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Abstract

Four actuation concepts for the active suppression of gearbox housing mesh frequency vibrations due to
transmission error excitation from the gear pair system are modelled and compared by computing the
required actuation forces and amplifier power spectra. The proposed designs studied consist of (1) active
inertial actuators positioned tangentially on the gear body to produce a pair of reactive force and moment,
(2) semi-active gear–shaft torsional coupling to provide tuned vibration isolation and suppression, (3)
active bearing vibration control to reduce vibration transmissibility, and (4) active shaft transverse
vibration control to suppress/tune gearbox casing or shaft response. Numerical simulations that
incorporate a transmission error term as the primary excitation are performed using a finite element
model of the geared rotor system (dynamic plant) constructed from beam and lumped mass/stiffness
elements. Several key comparison criteria including the required actuation effort, control robustness and
implementation cost are examined, and the advantages and disadvantages of each concept are discussed.
Based on the simulated data, the active shaft transverse vibration control scheme is identified as the most
suitable approach for this application.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Although numerous applications of smart material systems for vibration control exist [1–4],
many of these applications only deal with controlling of the response from the first few resonant
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modes of simple structures such as beams and plates. Moreover, these resonance frequencies are
often less than a few hundred Hertz. Very few applications involve the control of complex
machinery such as a gearbox system. The lack of application in more industrial-relevant systems is
likely due to several reasons. For many machinery structures, the modal densities are often quite
high in the mid- and high-frequency ranges. In these frequency ranges, the individual modes can
be difficult to identify and control. Moreover, these higher-order modes are typically quite
complex and thus difficult to attenuate. In the case of the gearbox system, though, its response
tends to be dominated by the mesh frequency (given by the product of the number of the teeth and
shaft speed) and its harmonics that span over a wide frequency range. The gearbox system can
exhibit non-linear and time-varying characteristics especially under small load, light damping and
high rotation speed conditions [5]. Nevertheless, when the transmitted load and damping levels
are sufficiently high, and the rotation speed is low enough such that the operating mesh frequency
is significantly below the fundamental gear pair resonance point, the gearbox system can be
considered to be linear if backlash is ignored. The discrete nature of the spectral peaks makes this
complex system a potentially suitable candidate for active control using smart material systems.
Recent active vibration and acoustic noise control studies that involve gears are briefly reviewed
next.

In 1999, Rebbechi et al. [6] presented a method for performing active control of a gearbox by
attempting to actively isolate the vibration between the shaft and housing via a pair of
magnetostrictive actuators mounted at one of the support bearing locations. It was demonstrated
that the housing vibration and acoustic noise response of the fundamental gear mesh frequency
and its first two harmonics could be simultaneously reduced. A reduction of 20–28 dB was
reportedly achieved at the fundamental frequency, while reductions of only 2–10 dB were achieved
at the harmonics. More recently, Chen and Brennan [7] proposed a control scheme that used three
magnetostrictive actuators mounted directly on the gear to produce circumferential forces for
suppressing the torsional vibrations. The experimental results showed about 7 dB of reduction in
gear angular vibrations at the tooth meshing frequencies between 150 and 350Hz. Other than
these studies, no other recent work on the active vibration control of internal gearbox components
is found in the public domain literature. There are several related studies that concentrated on
active vibration control applied to the structural support system outside of the gearbox [8–10],
including attaching inertial actuators to the gearbox strut.

In the limited number of investigations on active vibration control of a gearbox system, no
comparison of different actuation approaches and the resulting performance gains has been
performed. Since the actuator is one of the primary elements and its set-up may significantly affect
the performance of the active vibration control system, it is highly desirable to be able to identify
an effective configuration. In this paper, a comparative analysis is presented for the dynamic
performances of four potentially feasible actuation concepts used to suppress housing vibration in
a gear pair system. The objective of this computational study is to determine the most promising
actuation method from these four approaches for future hardware development. First, a
description of the gear pair system of interest and its corresponding finite element (FE) model,
which is constructed using beam, lumped mass, and stiffness elements, is given. Using this model,
the transfer functions between the actuation and sensor positions, which are needed for the active
control simulation work, are determined. Then, the proposed actuation concepts are discussed in
detail along with the methods for determining the required actuation forces and driving power
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requirements. The sensitivity of these actuation concepts to measurement noise is also examined.
Finally, several comparison criteria are given, and the advantages and disadvantages of each
concept are discussed. The results of this comparison are then used to determine the most suitable
active vibration control approach for the particular gearbox system under consideration. To
generalize the conclusions further, selected parametric studies are also performed. As for the
studies described above, the gearbox system is considered to be linear and backlash is ignored.

2. Gear pair model

A cross-section of the single-stage geared rotor system considered in this study is shown in
Fig. 1. This system consists of a pair of thin spur gears, an AC electric drive motor, a DC load
dynamometer, a torque transducer, three shaft-to-shaft couplings, and a series of driver and
driven shaft segments. The system parameters are listed in Table 1. A physical laboratory set-up
of this gearbox has been developed for use in future active vibration control implementation. The
main vibration and acoustic noise source of interest to this study is the gear transmission error at
the mesh. It is commonly known that the transmission error excitation interacts with the system
dynamic characteristics to generate a dynamic mesh force that in turn excites the rest of gearbox
structure. The resulting vibrational energy is transmitted through the shafts and bearings and into
the housing where some of this energy is ultimately radiated as high-frequency gear whine noise
that can be very annoying. Since the frequency of the gear tones are significantly higher than the
shaft rotational speed, they can be easily monitored and identified. This frequency identification
ability is essential for the active vibration control implementation considered here.

A dynamic FE model of the gear pair system is first developed for use in examining the four
proposed actuation concepts. The model, which is constructed from beam elements and lumped
masses and springs, provides an analytical representation of the critical gear rotational and
translational vibration characteristics. The shafts are assumed flexible in the transverse and
torsional directions. The longitudinal degree of freedom is neglected since no significant axial
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Fig. 1. A single-stage geared rotor system example.
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excitation is expected from the spur gears and to avoid unnecessary complexity in the
analysis [11]. Moreover, the natural frequency associated with the longitudinal vibration is much
higher than the frequency range of interest. Accordingly, each nodal point on the discretized shaft
is only defined by three degrees of freedom (d.o.f.) that include transverse, bending rotation and
torsion co-ordinates as shown in Fig. 2. The beam element stiffness matrix formulation can be
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Table 1

Geared rotor system design parameters

Parameter description Numerical values (units)

Driven shaft length, LS1 0.216m

Driving shaft length, LS2 0.213m

Bearing stiffness, Kbx 2� 107N/m

Gear face width, Wf 9.53� 10�3m

Coupling mass , mc 0.313 kg

Coupling inertia, Ic 5.05� 10�5 kgm2

Large shaft length, Lls 5.08� 10�2m

Gear and pinion mass, mg, mp 0.53 kg

Gear and pinion radius, Rg, Rp 3.81� 10�2m

Gear mesh stiffness, Km 1.48� 108N/m

Housing mass, mh 100 kg

Motor inertia, Im 3.45� 10�3 kgm2

Load inertia, Id 17.65� 10�3 kgm2

Shaft radius, Rs 4.76� 10�3m

Large shaft radius, Rls 9.5� 10�3m
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Fig. 2. A 2-noded beam element with transverse uz parallel to the gear mesh line-of-action, bending rotation yx and

torsion yy co-ordinates used to construct the input and output shaft models. The nodes are labelled as points 1 and 2.
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shown to be

Ke
beam ¼

12K1 6K1L 0 �12K1 6K1L 0

6K1L 4K1L2 0 �6K1L 2K1L2 0

0 0 Ks 0 0 �Ks

�12K1 �6K1L 0 12K1 �6K1L 0

6K1L 2K1L2 0 �6K1L 4K1L2 0

0 0 �Ks 0 0 Ks

2
6666666664

3
7777777775
; ð1Þ

where L is the element length, Ks ¼ GJ=L; K1 ¼ EI=L3; E is the modulus of elasticity, I and J are
the area and polar moments of inertia, respectively, and G is the shear modulus. The
corresponding mass matrix is

Me
beam ¼

m

420

156 22L 0 54 �13L 0

22L 4L2 0 13L �3L2 0

0 0 70R2 0 0 35R2

54 13L 0 156 �22L 0

�13L �3L2 0 �22L 4L2 0

0 0 35R2 0 0 70R2

2
6666666664

3
7777777775
; ð2Þ

where m is the element mass and R is the shaft radius. These matrices correspond to the co-
ordinate vector fuz1; yx1; yy1; uz2; yx2; yy2g

T; where the numeric subscript represents the corre-
sponding node in Fig. 2.

The gear mesh kinematics is modelled using a concept originally proposed by Tuplin [12], which
has been widely used by many gear researchers [13–15]. The linear time-invariant model consists
of an infinitesimal spring–damper element positioned in series with the loaded static transmission
error excitation e(t) at the mesh point as shown in Fig. 3. The mesh model couples the
translational co-ordinates of the gear and pinion centroids along the tooth load line-of-action.
Additionally, the bending rotation and torsion co-ordinates of the gears are considered, which
match exactly to the corresponding shaft degrees of freedom. However, the direct coupling
between the gear bending rotation and the other two gear co-ordinates is assumed negligible when
formulating the mesh model because of the horizontally straight spur gear tooth arrangement and
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the fact that the shaft geometries are nearly symmetric with respect to the gear and pinion
positions. The gear bending rotation and transverse co-ordinates are in fact coupled directly
through the beam element stiffness, which is in turn coupled to the torsion co-ordinate via the
mesh stiffness. This is because the nodes representing the pinion and gear coincide with the nodes
of the respective beam elements at the position of gear bodies. The lumped parameter gear pair
model that incorporates the discrete masses and inertias of the gear bodies and its spring stiffness
of the meshing kinematics are added to the beam parameters at the relevant nodal co-ordinates. In
our analysis, the gear mesh stiffness is specified to be constant [16]. Secondary effects including
gear backlash, gear run-out or eccentricity, gyroscopic term and frictional force between mating
teeth are ignored since the primary focus is on the comparison of the performance of various
actuation concepts for controlling gear mesh frequency response due to transmission error
excitation under loaded conditions. Hence, the instantaneous position of each gear body is defined
by one translational and two rotational co-ordinates expressed as uz, yx and yy. For the combined
gear–pinion system, the position vector is fuzg; yxg; yyg; uzp; yxp; yypg; where the subscripts g and p
represent gear and pinion, respectively. The corresponding mesh stiffness and gear mass matrices
are

Ke
mesh ¼

Km 0 �KmRg �Km 0 �KmRp

0 0 0 0 0 0

�KmRg 0 KmR2
g KmRg 0 KmRgRp

�Km 0 KmRg Km 0 KmRp

0 0 0 0 0 0

�KmRp 0 KmRpRg KmRp 0 KmR2
p

2
6666666664

3
7777777775
; ð3Þ

Me
mesh ¼

mg 0 0 0 0 0

0 Ixg 0 0 0 0

0 0 Iyg 0 0 0

0 0 0 mp 0 0

0 0 0 0 Ixp 0

0 0 0 0 0 Iyp

2
6666666664

3
7777777775
; ð4Þ

where Km is the gear mesh stiffness, and (Rg, Rp), (mg, mp), (Ixg, Ixp), and (Iyg, Iyp) are the radii,
masses and mass moment of inertias of the gear and the pinion about the x and y directions,
respectively. Note that the above formulation is quite similar to the one proposed by Lim and
Singh [17]. Here, the model has been extended to include bending rotation.

Both the motor and load components are also modelled as lumped mass moment of inertias,
while the bearings are formulated using lumped spring elements having the ability to resist motion
in the transverse (parallel to the line-of-action) and bending rotation directions. The housing
structure is represented as a 1-d.o.f. rigid body (lumped mass element) connected to the gear train
at the four bearing locations via a set of bearing stiffnesses. This rigid body housing
approximation does not pose a significant limitation to the simulation work, as the focus of
this study is to control the overall housing vibrations via the internal gear–shaft dynamics. In fact,
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this simplified housing model eases simulation efforts. The assembled system model contains 39
finite elements including 10 lumped masses, four lumped springs, 24 beam elements and a single
gear mesh stiffness element. The model has twenty-four 3-d.o.f. nodes and three 1-d.o.f. nodes for
the motor, load and housing. This gives a total of N=75 d.o.f.s for the complete system co-
ordinate set. Note that the treatment of the motor, load and bearing components in the model is
similar to the approach used by Ozguven [18]. Since the shafts in the single-stage geared rotor
system are relatively thin and compliant, their transversal and bending motions are included as
well as the torsion co-ordinate. As the result, there are more d.o.f.s in the present dynamic model
than the 6 d.o.f.s formulated by Ozguven [18]. Since the work presented here is primarily
interested in active vibration control of a gearbox with sufficiently high load and damping levels,
negligible backlash and low operating mesh frequencies, only a linear system behavior is
considered here unlike the non-linear dynamic study performed by Ozguven [18].

The system mass M and stiffness K matrices, each of dimensions N�N, can then be used to
form the classical governing equation of dynamic motion expressed as

M .Xþ C ’Xþ KX ¼ F; ð5Þ

where X is the response vector, F is the forcing vector containing the transmission error term, C is
the damping matrix assumed to be equivalent to the typical 5% uniform modal damping observed
for gearing systems, and ’X and .X signify the first and second time derivatives of X, respectively.
Here, M and K are the summations of the expanded version of each element matrix derived using
a standard FE formulation [11]. Note that Eq. (5) is linear and its coefficient matrices are time-
invariant. An output vector, Y ¼ DX; is defined for a subset of the n response co-ordinates of
interest, where D is the output coefficient matrix of dimension n�N. Applying the theory of
normal modes to Eq. (5), X ¼ UQ can be used to transform the representation from physical co-
ordinates X into modal co-ordinates Q ¼ fq1 q2 ?qNg

T: Here, U consists of the mass
normalized mode shapes (eigenvectors) where UTMU ¼ I resulting in the identity matrix. The
resulting dynamical equations in terms of these uncoupled modal co-ordinates are

’q1

.q1

’q2

.q2

y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0 1 0 0 y

�o2
1 �2z1o1 0 0 y

0 0 0 1 y

0 0 �o2
2 �2z2o2 y

y y y y y

2
6666664

3
7777775

q1

’q1

q2

’q2

y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ UT

0

F1

0

F2

y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð6Þ

where Fj ( j=1,2,y,N) is the element of the physical force vector F, oi is the ith natural frequency,
and zi is the corresponding modal damping coefficient. In terms of the modal co-ordinates, the
output vector is

Y ¼ DUQ: ð7Þ

Solving Eq. (6) for qi and transforming them back into the physical co-ordinates yields the output
response of interest. Accordingly, the transfer function between any kth reference co-ordinate
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(forcing) and any jth physical response point is

Hjk ¼
xj

Fk

¼
XN

i¼1

fjifki

s2 þ 2ziois þ o2
i

; ð8Þ

where s is the Laplace variable. This FE model and the corresponding transfer function results
derived above are employed in the subsequent active vibration control simulations to examine the
true capabilities and limitations of the four proposed actuation concepts to minimize the gear
housing vibration response.

3. Actuation concepts

The proposed four active vibration control concepts for suppressing the housing response as
mentioned earlier include: (1) active inertial actuators positioned tangentially on the gear body,
(2) semi-active gear–shaft torsional isolation coupling, (3) direct active bearing vibration control,
and (4) active shaft transverse vibration control. These approaches are designed to either impede
the transmission of vibration energy into the housing or reduce the effect of the dynamic mesh
force excitation. Here, these concepts are analyzed to determine the levels of required actuation
efforts and the corresponding driver electrical power requirements. Note that while the overall
goal is to reduce the housing response, each concept attempts to control the vibrations at different
structural points inside the gearbox system. Therefore, their control requirements may be
inherently different. Details associated with each of these concepts are provided next.

3.1. Concept 1: inertial-based active gear actuator

The first approach uses three inertial actuators, which can be made of magnetostrictive or
piezoelectric stacks, directly mounted tangentially onto the side of the gear body at equal angular
intervals, as shown in Fig. 4. As the smart material expands and contracts at the selected
excitation frequency, the acceleration of the inertial mass mounted on one end of the actuator will
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provide a reaction force that acts on the gear body. Due to the circumferential arrangement, these
actuators can produce a net torque fluctuation as well as a translation force parallel to the mesh
load line-of-action. The relative amount of these two actuation loads can be controlled by
appropriately phasing the drivers. The net dynamic torque and force can then be applied in a
controlled manner to reduce gear torsional and translational vibrations. Since this actuation
concept directly acts near the excitation source, it is expected to be able to suppress vibrations
transmitted into the shaft and bearings, and also reduce dynamic mesh force production.
Additionally, the overall design includes three miniature accelerometers, located near the
actuators, to measure gear vibrations and provide feedback signals to the controller.

To keep the actuation design as simple as possible, only the driven gear (or pinion) is treated.
Since one of the purposes is to minimize the generation of dynamic mesh force, which involves
lowering dynamic transmission error dictated by the relative motion at the mesh, it is only
necessary to actuate one of the two gears. The disadvantage here is the lack of vibration
transmissibility control through the shaft of the untreated gear. Note that a related design was
used by Chen and Brennan [7] as indicated earlier. The fundamental difference is that the control
object of Ref. [7] was the gear torsional vibration, while the goal in this work is to suppress the
gear housing vibration.

Other considerations include the design of the fundamental resonant frequency of the actuator,
which ideally needs to be near or less than the excitation frequency, and the fact that we have a set
of rotating actuators requiring the use of slip rings. In the former issue, either an amplification
mechanism, such as the displacement amplification or a series stiffness configuration may be
needed to lower the first resonant frequency below the working frequency [19]. This is especially
critical when a piezoelectric type actuator is selected since its resonant frequency is inherently
high. In the latter problem, suitable slip rings with proper power ratings must be used to ensure
sufficient supply of power to the rotating actuators. Of course, the slip rings are also needed for
the accelerometer signals.

3.2. Concept 2: semi-active gear–shaft coupling

The second proposed concept is aimed at modifying the torsional vibration transmission path
between the gear and shaft. In this set-up, the gear body and corresponding shaft are connected
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via several piezoelectric actuators, as shown in Fig. 5 for one set of gear–shaft coupling set-up.
The piezoelectric actuators serve two purposes. They transmit the mean torque in the gear–shaft
load path and simultaneously generate reactive dynamic forces to minimize transmitted
perturbations. Like the first concept, slip rings are needed to provide input power to the
actuators. Note that the translation force of the gear is transmitted via a rolling element bearing
between the gear body and shaft.

This particular actuation concept is similar to the application of an active dynamic force
directly on the shaft (the receiver) with a reaction against a gear body (the mass), as described in
Ref. [4]. Therefore, the dynamic force required to isolate the torsional vibration transmitted from
the gear into the shaft is inversely proportional to the excitation frequency. Accordingly, at
relatively high frequency, only a small dynamic force is needed. However, when the frequency is
lower, a large dynamic actuation force is required. Note that this scheme may also provide some
level of passive torsional vibration isolation in the lower frequency range due to the semi-active
nature of the structural design.

3.3. Concept 3: direct active bearing vibration control

Since most gear whine problems are the result of structure-borne vibration transmission from
the geared rotor system through the bearings and into the housing, a natural path control scheme
inside the gearbox is to set-up ‘choke’ points at the support bearings. One way to accomplish this
is to use two pairs of piezoelectric stack actuators placed in two orthogonal radial directions
between the bearing raceway and the housing support structure, as shown in Fig. 6. One pair of
opposing actuators is oriented parallel to the gear mesh line-of-action, while the second pair is
oriented perpendicular to the line-of-action. Note that although only one pair of actuators
oriented parallel to tooth load line-of-action is needed theoretically, this double set configuration
is recommended in practice to achieve a more robust ability to control general transverse plane
motions of the shaft-bearing structure. This is especially useful when non-negligible transverse
vibration orthogonal to the load line-of-action caused by misalignment and friction force
excitation exists. In this work, the analyses of concepts 2 and 3 only incorporate the idealized
single pair actuator case.

This specific actuation concept is designed to directly add active dynamic forces to the housing
support structure by reacting against the bearing raceway, which may effectively suppress the
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housing vibration. Unlike the previous two concepts, the actuators here are stationary. As a
result, slip rings are not needed in this design. Nevertheless, the housing supports must be
modified substantially to accommodate the actuators, which may not always be feasible.

3.4. Concept 4: active shaft transverse vibration control

In the final proposed concept, two pairs of actuators are attached to the rotating shaft using an
additional set of bearing, as shown in Fig. 7. Unlike the third concept, here the actuators are
acting against an additional, redundant bearing. Although the dynamic force is still being
introduced between the shaft and housing, the added bearing component does not carry the
required static load. Therefore, this bearing can accommodate a large range of motion. A similar
idea was examined by Rebbechi et al. [6]. It is beyond the scope of this paper to discuss the
optimum location of the actuation position relative to the gear pair. For the present analysis, it is
assumed that the actuation position is located at one-third of the length from the gear position to
the housing support location based on packaging considerations. Furthermore, due to the
possible run-out and vibration deformation of the shaft, the actuators may see some lateral
motions that may be harmful to the actuators. Hence, the set-up must be carefully designed such
that the actuators are not directly connected to the bearing raceway. Instead, a thin stinger rod as
shown in Fig. 7 is used. This stinger rod provides some degree of lateral flexibility, thereby
reducing the potentially harmful lateral forces in the actuator.

4. Actuation dynamic forces

With the system model and the four actuation concepts defined, the required dynamic force for
each concept to reduce housing vibrations can now be determined. In the active vibration control
simulations involving actuation concepts 1, 3 and 4, the baseline dynamic FE model is used. In the
case of actuation concept 2 on semi-active gear–shaft torsional coupling, the gear–shaft
connection (that is rigid in the baseline FE model) is replaced by a lumped spring–damper element
along the rotational co-ordinate, while all other parameters remain the same. The geared rotor
system is assumed to be excited only by the gear transmission error under loaded conditions,
which is typically on the order of 1–100mm depending on manufacturing errors, tooth profiles,
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elastic deformations and transferred loads [20]. In this study, it is assumed that the magnitude of
the transmission error at the mesh frequency of excitation is nominally 10mm. As depicted in
Fig. 3, the transmission error excitation yields a pair of translational dynamic force and torque
fluctuations acting on the gear and pinion. Hence, the excitation force vector F in Eq. (6) can be
expressed as

F ¼ ½0?0 Km 0 �KmRg 0?0 �Km 0 �KmRp 0?0
T e;

m m m m

uzg yyg uzp yyp

ð9Þ

where e is loaded transmission error represented mathematically as 10eiomt mm that considers only
the fundamental mesh harmonic, and uzg; uzp; yyg and yyp are the gear and pinion translation and
rotation co-ordinates, respectively. Omitting the damping term, the dynamic mesh force can be
formulated as [14]

Fmesh ¼ Kmðuzg � uzp � Rgyyg � Rpyyp � eÞ: ð10Þ

The predicted dynamic mesh force for the geared rotor system of interest (see Table 1 for actual
design parameters) is shown in Fig. 8. The trend shows a general increase in Fmesh as frequency
increases. This is due to the contribution from the fundamental mesh mode (out-of-phase rotation
of the gear pair) at around 7 kHz (not shown in the figure) for this set of spur gears. It is also
worthwhile to point out that the operating mesh frequencies and its first few harmonics are well
below the fundamental gear pair resonance around 7 kHz. Thus, the non-linear type of response
that typically associates with the gear mesh resonance can be safely neglected. This allows the
analysis to be limited to the linear domain. Furthermore, the use of modal damping in the
simulation permits the omission of explicit mesh damping term in Eq. (10).

The vibratory response of the gear housing due to a unit magnitude of dynamic force at the gear
mesh co-ordinate can be calculated using the modal superposition-based transfer function theory
given by Eq. (8). By scaling the equation linearly to reflect the total mesh force and summing the
contributions from the resultant dynamic forces and torques on the gear and pinion, the net
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displacement response of the housing (parallel to the load line-of-action vector) due to the
specified transmission error excitation, yh,TE, is given by

yh;TE ¼
X4

k¼1

HhkFk ¼
XN

i¼1

fhi

s2 þ 2ziois þ o2
i

X4

k¼1

fkiFk

" #
; ð11Þ

where Fk, k=1–4, are the four non-zero forcing elements in Eq. (9). By taking the second time-
derivative of displacement yh,TE, the acceleration response of the housing is obtained, which is
shown as the dashed-dotted curve in Fig. 9. The significance of the other curves in this figure will
be discussed later.

As it is assumed that the geared rotor system is a linear time-invariant plant and the amplitude
of gear transmission error excitation under load remains constant while the gears are actively
controlled, the net response of the gear housing due to two separate forcing functions, i.e., the
gear transmission error and the supplied dynamic actuation force, can be obtained algebraically.
Note that the analysis remains general in spite of assuming constant amplitude transmission error
excitation. This is because the linear time-invariant nature of the gearbox system allows one to
scale the actuation force proportionally in the event that the amplitude of transmission error
varies. The dynamic actuation force denoted by Fr is applied at the rth co-ordinate of the FE
model. Depending on the application, Fr can be a force or a torque. Hence, the net housing
response along the load line-of-action direction, yh, due to the gear mesh excitation and the
externally applied actuation force, is

yh ¼ yh;TE þ HhrFr: ð12Þ

Here, Hhr is the transfer function relating the rth actuation co-ordinate to the gear housing
response co-ordinate, which is calculated using Eq. (8). In order to completely suppress the
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housing vibration, we set yh=0 and solve for the required actuation force as

Fr ¼ �yh;TE=Hhr; ð13Þ

assuming that the system is controllable, i.e., Hhr is not singular at any frequency point of interest
or not zero at the actuator location. Eq. (13) is in fact very general and can be employed to
calculate the dynamic actuation force or torque at any co-ordinate to achieve a relative state of
minimal housing vibration level. This theory is used next to predict the required actuation forces
for the four concepts of interest.

First, consider the inertial-based active gear actuator system of Fig. 4. Suppose the three inertial
actuators are excited in such a way that their net effect generates either a pure torque or pure
translational force on the gear body in the yyg or uzg co-ordinate, respectively. Recall that the
actuators are mounted on the driven gear only. The housing vibration spectrum level due to a unit
pure translation force or torque acting on the gear body is shown in Fig. 9, and respectively
labeled as the gear force or torque actuation case. Note that this response is essentially the transfer
function, expressed as �o2Hhr, relating the gearbox housing acceleration response and the
actuation co-ordinate. From Fig. 9, two response peaks around 200–320Hz can be observed for
the pure torque actuation case. On the other hand, the pure force actuation curve has only one
noticeable peak around 320Hz. This difference occurs because of an out-of-phase torsion mode
around 200Hz that is not excited by the pure force actuation case. Using Eq. (13), the required net
actuation efforts can be predicted as shown in Fig. 10. As expected from the response shown in
Fig. 9, the required net actuation effort for the gear torque case given in Fig. 10 is relatively small
at about 200Hz. However, at other frequency points, the required net actuation effort for the pure
torque case is much larger than that of pure translational force case. Notice that in order to
compare the pure force and torque cases, the computed dynamic torque is transformed into an
equivalent dynamic force by dividing the net torque with the gear base radius. This treatment of
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the torque is adopted from this point onwards such that it can be compared more directly with the
force term.

In the second proposed concept on the use of semi-active gear–shaft coupling, it is again
assumed that only the driven gear is treated. In this design, the actuators are configured to
synthesize the internal dynamic torque acting between the gear and shaft. Hence, the
instantaneous reaction torque on the gear is always out-of-phase with the torque acting on the
shaft. The treatment of these reaction torques is in fact similar to the formulation of the effect of
Fmesh in Eqs. (9) and (10). Based on this assumption, the net housing response due to this type of
actuation can be determined using

yh;T ¼
X2

k¼1

HhkTk ¼
XN

i¼1

fhi

s2 þ 2ziois þ o2
i

X2

k¼1

fkiTk

" #
; ð14Þ

where T1=�T2 are the actuation torque generated and the corresponding reaction torque.
Furthermore, Eq. (13) can be applied to determine the required actuation torque by replacing
yh,TE by yh,T. Like the case of the inertial-based active gear vibration control concept, the required
actuation torque can be transformed into an equivalent dynamic force. Its actuation force
prediction is also given in Fig. 10 for comparison with the other actuation concepts. From the
results, it appears that this method (concept 2) would require the largest actuation effort.

For the direct active bearing vibration control and active shaft transverse vibration control
concepts, it is also assumed that only the driven gear–shaft is treated. For both concepts, Eq. (13)
is again used to compute the required actuation force by setting the r-co-ordinate to the
corresponding actuator position. The predictions of the housing response spectra due to the added
unit actuation force, and also the actuation force required to completely suppress the transmission
error generated housing vibration are shown with the results of the other concepts in Figs. 9 and
10, respectively. The housing vibration levels due to each one of these two unit actuation forces
applied separately exceed the vibration amplitude due to the prescribed transmission error in all
frequency range of interest except for the points around 300–400Hz. In this narrow range, the
housing response due to the added unit actuation force pertaining to concept 3 is lower. As a
result, the required actuation forces for these two active control concepts are less than 1.0N
except around 300–400Hz for the case of direct active bearing vibration control, as shown in Fig.
10. Also from these calculation results, it is clear that the actuation force of the third concept is the
least for frequencies above 500Hz. However, the actuation force of the active shaft transverse
vibration approach (concept 4) is lower for frequencies below 500Hz. The increased force in
concept 3 in the lower frequency range is due to the two shaft bending modes that occur below
500Hz, as seen in the transmission error generated housing response spectrum. These modes
prevent the actuation force, which is applied directly to the bearing, from efficiently controlling
vibration transmissibility. The simulation results also show that the actuation efforts for concepts
1 and 2, involving torsional co-ordinate control, are significantly higher across the entire
frequency range of interest. This is due to the fact that these two concepts are more effective at
controlling torsional motion only and not able to effectively impact transverse vibration. It may
be noted that the net gear translation force (concept 1) is essentially identical to the actuation
force spectrum of concept 4. This is because the actuation point of concept 4 is located very close
to the gear body itself.
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5. Electrical power requirements

Apart from the required actuation forces, the corresponding input electrical power is also of
interest in the selection and design of the actuators and amplifiers. For the two active control
methods involving torsional co-ordinates (concepts 1 and 2), the required dynamic torques are
relatively large, and hence their input power needs will not be addressed explicitly here. Moreover,
these actuators are rotating-type requiring slip rings, which further complicates their actual design
and implementation. Therefore, the following analysis focuses mainly on the required input
electrical power for the direct active bearing vibration control (concept 3) and active shaft
transverse vibration control (concept 4), as they appear to be more efficient and easier to
implement using typical piezoelectric stack type actuators.

It is generally accepted that a piezoelectric stack actuator can be modelled as a spring element
of stiffness Kp when the working frequency o of the actuator is far less than the first resonant
frequency of the actuator [21–23]. Thus the mechanical impedance of the piezoelectric stack is
Zp ¼ Kp=io: The block force Fb, defined as the maximum output force when the actuator is acting
on a rigid structure with infinite impedance, is given by

Fb ¼ Kpd33V3; ð15Þ

where d33 is the piezoelectric constant and V3 is the external voltage applied along the axial
direction of the stack. If the actuator is acting against a flexible structure, such as the bearing
housing, the maximum possible output force Fr, which in this case is the same as the required
actuation force, will decrease to yield

Fr ¼
Zext

Zext þ Zp

Fb; ð16Þ

where Zext is the external mechanical impedance at the r-co-ordinate given by

Zext ¼
Fr

’xrr

¼
XN

i¼1

s2 þ 2ziois þ o2
i

sf2
ri

: ð17Þ

At the same time, the maximum possible stroke Dl for the actuator becomes Dl ¼ ZpDl0=ðZext þ
ZpÞ; where Dl0 is the nominal maximum stroke of the unconstrained actuator. On the other hand,
the piezoelectric stack actuator can also be modelled as an electrical capacitor. Due to the inherent
electrical–mechanical coupling, the dynamic electrical admittance Y is given by

Y ¼
I3

V3
¼ ioC0 1�

k2Zext

Zext þ Zp

� �
; ð18Þ

where k2 is the piezoelectric coupling coefficient, which is assumed to be 0.3, C0 is the zero-stress
electrical capacitance of the actuator, and I3 is the applied current [23]. It is assumed here that C0

is insensitive to temperature, in spite of the heat generated as the stack expands and contracts.
Hence, the apparent power WA output from the amplifier can be estimated as [23]

WA ¼ V2
3 jY j=2: ð19Þ

Using Eqs. (16)–(18) and the actuation force results, the applied voltage V3 can be calculated.
Eqs. (18) and (19) are subsequently used to determine the operating current I3 and estimated
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power. To examine typical requirements, a specific high-voltage actuator was selected for the
numerical study. The specifications for this actuator are listed in Table 2.

For the specific actuator of interest, the predicted input voltage, current and power needed to
deliver the actuation force to suppress housing vibrations are shown in Fig. 11 for both direct
active bearing vibration control (concept 3) and active shaft transverse vibration control (concept
4) approaches. Comparison of Figs. 10 and 11(a) indicates that even though the actuation forces
for concepts 3 and 4 are relatively small below 200Hz, the input voltages for this range are not
very small compared to the values in the higher frequency range. The voltages are large because
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Table 2

Specification of actuator parameters (Model PSt1000/16/20 VS 25 by Piezomechanik GmbH [24])

Parameters Numerical value (unit)

Operating voltage, V 0–1000V

Maximum stroke, Dl0 17 mm
Actuator length, L 35mm

Actuator diameter, D 25mm

Capacitance, C0 150 nF

Stiffness, Kp 400N/mm
Resonance, f0 35 kHz
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the impedance of the external structure (the shaft or bearing) is quite small compared to that of
the actuator, thereby limiting the output force Fr as indicated in Eq. (16). Comparison of
Figs. 11(a) and (b) indicates that the input voltage and current for concept 4 are rather small near
280Hz. The small levels obtained are the result of the close match between the impedances of the
actuator and shaft. Hence, according to Eq. (18), the electrical admittance Y is small around this
frequency. Due to the small level of input current near 280Hz, the apparent power is small as well,
as shown in Fig. 11(c). Note that these results can be useful in selecting a suitable amplifier to
drive the actuator.

6. Sensitivity to measurement noise

To implement the above actuation method, it is convenient to choose the filtered-X
LMS algorithm to design and adapt a controller that is essentially a finite impulse response
(FIR) filter. This algorithm requires a reference signal r(n) that must be highly correlated
with the transmission error excitation signal e(n). In this analysis, the gear mesh frequency
signal along with a measured residual signal of the housing vibration yh(n) is utilized.
However, these two signals are easily contaminated by measurement noises m1(n) and
m2(n) as pointed out in the active vibration control diagram in Fig. 12. Hence, it is
critical that the sensitivity of the proposed actuation methods to these two noise sources be
known.

Suppose the adaptation of the controller is slow and the exact transfer function of the
secondary path Hhr(z), from the actuator output to the measured residual input signal, is known.
The FIR weight W(z) of the controller will then converge to an optimal value [25]:

W ðzÞ ¼
HhTEðzÞSreðzÞ

½SrrðzÞ þ Sm1m1
ðzÞ
HhrðzÞ

; ð20Þ

where Sre(z) is cross-power spectrum between r(n) and e(n), while Srr(z) and Sm1m1
ðzÞ are the auto-

power spectra of r(n) and m1(n), respectively. Also, HhTE is the transfer function relating the
transmission error excitation to the housing vibration, which is also the primary path transfer
function given by yh;TE=e: Since the reference signal r(n) is related to the excitation signal e(n), the
optimal solution of W(z) in Eq. (20) is not exactly the same as those given in Refs. [25–27]. The
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residual signal of the housing vibration is given by

Syhyh
ðzÞ ¼ Sm2m2

ðzÞ þ jHhTEðzÞj
2 See �

SreðzÞj j2

SrrðzÞ þ Sm1m1
ðzÞ

� �
; ð21Þ

where See(z), Sm2m2
ðzÞ and Syhyh

ðzÞ are the auto-power spectra of e(n), m2(n) and yh(n) respectively.
Eq. (21) shows that if the power of the measurement noises m1(n) and m2(n), transmission error
signal e(n), and reference signal r(n) are the same for the four actuation concepts, then the residual
vibration signal of the gear housing will be mainly controlled by the primary path transfer
function HhTE. The first term in the right-hand side of Eq. (21) shows that the measurement noise
m2(n) will remain in the housing vibration signal without any change. The second term shows that
the housing vibration cannot be suppressed completely as long as some level of noise m1(n) is
present. This is because the reference signal is directly affected by the adaptation of controller
weight W(z). From the above argument, we can conclude that the sensitivity to measurement
noise is affected mainly by the primary path transfer function HhTE. To quantify this further, a
sensitivity index (SI) is defined as

SI ¼ 20 logðjHhTE jÞ: ð22Þ

Note that a higher sensitivity index implies a decrease in performance since the residual
housing vibration level is greater. The calculated sensitivity indices for the four actuation
concepts are shown in Fig. 13. The results reveal that the SI function of concept 2 is different
and higher than the other three concepts across the entire frequency range of 100–1000Hz.
Therefore, this implies that concept 2 is the worst configuration among these four actuator
concepts based on just this particular criterion. This conclusion is not too surprising as concept 2
is better suited to control purely torsional motion as opposed to the translational motion of the
housing.
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7. Parametric analysis

Even though the above numerical study was performed on a specific set of gearbox parameters,
the theory is general and applicable to other types of geared rotor systems, as long as the
corresponding FE model can be accurately constructed. To test the generalization of the above
results, a select set of parametric studies is performed. Two cases of modifying the shaft diameter
are studied. One involves reducing the shaft diameter from 9.5 to 6.35mm, and another case uses
a larger 12.7mm diameter shaft. Furthermore, two cases of bearing stiffness variations are
studied. For all of these cases, the required forces for concepts 1 and 2 related to torsional motion
control are significantly higher than the others over the entire frequency range of interest, as
shown in Fig. 14 for the case of the reduced 6.35mm shaft diameter. Also, for all of the cases
examined, the net gear translation force of concept 1 is almost the same as the actuation force of
concept 4, which is similar to the baseline cases discussed earlier. Additionally, above a certain
cross-point frequency, like the one in Fig. 10, the actuation force of concept 3 is observed to be the
smallest. Below this frequency, the actuation force of concept 4 is the smallest. For the two cases
involving a modification in bearing stiffness, this cross-point frequency is not affected because the
modes dominated by the bearing stiffness are quite high. The cross-point frequency is mainly
dependent on the diameter of shaft. Therefore, in the smaller shaft diameter case, which implies a
more flexible shaft, the cross-point frequency is lower.

8. Conclusions

The relative performance of four proposed actuation concepts designed to apply dynamic loads
to the internal gearbox components in order to suppress housing vibration is examined in this
research. The analysis includes the formulation of a suitable gearbox model for use in determining
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the actuation force required in each concept. The corresponding driver voltage, current, and
power for the two most promising concepts are also calculated, along with the sensitivities of all
four approaches to measurement noise. Based on the numerical simulation results obtained, the
dynamic actuation forces for the two active control concepts involving rotational co-ordinate,
which are the inertial-based active gear actuator and gear–shaft torsional coupling, are found to
be very large compared to the other concepts applying only translational actuation load.
Furthermore, the gear–shaft torsional coupling case depicts the highest sensitivity to measurement
noise. The direct active bearing vibration control approach requires the smallest dynamic
actuation force above 500Hz for the particular gearbox system considered in this study. However,
below 500Hz this approach needs a relatively large actuation force and correspondingly high
input current, voltage and power. On the other hand, the active shaft transverse vibration control
approach (concept 4) that is determined to be the best compromise requires the smallest dynamic
force below 500Hz and fairly reasonable parameters in the higher frequency range. Another
advantage of concept 4 is the ease of implementation in a practical setting, since slip ring
equipment is not used and no major structural modification is required. The outcome of this study
is currently being applied to design a complete active control system using piezoelectric stack
actuators for suppressing gear vibration and ultimately gear whine. Furthermore, while the gear
housing vibration is targeted for control in this work, it may also be interesting to compare several
different other control goals, such as the gear whine noise and dynamic mesh force. Such analysis
will be addressed in future studies.
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