces and moments are given by

W2 ¼
1

2

Z L

0

E1d31bvðtÞu1x dx þ
1

2

Z L

0

hE1d31bvðtÞwxx dx; ð16Þ

where d31 is the piezoelectric strain constant and vðtÞ is the piezoactuator voltage.
The work done W3 by the applied hub torque t is given by

W3 ¼ ty: ð17Þ

2.4. Equations of motion

The governing equations of motion and the boundary conditions of the beam/ACLD system
are obtained by applying Hamilton’s principle:Z t2

t1

d T �
X8
j¼1

Uj

 !
dt þ

Z t2

t1

d
X3
j¼1

Wj

 !
dt ¼ 0: ð18Þ

3. Finite element model

Let the spatial distributions of u1; u3 and w over any element i of the treated beam be given by

u1 ¼ a1x þ a2;

u3 ¼ a3x þ a4;

w ¼ a5x
3 þ a6x

2 þ a7x þ a8; ð19Þ

where x is the elemental co-ordinate. The constants fa1; a2;y; a8g are determined in terms of the
nodal deflection vector qi of the ith element which is bounded between nodes j and k: The nodal
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deflection vector qi is given by

qi ¼ f u1j u3j wj wjx u1k u3k wk wkx g
T; ð20Þ

where subscript x denotes differentiation with respect to the elemental co-ordinate x:
The deflection vector {u1 u2 u3 w wx g } is expressed in terms of the nodal deflection vector qi by

f u1 u2 u3 w wx g gT ¼ fN1 N2 N3 N4 N5 N6 g
Tqi; ð21Þ

where N1;N2;N3;N4;N5 and N6 are the finite element shape functions corresponding to u1; u2; u3;
w; wx and g , respectively, and are given by

N1 ¼ ½ 1� x 0 0 0 x 0 0 0 �;

N2 ¼
1

2
N1 þN3 þ

h1 � h3

2
N4x

� �
;

N3 ¼ ½ 0 1� x 0 0 0 x 0 0 �;

N4 ¼ ½ 0 0 1� 3x2 þ 2x3 ðx� 2x2 þ x3ÞLi 0 0 3x2 � 2x3 ð�x2 þ x3ÞLi �;

N5 ¼ N4x;

N6 ¼
1

h2
ðN1 �N3 þ hN4xÞ ð22a2fÞ

and

x ¼
x

Li

:

Defining the element coefficients and matrices as follows:

Ji ¼
Z Li

0

mbðxi þ xÞ2 dx; ð23Þ

Mi ¼
Z Li

0

X3
k¼1

rkhkbðNT
kNk þNT

4N4Þ dx; ð24Þ

Ki ¼
Z Li

0

X3
k¼1

ðEkhkbNT
kxNkx þ EkIkN

T
4xxN4xxÞ dx; ð25Þ

U1i ¼
Z Li

0

X3
k¼1

rkhkbðxi þ xÞNk dx; ð26Þ

U2i ¼
Z Li

0

mbðxi þ xÞN4 dx; ð27Þ

U3i ¼
1

2

Z Li

0

mb½L2 � ðxi þ xÞ2�NT
4xN4x dx; ð28Þ

U4i ¼
Z Li

0

G2bh2N
T
6N6 dx; ð29Þ
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Ri ¼
Z Li

0

X3
k¼1

rkhkbNT
kN4 dx; ð30Þ

Gi ¼ RT
i � Ri; ð31Þ

Fci ¼
1

2

Z Li

0

E1d31bvðtÞNT
1x dx þ

1

2

Z Li

0

hE1d31bvðtÞNT
4xx dx; ð32Þ

Fdi ¼
Z Li

0

qbNT
4 dx; ð33Þ

where xi is the distance from the global origin (the clamped end) to the left node of the ith
element. Ji is the moment of inertia of the ith element about the clamped end. Mi and Ki are
the mass and stiffness matrices, respectively. U3i and U4i are the matrices due to the centrifugal
force and shear deformation of the VEM, respectively. The matrices Ri and Gi are due to the
gyroscopic effects. The matrices Fci and Fdi represent the control force and the external load,
respectively.
Substituting Eq. (21) into Eqs. (3)–(17) and Hamilton’s principle (18), the equations of motion

at the element level can be written in compact form as

Myyi Myqi

Mqyi Mqqi

" #
.y

.qi

( )
þ 2’y

0 0

0 Gi

" #
’y

’qi

( )
þ

0 0

0 Kqqi

" #
y

qi

( )
¼

Qyi

Qqi

" #
þ

Fyi

Fqi

" #
; ð34Þ

where

Myyi ¼ J þ Ji þ qTi Miqi þ 2U1iqi � q
T
i U3iqi; ð35Þ

Myqi ¼MT
qyi ¼ U2i þ qTi Gi; ð36Þ

Mqqi ¼Mi; ð37Þ

Kqqi ¼ Ki � ’y2Mi þ ’y2U3i þU4i; ð38Þ

Qyi ¼ �2’y½qTi Mi ’qi þU1i ’qi � q
T
i U3i ’qi�; ð39Þ

Qqi ¼ ’y2UT
1i; ð40Þ

Fyi ¼ t; ð41Þ

Fqi ¼ Fci þ Fdi ð42Þ
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in which Myyi is the rotational inertia of the system, Mqqi is the generalized mass matrix, Myqi is
the non-linear inertia coupling between the rigid body and the elastic deformations, Kqqi is the
generalized stiffness matrix and Gi is the gyroscopic matrix. Qyi and Qqi represent the non-linear
pseudoloads. Fyi represents the applied hub torque and Fqi represents the summation of the
control force and the external load.
Eq. (34) represents a non-linear hybrid gyroscopic dynamic system which is inertia

coupled between rigid body motion and elastic deformations. Modal techniques employing
mode superposition becomes inapplicable to non-linear problems [16]. For simplicity, the
angular velocity ’y of the beam is assumed to be constant in this paper and also there is no external
load (Fdi ¼ 0). The global equation is obtained using the standard finite element assem-
bling procedure of the elemental coefficient matrices. Linearization and assembling the
elemental coefficients matrices of Eq. (34) lead to the following global equation of motion of
the system:

Mqq .qþ 2’yG’qþ Kqqq ¼ Fc; ð43Þ

whereMqq is real symmetric positive definite, G is real skew symmetric and Kqq is symmetric. Kqq

is complex due to the complex shear modulus G2 of the VEM. The matrices in Eq. (43) without
the subscript i denote the global forms of the corresponding elemental coefficient matrices. The
boundary conditions for Eq. (43) at the global origin (the clamped end) are zero for u1; u3; w

and wx:

4. Piezoelectric control forces and moments

The control force Fci can be expressed by the piezoelectric control forces Fpi and piezoelectric
moments Fmi as

Fci ¼ Fpi þ Fmi; ð44Þ

where

Fpi ¼
1

2

Z Li

0

E1d31bvðtÞNT
1x dx

¼
1

2
E1d31bvðtÞ½ �1 0 0 0 1 0 0 0 �T; ð45Þ

Fmi ¼
1

2

Z Li

0

hE1d31bvðtÞNT
4xx dx

¼
1

2
hE1d31bvðtÞ½ 0 0 0 �1 0 0 0 1 �T: ð46Þ

With PD controller applied to the piezosensor voltage Vs; the voltage vðtÞ across the piezoactuator
layer is expressed as

vðtÞ ¼ �KpVs � Kd

dVs

dt
; ð47Þ
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where Kp and Kd are the proportional and derivative control gains, respectively. Vs is obtained
from the following formula [11]:

Vs ¼
�k2

31Ddb

g31C

Xif

i¼is

Z Li

0

f ðxÞwxx dx; ð48Þ

where k31 is the electromechanical coupling factor, Dd is the distance from the neutral axis to the
sensor surface, g31 is the piezoelectric voltage constant and C is the capacitance of the sensor. f ðxÞ
is the distribution shape function of the sensor which is extended between element is and if : For
uniform sensor f ðxÞ ¼ 1: The capacitance C of the sensor is given by

C ¼ 8:854� 10�12 Ak3t

h3
; ð49Þ

where A is the sensor surface area and k3t is the dielectric constant. Substituting Eqs. (47)–(49)
into Eqs. (45) and (46) gives

Fpi ¼ ðKp þ KdpÞ½ �1 0 0 0 1 0 0 0 �T 0 0 0 �
g

2
0 0 0

g

2

h i
qi; ð50Þ

Fmi ¼ ðKp þ KdpÞ½ 0 0 0 �1 0 0 0 1 �T 0 0 0 �
gh

2
0 0 0

gh

2


 �
qi; ð51Þ

where p is the d=dt operator and g is defined by

g ¼
E1b

2d31k
2
31Dd

g31C
: ð52Þ

Substituting Eqs. (50) and (51) into Eq. (44) and expressing Fci in terms of the velocity feedback
gain matrix Gvi and displacement feedback gain matrix Gpi yields

Fci ¼ �Gvi ’qi �Gpiqi; ð53Þ

where

Gvi ¼ �KdC1 � KdC2;

Gpi ¼ �KpC1 � KpC2;

C1 ¼ ½�1 0 0 0 1 0 0 0 �T 0 0 0 �
g

2
0 0 0

g

2

h i
;

C2 ¼ ½ 0 0 0 �1 0 0 0 1 �T 0 0 0 �
gh

2
0 0 0

gh

2


 �
:

ð54a2dÞ

Substituting the global form of Eq. (53) into Eq. (43), the closed-loop equation of motion for the
system is

Mqq .qþ ð2’yGþGvÞ’qþ ðKqq þGpÞq ¼ 0: ð55Þ
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The eigenvalue problem associated with Eq. (55) is second order so that it does not permit a ready
solution. This difficulty can be overcome by recasting it in the state space form as

A’zþ Bz ¼ 0; ð56Þ

where z ¼ ½’qTqT�T and

A ¼
Mqq 0

0 I

" #
; B ¼

2’yGþGv Kqq þGp

�I 0

" #
: ð57Þ

The eigenvalue problem associated with Eq. (56) is

ðljAþ BÞZj ¼ 0; ð58Þ

where lj and Zj are the jth closed-loop complex eigenvalue and eigenvector, respectively.
Representing the complex eigenvalue lj by

lj ¼ sj þ ioj; ð59Þ

where the real part sj represents the vibration exponential decay while the imaginary part oj is the
damped frequency. The damping ratio is given by

xj ¼ �
sjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2j þ o2
j

q : ð60Þ

5. Numerical simulation and results

The system is simulated using the system parameters and material properties in Table 1. The
arm is divided into five finite elements. Two effective measures of the vibration characteristic of
the system are the damped frequency and the damping ratio. The closed-loop eigenvalue problem
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Table 1

System parameters and material properties

L 300mm r1 7600 kgm�3

Li 60mm r2 1250 kgm�3

b 12.7mm r3 2700 kgm�3

h1 0.762mm G0
2 0.2615MPa

h2 0.25mm Z 0.38

h3 2.286mm d31 23.0� 10�12mV�1

E1 64.9GPa g31 216� 10�3VmN�1

E2 29.8MPa k31 0.12

E3 71GPa k3t 12
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(58) is solved numerically to obtain the damped frequency and damping ratio under different
parameters of the system.
The effect of different angular velocity ’y of the arm, thickness ratio h2=h3 and the VEM loss

factor Z on the first three modes of damped frequency and damping ratio for the case of PCLD are
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Fig. 2. The effect of angular velocity ’y on the first three modes of damped frequency and damping ratio for the case of

PCLD (Kp;Kd ¼ 0) when h2 ¼ 0:1094h3 and Z ¼ 0:38:
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shown in Figs. 2–4. PCLD (passive constrained layer damping) is the case when ACLD is
unactivated such that both Kd and Kp are zero. The results shown in the figures are reasonable.
It can been seen that the damped frequency increases with an increase in the rotating speed ’y while
the damping ratio decreases with an increase in the rotating speed ’y which means that the
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Fig. 3. The effect of thickness ratio h2=h3 on the first three modes of damped frequency and damping ratio for the case

of PCLD (Kp;Kd ¼ 0) when ’y ¼ 200 r:p:m: and Z ¼ 0:38:
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vibration of the system is intensified (Fig. 2). When the thickness ratio h2=h3 is increased, the
damping of the system will be increased and the damped frequency of the system will be reduced.
However, there is no appreciable improvement in the damping ratio (Fig. 3). Fig. 4 shows that
although the damped frequency increases with an increase in the loss factor Z of VEM, there is
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Fig. 4. The effect of VEM loss factor Z on the first three modes of damped frequency and damping ratio for the case of

PCLD (Kp;Kd ¼ 0) when ’y ¼ 200 r:p:m: and h2 ¼ 0:1094 h3:
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substantial increase in the damping ratio with an increase of Z which means that the vibration of
the system is greatly suppressed.
For the case of ACLD, Fig. 5 shows the effect of the variation of rotating speed ’y on the first

mode damped frequency and damping ratio under different values of proportional control gain
Kp: It can be seen that increasing the proportional control gain Kp will reduce the first mode
damping frequency and will increase the damping ratio. The maximum value that Kp can be
increased is around 35. When Kp is increased beyond this value, instability of numerical results
occurs. Fig. 6 shows the variation of the thickness ratio h2=h3 on the first mode damped frequency
and damping ratio under different values of proportional control gain Kp: The first mode damped
frequency and damping ratio are found to decrease and increase, respectively, with an increase in
Kp: This effect is more obvious at high h2=h3 (i.e. h2=h3 ¼ 1:4). Unlike the case of Fig. 5 the
maximum value of Kp is around 12. Fig. 7 shows the variation of the VEM loss factor Z on the
first mode damped frequency and damping ratio under different values of proportional control
gain Kp: Similar to the case of Figs. 5 and 6, the first mode damped frequency and damping ratio
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Fig. 5. The effect of angular velocity ’y on the first mode damped frequency and damping ratio for ACLD beam under

different values of Kp when h2 ¼ 0:1094h3 and Z ¼ 0:38:
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are found to decrease and increase, respectively, with an increase in Kp and the effect on the
damping ratio is intensified at high Z (i.e. Z ¼ 2:0). The maximum value of Kp for stable numerical
results in this case is around 30.
Although Figs. 5–7 show results on the first mode only, similar results are expected for the

second and third modes. The results show that the proportional control can be used to attenuate
the induced vibrations of the system. The effect of derivative control gain Kd on the vibration
characteristic of the system will be considered in future study.

6. Conclusions

This paper has investigated the vibration behavior and control of a clamped–free rotating
flexible cantilever arm rotating in a horizontal plane with fully covered active constrained layer
damping (ACLD) treatment. The stress–strain relationship for the viscoelastic material (VEM) is
described by a complex shear modulus. Hamilton’s principle in conjunction with finite element

ARTICLE IN PRESS

Fig. 6. The effect of thickness ratio h2=h3 on the first mode damped frequency and damping ratio for ACLD beam

under different values of Kp when ’y ¼ 200 r:p:m: and Z ¼ 0:38:
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method (FEM) is used to derive the governing equations of motion. PD controllers are designed
for the piezosensor and actuator. The closed-loop equation of motion for the system is derived
and the characteristic complex eigenvalue problem is solved numerically. The effects of different
rotating speed, thickness ratio and loss factor of the VEM as well as different controller gain on
the damped frequency and damping ratio are presented. The results show that the proportional
control gain Kp is effective in attenuating the induced vibration of this system. Further study will
include the effects of derivative control gain Kd on the system. The results of this study will be
useful in the design of adaptive and smart structures for vibration suppression and control in
rotating structures such as rotorcraft blades or robotic arms.
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Fig. 7. The effect of VEM loss factor Z on the first mode damped frequency and damping ratio for ACLD beam under

different values of Kp when ’y ¼ 200 r:p:m: and h2 ¼ 0:1094 h3:
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Appendix A. Nomenclature

A sensor surface area
Ak cross-sectional area of the kth layer (¼ bhk)
b beam width
C capacitance of sensor
d31 piezoelectric strain constant
Dd distance from beam neutral axis to sensor surface
E1I1 flexural rigidity of piezoactuator
E2I2 flexural rigidity of viscoelastic core
E3I3 flexural rigidity of beam/sensor layer
f ðxÞ distribution shape function of sensor
G2 complex shear modulus of viscoelastic core (¼ G0

2ð1þ iZÞ)
G0

2 storage shear modulus of viscoelastic core
g31 piezoelectric voltage constant
h1 thickness of piezoactuator
h2 thickness of viscoelastic core
h3 thickness of piezosensor/beam
i

ffiffiffiffiffiffiffi
�1

p
J moment of inertia of the hub
Kd;p derivative and proportional control gains
k31 electro-mechanical coupling factor
k3t dielectric constant
L length of beam
Li length of beam element
m mass per unit width and unit length of the sandwiched beam (¼ r1h1 þ r2h2 þ r3h3)
q external transverse loads per unit width and unit length of the sandwiched beam
t time
T kinetic energy
U potential (strain) energy
u1 longitudinal deflection of neutral axes of piezoactuator
u2 longitudinal deflection of neutral axes of viscoelastic core
u3 longitudinal deflection of neutral axes of piezosensor/beam layer
vðtÞ piezoactuator voltage
Vs piezosensor voltage
W work done
w transverse deflection of the beam system
x position along beam
rk density of the kth layer
g shear strain of viscoelastic core
’y angular velocity of flexible beam
lj jth closed-loop eigenvalue
sj real part of jth eigenvalue
t applied hub torque
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Z loss factor of viscoelastic core
oj jth mode damped frequency
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