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Abstract

An optimization study is carried out for a silencer consisting of two side-branch, rectangular cavities
covered by membranes highly stretched in the direction of the duct axis. Stopband is defined as the range of
frequency where the transmission loss is everywhere higher than the peak value of that in an expansion
chamber which occupies three times as much cavity volume as does the present silencer. The logarithmic
bandwidth is optimized with respect to the length-to-depth ratio of the cavity, the mass and the tension of
the membrane. For two cavities each with a dimensionless volume of 5 (the duct height being the length
scale), the optimal cavity aspect ratio is 6.6, and the lower stopband frequency is 0.09 times the first cut-on
frequency of the rigid duct. This is compared favourably with the traditional duct lining modelled as an
equivalent fluid. As the membrane mass increases, the stopband shifts to lower frequencies but it also
narrows. The widest stopband is around 1.6 octaves for a massless membrane. The membrane tension plays
a delicate role of setting the intervals between adjacent spectral peaks.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fibrous duct lining is a very mature and reliable technique which works well for the medium- to
high-frequency range. However, its ineffectiveness in the low-frequency range, such as that below
200 Hz; calls for alternative treatments. More importantly, there has been increasing
environmental concern about the deposition and accumulation of dusts in the pores of the
porous material. A periodical cleaning of the lining would be rather costly and indeed tedious. In
fact, there are already public concerns of bacteria breading in the centralized ventilation systems
of ordinary commercial buildings. The use of porous material for noise- or heat-insulation
purposes might have contributed to an indoor air quality which is often worse than outdoors.
There are also places such as operation theatres, where high hygienic requirement forbids the use
of such materials. The need of controlling low-frequency noise in an environment-friendly manner
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calls for a fibreless approach. A team of acousticians led by Fuchs [1] have been very successful in
achieving this goal, both technically and commercially. Sharing exactly the same technical goal,
the present author conducted a preliminary theoretical study [2] on the use of tensioned
membranes as part of the duct walls to reflect the grazing incident noise. Focusing on the
mechanism of fluid–structure interaction inside the main duct, the effect of fluid external to the
membrane was excluded. In the present study, the membranes are backed by rigid-walled cavities,
as should be the case in a practical silencer design, and the tension required turns out to be very
high in order to achieve a broadband performance in the low- to medium-frequency range. The
membrane response resembles that of a drum, and the device is described as being ‘drum-like’, or
simply a ‘drum silencer’. Details are given in the present article to show how the transmission loss
spectrum of a drum silencer varies with respect to the cavity shape for a given volume, and how
the membrane properties determine the performance. It is shown later that, for a typical duct
height of 17 cm; and a two-dimensional side-branch cavity 17 cm deep and 85 cm long, the
optimal cavity shape is around 97 cm in length and 15 cm in depth, and the membrane can be
made by an aluminium foil of 0:077 mm thickness. Before proceeding, it is perhaps informative to
review the membrane properties used in related studies.
The British Broadcasting Corporation (BBC) was among the first to use membrane absorbers

for their studios on a large scale, see Ref. [3]. They pioneered a modular approach to the panel
sound absorbers. The modules are designed with a face area of 2 ft by 3 ft; a cavity consisting of
7 in air space in front of the rigid wall, and 1 in of semi-rigid glass fibre of density 3 lb=ft3: The
cover membrane is normally perforated. A 1

4
in thick membrane with 5% perforation gives peak

performance in the range of 300–400 Hz; while a true bass absorber is obtained with a cover of
0.5% perforation. If essentially neutral modules (without sharp peaks) are desired, a 3

8
or 1

4
in

plywood can be used yielding an absorption coefficient with a peak value of 0.3 at 70 Hz: There
have been continuous efforts to predict analytically the performance of similar membrane
absorber designs. For example, Ford and McCormick [4] studied the absorption characteristics of
a stiff panel made of 0:2 mm thick aluminium backed by a shallow cavity of 3 cm depth. It was
reported that the choice of the stiff membrane was made after repeated failures to use thin
membranes. The advantages of using a stiff panel absorber were that it can have more than one
resonant frequency and hence more than one absorption band, and that it was easy to construct
offering a wide choice of materials. The disadvantages were that the stiffness of the panel reduced
the width of the absorption bands and that the damping can only be optimized for one of the
resonant frequencies. Sakagami and his colleagues have carried out extensive studies on similar
topics, both analytically and experimentally. Their earlier models were based on infinite
impervious membrane using the Helmholtz integral formulation, see, for example, Ref. [5]. These
models were later extended to permeable membranes [6], and to finite poroelastic plate [7]. The
thickness of the membrane was such that the membrane-to-cavity mass ratio ranged from unity to
around 20 in their experiments. Bosmans et al. [8] investigated the sound absorption by a
stretched PVC ceiling with a cavity infill made of mineral wool or polyurethane foam. The typical
rig consisted of a 0:15 mm PVC foil, stretched over an area of 3:17 m by 3:17 m; with 15 cm deep
cavity in which there was a porous, 2 cm thick layer. The mass ratio of the foil to the cavity air
was about 0.92. The tensile force applied gave an in vacuo flexural wave speed of around 60 m=s:
This force was deemed insignificant when compared with the foil inertia and cavity stiffness.
Ackermann et al. [9] described the details of their innovative, all-metal membrane absorber which
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can be used in hazardous industrial environment or applications with high hygienic standards.
The absorber was made by a host of baffled Helmholtz resonators. A typical resonator unit
consisted of a rigid cavity of 5 cm depth with a perforated panel of 0:2 mm aluminium, covered
by a thin aluminium membrane ð0:1 mmÞ at a distance of less than 1 mm from the perforated
one. The result was a broadband performance in the low- to medium-frequency range. Kang
and Fuchs [10] modelled their cavity-backed porous membrane as a parallel connection of
apertures and the membrane. In their validation experiments, an impedance tube of 20 cm by
20 cm in cross-section was used to measure the absorption by a 0:17 mm thick glassfibre textile
backed by a cavity of 10 cm depth. Again, broadband sound absorption performance was
achieved.
In summary, the thickness of membranes used in all these studies is comparable to that of the

current study although much thicker membranes have also been tested mainly for room acoustics
purposes. Tensile stress was applied in one case but its effect was found negligible. Bending
stiffness in the relatively thick membrane played an important role, but the cavity stiffness had
always been more dominant. Damping mechanisms were essential parts of a system and it was
achieved through filling sound absorption materials in the cavity and/or using perforated
membranes. The cavity was always compact compared with the quarter-wavelength in all studies.
Contrasting with all these previous studies, the drum silencer here uses a non-compact, thin
membrane under high tension. Damping is not a key element of the system. It is found that the
crucial mechanism for the broadband performance is the excitation of multiple resonant peaks
with suitable intervals between these peaks. If the membrane response is expanded in terms of its
in vacuo modes for the simply supported configuration, the contribution of the second in vacuo
mode is found to be very significant, and indeed unique for the present system. This mode is a
non-volume-displacing mode, and the cavity is not stiff. The second mode response supplements
that of the first mode, the latter being limited by the stiffness of the cavity air. The so-called
suitable interval between spectral peaks is found through an optimization process. The parameters
to be varied include the aspect ratio of the cavity for a given volume, the membrane-to-air mass
ratio, and the tensile stress applied on the membrane. To put the performance of the drum silencer
in a practical perspective, the normalized spectra of duct lining are studied with a certain
performance criterion. This is described in the next section, followed by a brief study of duct lining
with various properties of sound absorption materials. These results then serve as a reference for
judging how the drum silencer performs in different geometrical shapes.

2. Formulation

This section outlines the theoretical formulation used to predict the transmission loss of the
drum silencer. It begins with the description of a general theoretical model for the coupled
dynamics of membrane with and without sound absorption material in the cavity. The key
procedure of solution is given in the second subsection. Details of the fluid–membrane coupling
for one specific membrane–cavity configuration is described in Ref. [11], and experimental
validation of the theory can be found in Ref. [12]. The last subsection explains the performance
criterion for the drum silencer and explores how traditional duct lining (without membrane cover)
measures up to this performance criterion.
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2.1. Theoretical model and normalization scheme

As shown in Fig. 1, a rectangular duct is modelled by a two-dimensional channel while
retaining the liberal use of the word ‘duct’. Part of the duct walls are lined with two identical,
stretched membranes, and each membrane is backed by a rigid-walled cavity. If the mem-
branes are removed, the configuration reduces to a simple expansion chamber. When excited
by an incident wave, the membranes vibrate and the left-going sound radiation forms the
reflection wave thus reducing the transmitted wave. The action of the highly stretched membrane
resembles that of a drum skin, hence the name drum silencer. The cavity is used to prevent break-
out noise.
Before quantifying the membrane dynamics, a normalization scheme is introduced to simplify

the procedure as well as to identify controlling parameters. All dimensional variables are denoted
by an asterisk and their dimensionless counterparts are given the same symbol without these
asterisks. Variables related to the cavities are given an extra subscript ‘c’, and those of sound
absorption material ‘sam’. Three basic quantities are used for normalization. They are the duct
height hn as the length scale, air density rn

0 ; and the speed of sound in free space with air, cn0;
quantities associated with free space air being identified by a subscript ‘0’. The redundant
dimensionless variables h ¼ hn=hn ¼ 1 and c0 ¼ cn0=cn0 ¼ 1 are retained in some formulas for
convenient generalization to wave propagation in isotropic sound absorption materials modelled
as an equivalent fluid with complex speed of sound. The combination of the length scale hn and
the velocity scale cn0 gives the time scale of hn=cn0; while the acoustic impedance and pressure scales
are, respectively, rn

0cn0 and rn
0c*

2

0 : The normalization of frequency f n; angular frequency on; and a
wavenumber in a duct kn

n ; are as shown below:

f ¼ f nhn=cn0; o ¼ onhn=cn0 ¼ 2pf ; kn ¼ kn

nhn: ð1Þ

The dimensionless first cut-on frequency of the rigid-walled duct is f ¼ 0:5: The membrane
has a dimensional mass per unit area mn; stretched under a tensile force Tn per unit length
in the third direction. The membrane-to-air mass ratio m and the dimensionless tension T are
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defined by

m ¼
mn

rn
0hn

; T ¼
Tn

rn
0c*

2

0 hn
; ð2Þ

and both are made to vanish for normal duct lining without cover membranes.
The configuration in Fig. 1 is labelled by dimensionless variables. The cavity has a depth hc and

the membrane has a length L: The cavities can be either empty or filled with sound absorption
materials. The total volume of the two cavities is denoted L while the length-to-depth aspect ratio,
w: The geometrical relationships are

L ¼ 2Lhc; w ¼ L=hc; L ¼
ffiffiffiffiffiffiffiffiffiffiffi
Lw=2

p
; hc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð2wÞ

p
: ð3Þ

The basic procedure of solving the couple dynamics of the membrane follows that of the earlier
study [2] although the effect of the cavity air was ignored. The main steps are described here
briefly, while formulations unique to the current model are given in more detail. The dynamics of
the fluid–structure coupling is described by the following equation for membrane displacement Z;
which is related to the vibration velocity by V ¼ ioZ when considering incident sound of time
dependency eiot:

m@2Z=@t2 � Tð1þ isÞ@2Z=@x2 þ Dp þ pi ¼ 0; ð4Þ

where

pi ¼ eiðot�k0xÞ; ð5Þ

is the known incident wave pressure, Dp is the self-induced loading over the two sides of the
membrane caused by its own vibration, and s is the loss factor of the membrane, which is
explained as follows. The exact mechanism of damping in a tensioned membrane is rather
complex. In addition, energy loss caused by the friction at the two edges, x ¼ 7L=2; might be
more important than the distributed damping over the bulk membrane length. However, accurate
modelling of the damping mechanism is beyond the scope of the current study. The emphasis here
is to examine whether a reasonably high level of damping can be translated into an advantage in
terms of the overall transmission loss. If it can, efforts can be made in the direction of increasing
structural damping by means of sandwich designs, etc. It is for this purpose that the above
rudimentary damping model is put forward in the following analyses. It is obvious that the usual
concept of loss factor incorporated as the imaginary part of a complex Young’s modulus is not
suitable here. Alternatively, the traditional dashpot concept would yield an inertia term like
�mo2Zð1� isÞ; in which the damping term represents the energy loss from a flat membrane
undergoing a heaving motion like a piston. Such a piston model can be adopted on conceptual
basis, but it is felt that it would be more appropriate to model the structural damping based on the
shearing motions experienced by a vibrating membrane treated as a plate. A loss factor attached
to the curvature term in the form of TZxxð1þ isÞ is adopted as a rudimentary damping model for
the present study. Strictly speaking, a constant value of s for all frequencies is unlikely to be
satisfactory for any damping model, but, judging from the results of the following calculations, a
model of constant s can still serve the illustration purpose. As far as the transmission loss is
concerned, the quantitative difference between the results of this model and those of a piston
model with the same value of s is found to be insignificant.
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The Galerkin procedure can be followed to solve the above dynamics equation in terms of a
modal expansion for a simply supported membrane,

V ¼
XN
j¼1

Vj sinðjpxÞ; Vj ¼ 2

Z 1

0

V sinðjpxÞ dx; x ¼ x=L þ 1
2
: ð6Þ

The main task in doing so is to relate the fluid loading Dp with the vibration velocity V through a
modal impedance matrix fZjlg as shown below:

Dp ¼
XN
l¼1

XN
j¼1

VjZjl

 !
sinðlpxÞ; ð7Þ

where the single mode impedance Zjl is defined as the lth fluid loading coefficient caused by the
vibration of the jth in vacuo mode of unit amplitude, sinðjpxÞ: Details of finding Zjl are given in
the next subsection. Substitution of Eq. (7) into Eq. (4) gives a truncated set of linear equations:

Z11 þL1 Z12 ? Z1N

Z21 Z22 þL2 ? Z2N

? ? ? ?

ZN1 ZN2 ? ZNN þLN

2
6664

3
7775

V1

V2

V3

^

VN

2
6666664

3
7777775
þ

I1

I2

I3

^

IN

2
6666664

3
7777775
¼ 0; ð8Þ

where Ij is the modal coefficient of the incident wave, and Lj is mainly determined by the
membrane property:

Ij ¼
Z 1

0

pi2 sinðjpxÞ dx ¼ 2jpeik0L=2 1� eið�k0LþjpÞ

ðjpÞ2 � ðk0LÞ
2


 �
;

Lj ¼ mioþ
T

io
jp
L

� �2

ð1þ isÞ

" #
: ð9Þ

Eqs. (8) can be solved for the vibration velocity coefficients Vj by standard matrix inversion
techniques like Gaussian elimination.

2.2. Impedance matrix and membrane dynamics

The task of finding the modal impedance Zjl is one in which, unlike the coupled membrane
dynamics, the membrane vibration is specified, and the loading is customarily called the radiation
pressure. The formulation with one vibrating membrane is given below, and the effect of the
opposite, identical membrane can be easily taken into account by regarding the centreline of the
duct as a rigid wall. The radiation pressure on the membrane surface facing the main duct,
denoted pþrad ; can be found by the summation over all duct acoustics modes, cn; as shown below
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(see, for example, Ref. [13]):

pþradðx; y; tÞ ¼
r0
2h

XN
n¼0

cncnðy=hÞ
Z þL=2

�L=2
cnðy

0=hÞV ðx0; y0; tÞ

	 ½Hðx � x0Þe�iknðx�x0Þ þHðx0 � xÞeþiknðx�x0Þ� dx0;

cnðy=hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0n

p
cosðnpy=hÞ; kn ¼

o
cn

; cn ¼
ic0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnp=k0hÞ
2 � 1

q ; ð10Þ

where cn and kn are, respectively, the phase speed and wavenumber of the nth duct acoustics
mode, H is the Heaviside function, d0n is the Kronecker delta. The integration is carried out over
the source surface: x0A½�L=2;L=2�; y0 ¼ 0: The pressure on the cavity side is found in two steps.
First, the cavity is regarded as a channel of infinite length in which the membrane vibration
radiates sound of pressure p�rad in a way identical to pþrad : Second, the effect of the two vertical
walls at x ¼ 7L=2 is taken into account by enforcing the rigid wall boundary conditions there.
Eq. (10) can be adapted for p�rad when r0 ¼ 1 and c0 ¼ 1 are replaced by the corresponding
medium properties inside the cavity, denoted, respectively, as rsam and csam; the vibration velocity
V is replaced by �V ; and h by hc: The reflection wave loading p�ref is also expressed as a
summation of duct acoustics modes cn; like in Eq. (10), except that the two Heaviside functions
are replaced by two constants, A and B;

p�ref ðx; y; tÞ ¼
rsam

2hc

XN
n¼0

cnccnðy=hcÞ
Z þL=2

�L=2
cnðy

0=hcÞ

	 ½�V ðx0; y0; tÞ� 	 ½Ae�ikncðx�x0Þ þ Beþikncðx�x0Þ� dx0;

cnc ¼
icsamffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnp=ksamhcÞ
2 � 1

q ; knc ¼
o
cnc

; ksam ¼
o

csam

; ð11Þ

which are found by the rigid wall boundary conditions at x ¼ 7L=2;

@ðp�rad þ p�ref Þ
@x

����
x¼7L=2

¼ 0-A ¼
eikncðL�2x0Þ þ 1

eikncð2LÞ � 1
; B ¼

eikncðLþ2x0Þ þ 1

eikncð2LÞ � 1
: ð12Þ

Note that an additional subscript ‘c’ denotes cavity.
Both rsam and csam are complex quantities, and are functions of frequency. The typical

functionality of glassfibre described in Ref. [14] is used in the following analysis. The controlling
parameter for sound absorption material can be either porosity or flow resistivity, Rn

sam: The latter
is used and is normalized as follows:

Rsam ¼ ðRn

samhnÞ=ðrn

0cn0Þ: ð13Þ

For a typical density where Rn ¼ 30 kN s=m4 used in a duct of 20 cm height, Rsam is around 14. It
will be shown in the following examples that the optimal value is much less than this for best low-
frequency performance.
Once the vibration velocity is found via modal vibration coefficients Vj through solving the

coupled dynamics equation, Eq. (4), the reflected wave, denoted as pr; can be found by evaluating
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the radiated wave into the far left from Eq. (10), while the transmitted wave, pt; is found by the
superposition of the incident wave, pi; with the radiation into the far right, also from Eq. (10). The
coefficients of energy flux reflection, b; wave absorption, a; and the transmission loss, TL; can be
evaluated as follows:

pr ¼ pþrad jx-�N
; pt ¼ pþrad jx-þN

þ pi;

b ¼
pr

pi

����
����
2

; a ¼ 1� b�
pt

pi

����
����
2

; TL ¼ 20 log10
pi

pt

����
����: ð14Þ

The complex amplitude of the reflected sound, pr; is the sum of contributions made by all
individual membrane vibration modes, which is found as follows with the help of Eq. (10):

pr ¼
1

2

Z þL=2

�L=2
V ðx0Þe�ik0x0

dx0 ¼
XN
j¼0

VjRj; Rj ¼
1

2

Z þL=2

�L=2
sin ðjpx0Þe�ik0x0

dx0; ð15Þ

where Rj is the complex amplitude of the reflected sound by the induced vibration of the jth mode
with unit amplitude. Since the summation of complex amplitudes can be seen as vectorial sum on
the real–imaginary plane, the contributions from all odd modes, j ¼ 1; 3; 5;y; towards reflected
wave can be grouped together as VoddRodd ; and those from the even modes VevenReven: Their
interference can be characterized by an index defined as follows:

Godd;even ¼ cos y; ð16Þ

where y is the phase angle difference between the two complex amplitudes. When y-p;
destructive interference results.

2.3. Performance criterion and duct lining

It is well-known that duct lining performs well in the range of medium-to-high frequencies, and
membrane absorbers target at low-to-medium frequencies. It is necessary to specify exactly what
is meant by ‘medium frequency’ and what measures up to the so-called ‘good performance’. For
this purpose, a performance criterion is needed, and the lowest frequency at which the criterion is
met for the duct lining may be seen as a reference ‘medium frequency’ separating the low and high
frequencies in the current context.
When the two cavities are put together, the total volume occupied, L; is regarded as a kind of

‘cost’. A reference expansion chamber is chosen to be one in which w ¼ L=hc ¼ 2;L ¼ 2hc ¼
ffiffiffiffi
L

p
;

so the expansion ratio of the reference expansion chamber is 1þ 2hc ¼ 1þ
ffiffiffiffi
L

p
: Since the

performance of the drum silencer is expected to be much better than that of empty expansion
chambers, the criterion of satisfactory, or threshold, transmission loss is set as the peak value for
an expansion chamber with an added volume which is three times the actual added volume used,
i.e., 3L: The ratio of expansion becomes 1þ

ffiffiffiffiffiffi
3L

p
: The peak performance occurs when the

chamber is a quarter-wavelength long. The plane-wave theory gives this threshold transmission
loss, TLcr; and the dimensionless peak frequency fpeak:

TLcr ¼ 10 log10 1þ
1

4
ða3 � a�13 Þ2


 �
; a3 ¼ 1þ

ffiffiffiffiffiffi
3L

p
; fpeak ¼

1

4
ffiffiffiffiffiffi
3L

p : ð17Þ
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For an added volume of L ¼ 10; the result is TLcr ¼ 10:4 dB and fpeak ¼ 0:0456: Notice that, if a
lower aspect ratio w is chosen for the reference expansion chamber, the chamber would become very
short with high area expansion ratio. TLcr calculated according to the plane-wave theory will be
very high. In fact, the plane-wave theory breaks down for short expansion chambers which behave
more like resonators with sharp spectral peaks. The choice of w ¼ 2 is already too low for TLcr to
hold accurately, but it is believed to be an appropriate one just for the purpose of setting TLcr:
Before studying the optimal cavity shape for the drum silencer, it is of interest to see how

traditional duct lining measures up to this criterion. Notice that, for a lining within such finite
cavities, sound reflections at the upstream and downstream junctions of the cavities will certainly
make a significant contribution. The performance of the traditional duct lining is calculated by
treating the sound absorption material in the two cavities as equivalent fluid and allowing the
membrane mass to vanish.
The cavity geometry is first assumed to be hc ¼ 1;L ¼ 5; for which TLcr ¼ 10:41 dB; and the

effect of change w is described next. The spectra of transmission loss, TL; and the sound energy
reflection coefficient, b; are shown in Fig. 2 in terms of dimensionless frequency f ¼ f nhn=cn0 for
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Fig. 2. Spectra of duct lining filling two cavities of depth hc ¼ 1 and length L ¼ 5: Each dashed line in the main picture
corresponds to one value of flow resistivity Rsam which increases from 0.1 (thin solid line) to 10 (thickest solid line) in

equal logarithmic increment. The solid line of medium thickness is the optimal curve for Rsam ¼ 1:4 which produces the
lowest value of lower stopband limit f1: The insert shows the variation of f1 with respect to Rsam: The lower spectrum of

b is the reflection coefficient for Rsam ¼ 1:7:
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various values of dimensionless flow resistivity. It shows that the lining performs better in the
region of higher frequencies. The crucial result in this case is the lower boundary of the stopband,
f1; for which a very low value is desired. The variation of f1 with flow resistivity Rsam is shown in
an insert figure. It can be seen that the performance in this regard is bad for extremely low and
high values of Rsam; whose spectra are indicated in the main figure by the thinnest and the thickest
lines, respectively. The lowest f1 ¼ 0:077 is found with a lining of Rsam ¼ 1:4; and the optimal TL

spectrum is shown as the solid line of medium thickness. The peak in the insert is rather sharp,
indicating a strong dependency of the low-frequency performance on the exact flow resistivity.
The contribution of sound reflection in this case is shown in the lower figure, in which b ¼ 15% is
marked for the frequency of f1 ¼ 0:077: A peak in the optimal TL curve appears around frequency
0.3, which is an indication of resonance in the direction of the cavity depth. The reason why the
performance for Rsam ¼ 1:4 is better than that of Rsam ¼ 10 for fo0:5 is that, in the former case,
the standing wave between the air–lining interface and the lower cavity wall allows maximum
particle velocity to be produced in the material. Part of the reactive nature of the shallow duct
lining is also obvious in the sharpness of the peak in the insert picture.
For each cavity geometry, the best f1 and Rsam can be found. The variation of these with respect

to the cavity depth hc for a given cavity volume of L ¼ 10 are shown in Fig. 3. Fig. 3(a) shows that
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the performance of the cavity barely changes with the cavity depth, but a minimum of f1 ¼ 0:0766
is identified with hc ¼ 0:9: Fig. 3(b) shows that deeper cavity requires higher flow resistivity.
Fig. 3(c) is the spectrum of the optimal cavity depth of 0.9 with the optimal flow resistivity of 1.3.
The contribution of reflection beyond the frequency of f1 is around 15%. It is concluded that
cavities filled with sound absorption material of a suitably chosen property can achieve
satisfactory performance down to the frequency of 0.077. This frequency limit is not sensitive to
the cavity shape, but it is sensitive to the flow resistivity since part of the good performance derives
from the cavity depth resonance. The frequency of 0.077 can be seen as a demarcation line for the
‘medium’ frequency in the present context.

3. Optimal cavity

The drum silencer can be a very simple device for construction, but it does have a lot of
variables, for which a parametric study has to begin with most variables fixed. For reasons that
become clear later on, the membrane mass is fixed at m ¼ 1; the two cavities have a total volume
L ¼ 10 without sound absorption materials, and Rsam ¼ 0: Membrane tension T is a very
influential parameter which has to be varied while studying the effect of varying cavity depth hc or
aspect ratio w: The variation of performance with respect to the volume L will be presented
towards the end of this section.

3.1. Optimal shape for a given volume

The overall results are first presented in Fig. 4 in a waterfall format. Deep cavities with short
membranes have low aspect ratio w; and their spectra resemble simple Helmholtz resonator.
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Shallower cavities with longer membranes, on the other hand, have higher aspect ratio and their
spectra are broader with peaks spread out in frequency. As w increases beyond about 7, the dip
between the three spectral peaks become progressively serious and the level of TL falls below the
criterion value TLcr: The exact bandwidth,

fb ¼ f2=f1; ð18Þ

and the optimal tension, Topt; are shown in Fig. 5. The cavity depth which yields the widest
stopband according to the criterion of Eq. (17) has w ¼ 6:6; as shown in the peak point of
Fig. 5(a). Its spectrum is shown in Fig. 5(c) as thick solid curve. Two other cavity geometries with
w ¼ 5:6; 7:8 are chosen for comparison with the optimal cavity, which are shown together with the
optimal cavity depth in three open circles in Fig. 5(a) and (b). The membrane tension used follow
the optimal values found for each individual depth, as shown in three open circles in Fig. 5(b). The
optimization with respect to T for each cavity geometry will be discussed in the next section. As w
increases, the corresponding optimal tension also increases. It is found that the spectra for the
three chosen cases are brought close together if the frequency scale is modified by the membrane
length as fL=Lopt; where Lopt is the length for the optimal cavity depth, Lopt ¼

ffiffiffiffiffiffiffiffiffiffiffi
wL=2

p
¼ 5:7: The

results are shown in Fig. 5(c). Through such a frequency modulation, it becomes clear that the
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shallow and longer cavity (thin solid line) is effective over a wider frequency band but the dip
between the three TL peaks are rather serious. In fact, for the example shown above, the TL goes
below TLcr set by Eq. (17). The so-called optimal geometry is one in which the lowest TL values
just touches down to TLcr: On the other hand, deeper and shorter cavity works in a narrower
frequency band with better minimal TL: The comparison between the three spectra in Fig. 5(c)
serves as a reminder that the variation of the drum silencer performance with cavity depth is
rather smooth, and the optimal cavity shape simply depends on the criterion set for the
transmission loss.

3.2. Impedance analysis

In order to understand the precise mechanism by which the spectra shift with the cavity shape,
it is necessary to analyze the behaviour of each membrane mode. At first sight, this seems rather
difficult as Eqs. (8) imply complicated cross-modal coupling. But, as was shown in Ref. [2], for the
modal radiation impedance Zjl ; there is no coupling between odd and even modes, e.g., Z12 ¼
Z21 ¼ 0; although there is coupling among all odd modes and among all even modes. In addition,
it can be easily demonstrated numerically that, at very low frequencies, the odd–odd and even–
even couplings are also weak, in which case the coupled equations in Eq. (8) can be approximately
solved for the first two modes as follows:

V1E
�I1

Z11 þL1
; V2E

�I2

Z22 þL2
; ð19Þ

where Lj is the membrane property defined in Eq. (9). The examination of the combined modal
impedance Zjj þLj can then shed some light on how reflection by a certain mode changes with
cavity shape. It is most profitable to analyze the first two modes, j ¼ 1; 2; but such analysis would
gradually fail as the frequency increases. This pitfall can be avoided by an additional analysis of
the lumped odd modes and even modes reflections, VoddRodd and VevenReven; and their interference
index Godd;even defined in Eq. (16).
The physics of the spectral dependency on cavity depth is now discussed by analyzing the

components of the impedance matrix for the three cases shown in Fig. 5(c). The details are shown
in Fig. 6 and we recall the notation while explaining the parts of Fig. 6. The total reactance,
X ¼ ImðZj þLjÞ; of the coupled system of the first and second modes, j ¼ 1; 2; are shown in the
first and second columns of the figure, respectively. Fig. 6(1a) shows the structural reactance
Xstruct ¼ ImðL1Þ; for which the vertical scale is the same as that of the second mode shown in Fig.
6(2a). A vertical dashed line is shown in all subfigures since it marks an important frequency, the
first axial mode of the cavity f ¼ 1=ð2LÞ for the optimal cavity. At this frequency, the cavity
reactance becomes singular for the second mode, as shown in Fig. 6(2c), and the response of the
even modes are prohibited, as shown in Fig. 6(3c). Focusing now on the comparison between the
optimal cavity, shown in thick solid curves, and the shallower cavity, shown in thin solid curves,
Fig. 6(1b) shows that the radiation reactance Xrad ; which derives from the combination of pþrad

and p�rad ; for the shallow cavity is greater in magnitude, i.e., there is more stiffness caused by the
opposite rigid wall on the membrane. This is understood from Eqs. (10) and (11) where the
radiation pressure is seen to be scaled with w ¼ L=hc: Physically it derives from mass conservation
in the sense that all the volume displaced by the membrane of length L produces an equal amount
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of acoustic particle flow elsewhere across the section of height hc: The enhancement of sound
radiation by narrowing the channel is also felt in the magnitude of the sound reflection by the two
rigid walls in the cavity, as shown by the greater magnitude of reflection reactance, denoted as
Xref ; in Fig. 6(1c). Fig. 6(1d) shows that the total reactance X for the shallower cavity is greater,
leading to a smaller response from the odd modes, as shown in Fig. 6(3b). The radiation reactance
for the second mode is a virtual mass, as shown in Fig. 2(b). For the same reason of higher aspect
ratio, w ¼ L=hc; shallower cavity produces higher radiation mass and reflection mass, as shown in
Fig. 6(2c), leading to a lower even mode response, as shown in Fig. 6(3c). The lower response from
all modes leads to lower value of TL over all frequencies within the stopband when compared with
that of the optimal cavity. Fig. 6(3d) shows some improvement in the interference index Godd;even

for the shallower cavity, but this does not seem to be sufficient to compensate for the reduced
magnitudes of the modal response.
If the TL criterion for the stopband is temporarily abandoned, the shallower cavity apparently

has more effective response to a wider frequency band, as shown earlier in Fig. 5(c). The reason
why this is the case can be explained here. The main reason is that the even mode response reaches
a peak at a lower frequency, as shown in the left-shift of the thin curve in Fig. 6(3c). This shift is
partly due to the second mode resonance at a lower frequency as the virtual mass from the
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radiation and reflection is enhanced, as shown in Fig. 6(2b) and (2c). The other reason might be
that the drastic improvement of interference index in the range of very low frequencies, as shown
in Fig. 6(3d). The effect of increasing the cavity depth seems to be exactly opposite and will not be
analyzed further.

3.3. Variation with volume

The optimal cavity shape and other parameters are shown in the subfigures on the left column
of Fig. 7 as a function of the total cavity volume. The subfigures on the right column are for the
duct lining without membrane cover. The parameters are presented in a manner to identify certain
constants. Figs. 7(1a) and (2a) compare the limits of the stopband frequency ½f1; f2�; with the
quarter-wavelength frequency of expansion chamber of the same length, fq: Comparing first f1
between the drum silencer and the duct lining, it is found that f1 is about the same for the two
designs with volume L ¼ 5: But low-frequency performance of the drum silencer surpasses the
duct lining as volume increases. At volume 10, the comparison of f1 stands at 0.0460 versus
0.0672. At volume 15, the comparison becomes 0.0331 versus 0.0573. The lower frequency limit
for the drum silencer is 58% of that of the duct lining. The coincidence of fq and f1 between the
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expansion chamber and the drum silencer is interesting, but it defies easy interpretation. Fig. 7(1b)
shows the optimal tension, which increases with the optimal cavity length. The controlling
parameter in duct lining is Rsam; and the result is shown in Fig. 7(2b). Larger cavities can afford to
have loose sound absorption material. Figs. 7(1c) and (2c) show the aspect ratio of the optimal
cavity. The best cavity shape for drum silencer is a long and shallow cavity, with typical ratio of
wAð5; 8Þ; while the best for duct lining is wAð1; 1:5Þ: The reference expansion chamber described
earlier is a cavity with w ¼ 2; which is a mid-way between the optimal drum silencer and the
optimal duct lining.

4. The effect of membrane properties

The following set of parameters are used in this section,

m ¼ 1; s ¼ 0; hc ¼ 1; L ¼ 5: ð20Þ

The effects of membrane tension T ; loss factor s and length L are presented below.

4.1. Optimal tension

The transmission loss spectra for different values of membrane tension are shown in Fig. 8.
Fig. 8(a) displays the spectra together with the criterion value TLcr shown for each spectrum, and
the value of T for each stacked spectrum is marked on the right-hand side. It can be seen that, as
T increases, the resonant frequencies shift towards higher frequencies. The optimal value of T is
found to be T ¼ 0:485; which can be recognized around T ¼ 0:5 where the spectral valleys
between the three peaks rise above the horizontal bar of TLcr: The details of this setting are
compared with those of two neighbouring design parameters, shown as three open circles in
Fig. 8(b) and (c). Fig. 8(b) shows that there is a sharp peak, indicating a delicate change of
stopband pattern as the spectral valley of TL is rather close to TLcr: Fig. 8(c) shows that the lower
frequency limit f1 increases with T :
Fig. 9 shows the spectral changes from the optimal value of T ¼ 0:485 (thick solid curves) to its

two neighbouring points of T ¼ 0:42 (thin solid curves) and T ¼ 0:56 (dashed curves). In order to
facilitate identification of frequency ranges in different graphs, the three spectral peaks of the
optimal tension are marked in all subfigures as open circles. The fundamental changes that take
place as T varies is the structural impedance term ðT=ioÞðjp=LÞ2; where j is the modal index.
Because the impact on the higher order modes, such as j ¼ 3; 4; is higher than that of lower order
modes of j ¼ 1; 2; and because there is complicated coupling among all odd modes and among all
even modes, the details of modal reactance is not analyzed here. Instead, only the pattern of odd
and even modes spectra are shown. The easier way to understand the pattern shift is by asserting
that the pattern must shift in such a way that tends to make T=io a constant. In other words, as T

reduces, the pattern shifts to lower frequency, vice versa. This conclusion is evident for most parts
of the subfigures in Fig. 9. Fig. 9(a) shows that there is more significant impact of this shift in the
region of higher frequencies than lower frequencies. This is so because the total reactance of
the coupled system is dominated by the cavity stiffness in low frequencies for the odd modes. On
the contrary, the cavity presents virtual radiation mass for the even modes, shown in Fig. 9(b),
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and the influence of structural parameter is more pronounced in the region of low frequencies.
The frequency shift of the first spectral peak shown in Fig. 9(d) follows naturally from this
analysis. The changes in the second and third peaks are more complicated as the pattern of the
interference index, shown in Fig. 9(c), does not follow the simple rule of frequency shift around
and beyond the second spectral peak. As shown in Fig. 9(d) for T ¼ 0:56 (dashed curve), the
second peak simply disappears. The reason is found in Fig. 9(c) where the value of the interference
index drops dramatically from almost 0 (non-interference) to a negative value (cancellation). The
even modes do have a finite magnitude beyond the second peak, as shown in Fig. 9(b). For the
same reason, the third peak is drastically cut in magnitude due to the cancellation of the rising
even modes contribution by the more persisting odd modes contribution. Also shown in Fig. 9(d)
is the lack of shift for the third peak for membrane of lower tension T ¼ 0:42: The increased
interval between the second and third peaks of the thin solid curve results in a deep valley leading
to the breaking up of the stopband as defined earlier. The third peak is insensitive to the change in
T : This is so because TL is dominated by the even modes contribution and there is no odd modes
cancellation as is the case for higher tension. In conclusion, there is a delicate balance between the
sound reflections caused by the odd and even modes, and an optimal tension can be found to
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smooth out the final transmission loss for the widest possible stopband. The pivotal role played by
the membrane tension is rooted in the fact that the cavity presents different nature of impedance
for the odd and even membrane vibration modes.

4.2. Membrane and cavity damping

The effect of membrane damping is illustrated by increasing s from 0 to s ¼ 0:1 for the
membrane stretched by the optimal tension T ¼ 0:485: The results are compared with that of
adding sound absorption material in the cavity. Fig. 10(a) shows the spectral comparison between
the lossless membrane (solid curve) and the lossy membrane (dashed curve) with empty cavity.
Apart from the improved performance in the region of high frequencies, the only significant

effect is the smearing of the spectral peaks in the stopband. The net effect of this smearing is that
TL is reduced at the frequencies of TL peaks. Furthermore, there is no improvement at the TL
troughs, contrary to what one might have expected. This is so because the damping mechanism
itself reduces the membrane response. Fig. 10(b) compares the spectra of the lossless cavity (solid
curve) with cavities filled with different densities of sound absorption materials. The membrane
itself is stretched under tension T ¼ 0:485 and there is no membrane damping in this subfigure.
When the sound absorption material has a very low value of Rsam ¼ 0:025; the effect is seen to
smooth out the spectrum. Notice that, unlike in Fig. 10(a), there is some gain of TL between the
second and third peaks. When the flow resistivity is increased further, the spectral pattern makes a
transition from the membrane domination to the normal duct lining with resonant peaks caused
by the rigid cavity walls. The low-frequency performance for cavity with high value of Rsam is not
good. In conclusion, neither membrane damping nor sound absorption material filled in the cavity
benefits the low-frequency performance of a drum silencer.
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4.3. Membrane mass

The effect of membrane mass is shown in Fig. 11 for the range of membrane tension of ½0:1; 1�:
The general trend is that the spectra of heavier membranes are shifted towards the lower
frequencies compared with light membranes. However, the shift does not necessarily mean a
better overall performance in the low-frequency region for heavier membranes since the dips
between the peaks tend to be more serious. For example, the membrane with m ¼ 1 (thin solid
curves) attains its best performance around T ¼ 0:5 shown at the top of the left column, where the
heavier membrane of m ¼ 3 has serious dip between the second and third peaks. This dip is only
lifted up at a higher value of tension T ¼ 0:8 shown in the middle of the right column. f1 for the
heavy membrane at this tension is actually higher than the value of f1 for the light membrane at
T ¼ 0:5: It can be shown that, for even heavier membranes, the dip between the second and the
third peaks cannot be lifted up by increasing the value of tension. As a result, the narrow, two-
peak stopband achieved with a low value of tension becomes the optimal performance.
The optimal performance for membranes of different mass is shown in Fig. 12. The

specification of m ¼ 0 does not cause any singular change since the air already imposes radiation
virtual mass on the membrane. As shown in Fig. 12(a), the optimal tension, Topt; increases with m:
The very linear increase in the initial stage means that the total structural impedance mio�
Tðjp=LÞ2=ðioÞ remains more or less unchanged. This result reflects the fact that the optimal
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bandwidth is a result of delicate coupling between the membrane dynamics and the cavity
acoustics. A fixed cavity calls for a rather constant membrane behaviour in terms of structural
impedance. Fig. 12(b) shows that the lower frequency limit f1 actually increases. This is somewhat
against the physical intuition that resonant frequency decreases with system mass. This outcome is
caused by the fact that f1 is mainly determined by the coupled resonance of the second mode for
which the cavity presents radiation mass. As m increases, the change in the system mass is not as
great as the change in system stiffness derived solely from the structural tension. The result is an
increased resonant frequency for the second mode. Fig. 12(c) shows a steep decrease of bandwidth
with m: This is consistent with the definition of fb ¼ f2=f1: The critical mass beyond which there is
only narrow, twin-peak stopband is shown to be around m ¼ 6: The simple conclusion is that,
when optimal tension is applied, light membranes are better than heavier membranes both in
terms of the lower frequency limit and the logarithmic bandwidth.

5. Conclusions

The essential module of a drum silencer simply consists of a thin membrane tightly stretched
over a rectangular cavity which is typically shallow and slender. The grazing incident sound
excites the membrane like a drum whose vibration reflects the intruding sound. The module is
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purely reactive, and a rather broadband performance is predicted. This study focuses on the
effects of cavity shape and the membrane properties. It is found that:

1. If the criterion for a good-performance drum silencer is set as the peak transmission loss of an
expansion chamber which has cavities with aspect ratio of w ¼ L=hc ¼ 2 and with volume three
times that occupied by the drum silencer, TLXTLcr; a drum silencer with suitable cavity shape
can satisfy this criterion with a wide stopband ½f1; f2�: The stopband begins from a lower
frequency limit f1 for which the membrane length is roughly a quarter-wavelength. The
bandwidth normally exceeds one octave and approaches f2=f1 ¼ 3 for the case with the total
volume of L ¼ 10 and with vanishing membrane mass.

2. The performance of a drum silencer is compared with that of traditional duct lining. The
optimal cavity shape required of a duct lining is much deeper than that for a drum silencer. The
lowest possible f1 for duct lining is typically higher than that of a drum silencer.
The comparison of the low-frequency performance becomes more and more favourable for
the drum silencer as the total cavity volume increases, the two being equivalent with a volume
of 5 (2.5 for each cavity) for the particular membrane design.

3. For a drum silencer, the TL spectrum becomes wider as the cavity shape becomes slender. The
frequency interval between spectral peaks increases and, as a result, the dip between adjacent
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peaks would fall below TLcr: On the other hand, a deeper cavity leads to narrower interval
between spectral peaks. The stopband is narrower but the higher value of TL at the dip points
compensates somewhat for the loss of bandwidth. This gradual spectral shift is found to be mainly
caused by the radiation stiffness inside the cavity, while the reflection stiffness plays a minor role.

4. There exists an optimal membrane tension so that a drum silencer of certain geometry can
obtain the widest stopband as defined by the triple-volume criterion of TLXTLcr: In order to
achieve a wide stopband, the responses of the odd and even modes have to ascertain a certain
supplementary spectral relationship. The effect of changing tension is its balance act between
the responses of the odd and even modes to incident sound waves.

5. The effect of membrane damping is seen to smooth out the TL spectrum but it does not widen
the stopband. If fluffy sound absorption material is added inside the cavities, performance at
the higher frequencies improves but that at the lower frequencies suffer. Again, best low-
frequency performance is found without any damping inside the cavities.
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