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Abstract

The radial (in-plane) bending-vibration responses of a uniform circular arch under the action of a moving
load were investigated by means of the arch (curved beam) elements. Instead of the complex explicit-form
shape functions given by the existing literature, the simple implicit-form shape functions associated with the
radial (normal), tangential and rotational displacements of the arch element were derived. Based on the
relationships between the nodal forces and nodal displacements of an arch element the elemental stiffness
matrix was obtained, and based on the equation relating the kinetic energy and nodal velocities the
elemental consistent mass matrix was determined. Assembly of the elemental property matrices yields the
overall stiffness and mass matrices of the complete circular arch. The analytical free vibration analysis
results were used to confirm the reliability of the presented stiffness and mass matrices for the arch element.
Then the dynamic responses of a typical segmental circular arch, with constant curvature, due to a
concentrated load moving along the circumferential direction were discussed. In addition to the circular
arch, a hybrid (curved) beam composed of a circular-arch segment and two identical straight-beam
segments was also studied. All numerical results were compared with the finite element solutions based on
the conventional straight-beam elements and reasonable agreement was achieved. Influence of the moving
speed, centrifugal force and frictional force on the dynamic behaviors of the circular arch and the hybrid
beam was investigated.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

For most structural engineers, how to choose a suitable finite element to perform the static or
dynamic analysis of the curved structures, such as arches, rings, shells and railway bridges is still a
difficult problem; thus a lot of investigators devoted themselves to this field. Since the present
paper aims at the in-plane responses of the arch, only a little information regarding the out-of-
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plane behavior of the curved beams was mentioned. In the existing literature, most of the
researchers are interested in the derivations of displacement (or shape) functions and stiffness
matrix of the arch elements [1–6], few of them paid attention to the derivations of the mass matrix
of the arch elements [7–9]. For this reason, the literature about the static analysis of arches is
much more than that about the dynamic analysis. As we know, Refs. [7–9] are the three papers
most concerned. In Ref. [7], the first few natural frequencies and mode shapes of a small thin arch
with three supporting conditions and various subtended angles were studied. In Ref. [9], the free
vibrations of circular arches with various depths of cross-sections and various types of supports
were investigated by taking account of the effects of rotary inertia and shear deformation. As to
the engineering background of a curved beam under a moving load one may refer to the
Introduction of Ref. [10]. To the authors’ knowledge, the information regarding the forced
vibration responses of an arch due to the moving load(s) is rare and this is the reason why this
paper tries to study the title problem.

In Ref. [7], the elemental stiffness matrix and consistent mass matrix for the arch element were
derived based on two ‘‘explicit-form’’ functions for the tangential and the radial displacements,
where the displacement functions are the power series of curvilinear co-ordinates s and the effect
of rotary inertia is neglected. In the recent papers [6,9], the 18 ‘‘explicit-form’’ shape functions for
the tangential displacement, the radial displacement and the rotational angle, for an arch element,
were derived and based on these shape functions the element stiffness matrix and mass matrix
were obtained. Where the shape functions are the algebraic-trigonometric functions of the angular
co-ordinate y: Because the ‘‘explicit-form’’ shape functions and element property matrices
presented in Refs. [6,7,9] are very complicated, this paper employs the simple ‘‘implicit-form’’
shape functions to derive the ‘‘implicit-form’’ element stiffness and mass matrices of the arch
(curved beam) element with the effect of rotary inertia considered [11].

For comparisons, both the arch (curved beam) elements and straight-beam elements were used
to solve the same problem. In addition to a uniform 120� circular arch, a hybrid beam composed
of a circular-arch segment and two identical straight-beam segments was also studied. Since the
velocity of moving load, VP; the centrifugal force induced by the curvilinear motion of the moving
load along the curved beam, Fc; and the frictional force between the moving load and the beam,
Ff ; are the key factors affecting the dynamic behaviors of the curved beams, the influence of these
factors is discussed.

2. Shape functions

For the arch (curved beam) element shown in Fig. 1, if the x-axis is the symmetric axis for the
cross-section of the arch and the effect of shear deformation is ignored, then the displacement
functions for the radial displacement ux; the circumferential displacement uy and the rotational
angle cy are given by [1]

ux ¼ G1 þ G2 cos yþ G3 sin yþ G4y sin yþ G6y cos y; ð1aÞ

uy ¼ G1Cyþ G2 sin y� G3 cos yþ G4ðsin y� y cos yÞ þ G5 þ G6ðcos yþ y sin yÞ; ð1bÞ

cy ¼ G1ðCRÞyþ G4ð2RÞsin yþ G5ð1RÞ þ G6ð2RÞcos y; ð1cÞ
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where

C ¼ 1þ ðIy=AR2Þ: ð2Þ

In Eqs. (1) G12G6 are the integration constants determined by the boundary conditions of the
arch element, while in Eq. (2), A is the cross-sectional area, R is the average radius of curvature of
the arch element and Iy is the moment of inertia of the area A about the y-axis given by [1]

Iy ¼
Z

A

x2

1� ðx=RÞ
dA: ð3Þ

In Fig. 1, xyz and xyz are the local and global reference co-ordinate systems for the conventional
straight-beam elements, respectively.

In matrix form, Eqs. (1) gives

uf g ¼ H½ 
 Gf g; ð4Þ

where

uf g ¼ ux uy cy

n o
; ð5aÞ

H½ 
 ¼

1 cos y sin y y sin y 0 y cos y

Cy sin y �cos y sin y� cos y 1 cos yþ y sin y
C
R
y 0 0 2

R
sin y 1

R
2
R
cos y

2
64

3
75; ð5bÞ

Gf g ¼ G1 G2 G3 G4 G5 G6


 �
: ð5cÞ

In Eqs. (4) and (5), the symbols [ ] and { } represent the rectangular (or square) matrix and the
column vector, respectively.
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Fig. 1. The definition for the in-plane element displacements, ux; uy and cy; for an arch element and the associated

reference local and global co-ordinate systems, xyz and xyz:
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When the boundary conditions for the arch element shown in Fig. 1 are imposed on Eq. (4), one
obtains

df g ¼ B½ 
 Gf g; ð6Þ

where

df g ¼ ux1 uy1 cy1 ux2 uy2 cy2


 �
; ð7Þ

B½ 
 ¼

1 cos y1 sin y1 y1 sin y1 0 y1 cos y1
Cy1 sin y1 �cos y1 sin y1 � y1 cos y1 1 cos y1 þ y1 sin y1
C
R
y1 0 0 2

R
sin y1 1

R
2
R
cos y1

1 cos y2 sin y2 y2 sin y2 0 y2 cos y2
Cy2 sin y2 �cos y2 sin y2 � y2 cos y2 1 cos y2 þ y2 sin y2
C
R
y2 0 0 2

R
sin y2 1

R
2
R
cos y2

2
6666666664

3
7777777775
: ð8Þ

From Eq. (6) one obtains

Gf g ¼ B½ 
�1 df g: ð9Þ

The substitution of Eq. (9) into Eq. (4) yields

uf g ¼ N½ 
 df g; ð10Þ

where ½N
 is a matrix of the shape functions defined by

NðyÞ½ 
 ¼ H½ 
 B½ 
�1¼

N11ðyÞ N12ðyÞ ? N16ðyÞ

N21ðyÞ N22ðyÞ ? N26ðyÞ

N31ðyÞ N32ðyÞ ? N36ðyÞ

2
64

3
75: ð11Þ

Once the angular co-ordinates of nodes � and � for the arch element, y1 and y2; are given, one
may obtain the values of matrix ½B
 and its inverse ½B
�1 from Eq. (8). To insert the values of ½H

and ½B
�1 into Eq. (11) will determine the values of the shape function matrix ½NðyÞ
: It is evident
that the implicit shape functions given by Eq. (11) are much simpler than the explicit ‘‘exact’’
shape functions given in Tables 1–3 of Ref. [6], particularly for the computer programming. Based
on the numerical example in Ref. [6], the 18 curves for the shape functions Nmn (m ¼ 123;
n ¼ 126) were obtained from Eq. (11) and compared with the corresponding ones obtained from
the explicit ‘‘exact’’ shape functions given in Tables 1–3 of Ref. [6] and excellent agreements were
achieved [11].

In theory, the finite element method is an ‘‘approximate’’ method, thus the ‘‘exact’’ shape
functions reported in Ref. [6] only mean that they enable the behavior of the arch to be calculated
exactly for any mesh density (i.e., any number of arch elements) and they are also called the
‘‘natural’’ shape functions [7,8].
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3. Stiffness matrix for arch element

From Ref. [1] one has the following force–displacement relations:

Fx ¼ F 0
y; ð12aÞ

Fy ¼
EA

R
ðu0y � uxÞ �

My

R
; ð12bÞ

My ¼
EIy

R2
ðu00x þ uxÞ; ð12cÞ

where the primes denote the derivatives with respect to the angular co-ordinate y: From Eqs. (1)
and (12) and the following relationship for the equilibrium of nodal forces

Fx1 Fy1 My1


 �
¼ � Fx2 Fy2 My2


 �
; ð13Þ

one obtains

Ff g ¼ D½ 
 Gf g; ð14Þ

where

Ff g ¼ Fx1 Fy1 My1 Fx2 Fy2 My2


 �
; ð15Þ

D½ 
 ¼
EIy

R2

0 0 0 �2
R
sin y1 0 �2

R
cos y1

0 0 0 2
R
cos y1 0 �2

R
sin y1

�1 0 0 �2 cos y1 0 2 sin y1
0 0 0 2

R
sin y2 0 2

R
cos y2

0 0 0 �2
R
cos y2 0 2

R
sin y2

1 0 0 2 cos y2 0 �2 sin y2

2
6666666664

3
7777777775
: ð16Þ

Introducing the values of [G] defined by Eq. (9) into Eq. (14) leads to

Ff g ¼ D½ 
 B½ 
�1 df g ¼ K½ 
 df g; ð17Þ
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Table 1

The lowest five natural frequencies of a simply-supported arch, oi(i ¼ 125) (rad/s), with rotary inertia neglected

Mode no. i Exact solutions [7] Present paper

By SB elements By CB elements

20 elements 40 elements 2 elements 4 elements 6 elements

1 0.349 0.565 0.564 0.349 0.349 0.349

2 1.571 1.952 1.952 1.572 1.572 1.572

3 3.612 4.228 4.226 3.725 3.615 3.613

4 6.470 7.230 7.230 8.212 6.474 6.474

5 10.144 11.161 11.156 14.307 10.274 10.162
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where [K] is the element stiffness matrix of the arch element and is given by

K½ 
 ¼ D½ 
 B½ 
�1: ð18Þ

4. Mass matrix for arch element

The kinetic energy of the arch element is given by

T ¼ 1
2

Z y2

y1
rAð ’u2

x þ ’u2
yÞ þ rIy

’c2
y

h i
R dy; ð19Þ

where the dots denote the derivatives with respect to time t, r is the mass density of the arch
material and Iy is the moment of inertia of the cross-sectional area defined by Eq. (3). It is noted
that the third term on the right-hand side of Eq. (19), rIy

’c2
y; represents the rotary inertia, which is

not considered in Refs. [7,8].
For harmonic free vibrations, one has

uf g ¼ %uf g eiot; ð20Þ

where f %ug is the amplitude of {u}, o is the natural frequency of the arch, t is time and
i ¼

ffiffiffiffiffiffiffi
�1

p
:

The substitution of Eqs. (4) and (20) into Eq. (19) yields

T ¼ 1
2
o2 df gT M½ 
 df g; ð21Þ

where [M] is the consistent mass matrix of the arch element given by

M½ 
 ¼ rRð B½ 
�1ÞT
Z y2

y1
H½ 
T L½ 
 H½ 
 dy

� �
B½ 
�1; ð22Þ

with

L½ 
 ¼

A 0 0

0 A 0

0 0 Iy

2
64

3
75: ð23Þ

To determine the consistent mass matrix of an arch element, [M], using Eq. (22), it is only required
to calculate the following integration:

%H
� �

¼
Z y2

y1
H½ 
T L½ 
 H½ 
 dy; ð24Þ

and all the other numerical calculations are performed by computer. Because ½ %H
 is a 6� 6
symmetrical square matrix, one requires only to calculate the 21 coefficients of the matrix. This is
also much simpler than the 108 constants for the 18 shape functions shown in Tables 1–3 of Ref.
[6]. For the explicit form of the matrix ½ %H
; one may refer to Ref. [11].
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5. External loading vector due to a moving load

For an arch subjected to a moving load with magnitude P along the circumferential direction,
all nodal forces of the whole arch are equal to zero except those of the arch element on which the
moving load P applies. The non-zero elemental nodal force vector is given by (see Fig. 2)

Ff g ¼ axðyÞf g azðyÞf g
� � fx

fz

( )
; ð25Þ

where

Ff g ¼ Fx1 Fy1 My1 Fx2 Fy2 My2


 �
; ð26Þ

axðyÞf g ¼ N11ðyÞ N12ðyÞ ? N16ðyÞ

 �

; ð27Þ

azðyÞf g ¼ N21ðyÞ N22ðyÞ ? N26ðyÞ

 �

: ð28Þ

In Eqs. (27) and (28), NijðyÞ; i ¼ 1; 2 and j ¼ 126; represent the shape functions defined by
Eq. (11), while in Eq. (25), fx and fz represent the radial and tangential external force components
at the application point of the moving load, respectively, and are given by

fx ¼ P cos f� Fc; ð29Þ

fz ¼ �Ff � P sin f; ð30Þ

where Fc and Ff are the centrifugal force and the frictional force, respectively. If the mass of the
moving load is mP; the moving speed in the tangential direction is VP and the radius of curvature
of the arch is R, then the value of the centrifugal force is determined by

Fc ¼ mPV2
P=R: ð31Þ
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Fig. 2. The nodal forces, Fx1; Fy1; My1; Fx2; Fy2 and My2; for the arch element on which the moving load P applies.
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Similarly, if the frictional coefficient between the moving load and the arch is m; then the frictional
force is defined by

Ff ¼ mfx: ð32Þ

In the above equations, f is the angle between the moving load P and the local radial x-axis.
From Fig. 2 one sees that f is dependent upon the circular co-ordinate yP; defining the position of
the moving load P; i.e.,

f ¼
p
2
� yP: ð33Þ

It is noted that the frictional force Ff ¼ mP cos f and the tangential component of the moving
load, P sin f; are in the same direction if yPop=2; and in the opposite direction if yP > p=2:

If the title problem is solved with the conventional finite straight-beam elements, then the
external nodal force vector given by Eq. (25) must be replaced by (see Fig. 3)

Ff g ¼ axðxÞf g azðxÞf g
� � fx

fz

( )
; ð34Þ

where

Ff g ¼ F1 F2 ? F6


 �
; ð35Þ

axðxÞf g ¼ ax1 ax2 ? ax6


 �
; ð36Þ

azðxÞf g ¼ az1 az2 ? az6


 �
; ð37Þ

x ¼
z

c
; ð38Þ
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ax1 ¼ 1� 3x2 þ 2x3

ax2 ¼ 0

ax3 ¼ x� 2x2 þ x3
� �

c

ax4 ¼ 3x2 � 2x3

ax5 ¼ 0

ax6 ¼ �x2 þ x3
� �

c

8>>>>>>>>>><
>>>>>>>>>>:

az1 ¼ 0

az2 ¼ 1� x

az3 ¼ 0

az4 ¼ 0

az5 ¼ x

az6 ¼ 0

8>>>>>>>>><
>>>>>>>>>:

: ð39a;bÞ

In Eq. (38), z is the local co-ordinate for the instantaneous position of the moving load P and c is
the length of the straight-beam element shown in Fig. 3. In Eqs. (39a) and (39b), axi and azi;
i ¼ 126; are the shape functions for the straight-beam element [12]. For a horizontal straight
beam,yP 
 p=2; f 
 0 and R ¼ N; thus from Eqs. (29)–(32) one obtains

fx ¼ P; ð40Þ

fz ¼ mP: ð41Þ

6. Displacements from curved-beam and straight-beam elements

The relationship between the nodal displacements for the curved-beam (CB) element, ux1; uy1;
cy1;y and cy2; and those for the straight-beam (SB) element, %u1; %u2; %u3;y and %u6; are shown in
Fig. 4, where the CB (arch) element is represented by the solid lines and the SB element by the
dashed lines. Since all the stiffness and mass matrices of the SB elements must be transformed to
the ones with respect to the global co-ordinate system, xyz; and then are assembled to establish the
overall stiffness and mass matrices of the whole structure, the computer outputs for either the
modal displacements obtained from the free vibration analysis or the actual displacements
obtained from the forced vibration analysis are with respect to the global co-ordinate systems,
xyz; when the problem is solved with the SB elements. This is the reason why the nodal
displacements with respect to the global (xyz) co-ordinate system, %uiði ¼ 126Þ; instead of those
with respect to the local (xyz) co-ordinate system, uiði ¼ 126Þ; were shown in Fig. 4. It is evident
that all the directions of the nodal displacements for the CB element are different from those for
the SB element except the rotational angles

%u3 ¼ cy1; %u6 ¼ cy2: ð42a;bÞ

Therefore, the following expressions should be used to transform the displacement components
obtained from the CB elements, uxi and uyiði ¼ 1; 2Þ; into the vertical ones (in the %z-direction),
d%ziði ¼ 1; 2Þ; if comparisons between the arch elements and the SB elements are based on the
vertical displacements:

d%z1 ¼ �ux1 cos bþ uy1 sin b ðfor node �Þ; ð43aÞ

d%z2 ¼ �ux2 cos g� uy2 sin g ðfor node �Þ; ð43bÞ
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where b and g are the angles between the radii passing through nodes � and � and the vertical %z-
axis, respectively, as shown in Fig. 4. The positive values of d%z1 and d%z2 indicate the vertical
displacements in the upward (þ%z) direction.

Similarly, if the comparisons are based on the radial displacements, then one should use the
following relations to transform the nodal displacements of the SB element, %uiði ¼ 1; 2; 4; 5Þ; into
the radial ones:

dr1 ¼ %u1 sin b� %u2 cos b ðfor node �Þ; ð44aÞ

dr2 ¼ %u4 sin g� %u5 cos g ðfor node 2Þ: ð44bÞ

The positive values of dr1 and dr2 indicate the radial displacements pointing to the curvature center

%o of the arch (i.e., to the þuxi direction, i ¼ 1; 2).
In this paper, all the curves were plotted based on the vertical nodal displacements, thus

Eqs. (43a) and (43b) were used for the transformations.

7. Numerical results and discussions

To confirm the reliability of the presented theory, the natural frequencies and the forced
vibration responses obtained from the arch elements are compared with the existing literature and
those from the conventional finite straight-beam elements, respectively. After that, the dynamic
behaviors of a 120� circular arch and a hybrid (curved) beam due to a moving load are
investigated using the Newmark direct integration method [13]. Unless particularly stated, all the
numerical results presented in this paper were obtained based on the arch elements with the effect
of rotary inertia considered. In addition, both the centrifugal force and the frictional force (with
coefficient m ¼ 0:2) were also taken into account.
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7.1. Validation of natural frequencies

Information regarding the free vibration analysis of arches is rare. Refs. [7–9] are the literature
that has been found to be most concerned. The dimensions and the material constants for the
present example are [7]: radius of curvature R ¼ 30 in; radial thickness of rib a ¼ 1:289� 10�2 in;
axial width of rib b ¼ 1:008 in; cross-sectional area A ¼ 0:013 in2; subtended angle of the
complete arch %a ¼ 1 rad ¼ 57:3�; total (arc) length c ¼ R%a ¼ 30 in; Young’s modulus E ¼
107 lb=in2; mass density of arch material r ¼ 0:1 lb=in3:

The lowest five natural frequencies oi(i ¼ 125) (rad/s) of the arch are shown in Table 1 for the
simply-supported conditions (with radial displacements uxL ¼ uxR ¼ 0). Where the right
subscripts L and R refer to the left end and right end of the circular arch, respectively. The
natural frequencies listed in column 2 of Table 1 are the exact solutions calculated from the
frequency equation list in the appendix of Ref. [7] and those listed in columns 3–7 are the finite
element solutions of this paper. Among the latter, those in columns 3 and 4 are obtained using the
SB elements and those in columns 5–7 using the CB elements. It is seen that all the natural
frequencies obtained from the CB elements rapidly converge to the corresponding exact ones
when the total number of elements increases from n ¼ 2 to 6, but this in not true for the SB
elements even if n ¼ 40: From Table 1 one also sees that the natural frequencies obtained from the
finite element methods (either based on SB or CB elements) are larger than the exact solutions and
converge monotonically to the exact ones from above. This trend of finite element solutions agrees
with that of Ref. [7].

For a uniform arch, both the element stiffness matrix and element mass matrix are invariant if
the subtended angle of the arch element, a; is a constant as one may see from the output of the
computer program. In addition, because the formulations for the arches are based on the polar
co-ordinate system, transformation of each element property matrix (from local co-ordinate
system into global one) is not required before assembling. This is another advantage that the CB
elements are superior to the SB elements for the dynamic analysis of arches.

7.2. Validation of forced vibration responses

Since the information regarding the forced vibration responses of an arch due to the moving
load(s) is not obtainable, the indirect comparing technique was used to confirm the reliability of
the presented theory. Fig. 5 shows a circular arch with constant span L ¼ 10 m; constant cross-
section 0:8 m� 1:5 m and variable radius of curvature R. The material constants for the arch are:
Young’s modulus E ¼ 12� 1010 N=m2 and mass density r ¼ 7:2� 103 kg=m3: It is evident that
the circular arch will become a ‘‘straight beam’’ when R-N: In Fig. 6, the uppermost curve
(—�—) indicates the relationship between the maximum vertical central displacements ( d58j jmax)
and the tangential moving speed (VP) for the above-mentioned ‘‘straight beam’’ subjected to a
moving load with constant magnitude P ¼ 50; 000 N; while the lowermost curve (- - - - -) indicates
that for the circular arch of R ¼ 20 m subjected to the same moving load. It is noted that the
centrifugal forces for the circular arches are neglected in Fig. 6, because there exists no centrifugal
force for the ‘‘straight beam’’. From Fig. 6 one sees that the curve for the circular arch gradually
converges to the uppermost curve when the radius of curvature gradually increases to infinity (i.e.,
R-N), besides, the maximum vertical central displacement of the ‘‘straight beam’’ is greater than
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the corresponding one of the associated circular arch. It is believed that the last reasonable results
may confirm the availability of the presented approach.

7.3. Dynamic analysis of a clamped–clamped arch due to a moving load

For the clamped–clamped circular arch, as shown in Fig. 5, if the average radius of curvature is
R ¼ 20 m and the subtended angle is %a ¼ 120�(with corresponding span L ¼ 34:64 m), then the
lowest five natural frequencies and the corresponding mode shapes are shown in Table 2 and Figs.
13(a)–(e), respectively. From Table 2 one sees that the lowest five natural frequencies for the case
of considering the effect of rotatory inertia (R.I.) are smaller than the corresponding ones for the
case of neglecting the effect of R.I., but the divergence between them is very small for the present
example. When the 120� circular arch is subjected to a moving load with magnitude P ¼
50; 000 N and moving speed VP; then its dynamic responses are shown in Figs. 7(a)–(c): Fig. 7(a)
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shows the time histories for the vertical displacements of nodes 11 and 21, d28ðtÞ and d58ðtÞ: It is
noted that the whole arch is subdivided into 40 curved-beam elements bound by 41 nodes, each
node has three degrees of freedom (d.o.f.), and the right subscript i for diðtÞ denotes the ith d.o.f.
for the whole arch (excluding the constrained d.o.f.). The effects of the centrifugal force, Fc; and
frictional force, Ff (with frictional coefficient m), on the maximum vertical central displacements
of the arch, jd58ðtÞjmax; are shown in Figs. 7(b) and (c), respectively.

In Fig. 7(a), the solid line (——) represents the time history for node 11 (located at 1
4
of the arch

length) and the dashed line (– – –) represents that for node 21 (located at 1
2
of the arch length). It is

seen that the maximum vertical displacement of node 11, jd28ðtÞjmax; is much greater than that of
node 21, jd58ðtÞjmax: This is a correct result, because node 11 is near the ‘‘crest’’ of the first and
second mode shapes, while node 21 (at middle of the arch) is near the ‘‘node’’ of the first and
second mode shapes as one may see from Figs. 13(a) and (b). Besides, the vertical displacement
increases rapidly when the load moves near the specified node (11 or 21) and decreases rapidly
when the load moves away from the specified node.

In Fig. 7(b), the solid line (——) denotes the relationship between the maximum vertical central
displacements of the circular arch, jd58ðtÞjmax; and the moving speeds VP for the case of
considering the centrifugal force, Fc; while the dashed line (– – –) denotes that for the case of
neglecting the centrifugal force. It is evident that the maximum vertical central displacements
of the circular arch, jd58ðtÞjmax; by considering the centrifugal force are always less than the
corresponding ones by neglecting the centrifugal force, furthermore, the higher the moving speed
VP the larger the divergence between them as one may expect. The solid line meets the abscissa of
the figure when VPX14:14 m=s; because, in such a situation, the centrifugal force greater than the
radial force component due to the moving load P.

In Fig. 7(c), the solid line (——) denotes the relationship between the maximum vertical central
displacements of the circular arch, d58ðtÞj jmax; and the moving speeds VP for the case of
considering the frictional force, Ff (with frictional coefficient m ¼ 0:2), while the dashed line (– –)
denotes that for the case of neglecting the frictional force (with m ¼ 0). It is seen that the frictional
force has a slight effect of reducing the maximum vertical central displacements of the circular
arch.

In addition to the maximum deflections, the dynamic magnification factor defined by

Di ¼ diðtÞj jmax=dst i ð45Þ

ARTICLE IN PRESS

Table 2

The lowest five natural frequencies of the 120� circular arch (cf., Fig. 5)

Mode nos. i Natural frequencies, oi (rad/s)

Clamped–clamped Hinged–hinged

Consider R.I. Neglect R.I. Consider R.I. Neglect R.I.

1 27.892 27.905 16.316 16.322

2 54.993 55.055 41.069 41.110

3 100.710 100.941 79.357 79.524

4 143.866 144.285 124.036 124.430

5 198.849 199.141 184.173 185.098
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Fig. 7. Dynamic responses of the ‘‘clamped–clamped’’ 120� circular arch due to a moving load with P ¼ 50; 000 N:

(a) time histories for the vertical displacements of nodes 11 and 21, d28ðtÞ and d58ðtÞ with VP ¼ 4 m=s; (b) influence

of centrifugal force (Fc) and moving speed (VP) on the maximum vertical central displacements of the arch, jd58ðtÞjmax;
(c) influence of frictional force, Ff (with frictional coefficient m) and moving speed (VP) on jd58ðtÞjmax: The vertical

static deflection at the midpoint of the beam is dst 58 ¼ 0:18357� 10�4 m:
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is also an important parameter for the engineers, thus, in Figs. 7, 8 and 10–12, the values of dsti

were shown in the captions. For example, from the caption of Fig. 7 one sees that dst 58 ¼
0:18357� 10�4 m and the ordinates of Figs. 7(b) and (c) will denote the associated magnification
factors if all the values of d58ðtÞj jmax are divided by dst 58: In Eq. (45), diðtÞj jmax denotes the
maximum nodal displacement in the direction of ith degree of freedom and dst i denotes
the corresponding ‘‘static’’ deflection due to the ‘‘static load’’ with magnitude being equal to the
amplitude of the dynamic load.

7.4. Dynamic analysis of a hinged–hinged arch due to a moving load

If all the particulars for the circular arch are the same as the last example but the supporting
conditions are hinged–hinged (instead of clamped–clamped), then the lowest five natural
frequencies and the corresponding mode shapes are shown in Table 2 and Figs. 14(a)–(e),
respectively, while the forced vibration responses due to a moving load (with P ¼ 50; 000 N and
speed VP) are shown in Figs. 8(a)–(c). From Table 2 one sees that the lowest five natural
frequencies of the hinged–hinged arch are much lower than the corresponding ones of the
clamped–clamped arch, but the configurations of the lowest five mode shapes for the hinged–
hinged arch are similar to those for the clamped–clamped one. For example, node 11 is near the
‘‘crest’’ of the first and second mode shapes and node 21 (at the middle of the arch) is near the
‘‘node’’ of first and second mode shapes as one may see from Figs. 14(a) and (b). For this reason,
the trends for the time histories of nodes 11 and 21 (see Fig. 8(a)), the influence of centrifugal force
(Fc) on the maximum vertical central displacements (see Fig. 8(b)) and the effect of the frictional
force with coefficient m (see Fig. 8(c)) for the hinged–hinged arch are similar to the corresponding
ones for the clamped–clamped arch as shown in Figs. 7(a)–(c). However, the maximum vertical
(central) displacements of the hinged-hinged arch are much greater than the corresponding ones
of the clamped–clamped arch. This is reasonable, because the flexural rigidity of the hinged–
hinged arch is much smaller than that of the clamped–clamped arch. Of course, this is also the
reason why the lowest five natural frequencies of the hinged–hinged arch are much smaller than
those of the clamped–clamped arch as shown in Table 2.

7.5. Dynamic responses of a hybrid (curved) beam due to a moving load

The hybrid (curved) beam studied here is shown in Fig. 9. It is composed of a circular-arch
segment with radius of curvature R ¼ 20 m and subtended angle %a ¼ 120� and two identical
straight-beam segments. Both the arch segment and the two straight-beam segments have the
same cross-sections: 0:8 m� 1:5 m: The two ends of the hybrid beam are clamped, but the
conjunctions between the arch segment and the two straight- beam segments, points P and Q, are
hinged. Since the total number of finite elements for each straight-beam segment is 10 and that for
the circular arch is 20, the total number of finite elements, 40, and that of nodes, 41, for the whole
hybrid beam are exactly the same as those for the 120� circular arch studied in the last two
subsections. The dynamic responses of the hybrid beam due to a moving load with magnitude
P ¼ 50; 000 N and tangential speed VP ¼ 4 m=s are shown Figs. 10(a)–(c).

Fig 10(a) shows the time histories of the vertical displacements of nodes 16 and 21, d41ðtÞ and
d56ðtÞ; obtained from the conventional finite elements with all parts (either the two identical
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Fig. 8. Dynamic responses of the ‘‘hinged–hinged’’ 120� circular arch due to a moving load with P ¼ 50; 000 N:

(a) time histories for the vertical displacements of nodes 11 and 21, d29ðtÞ and d59ðtÞ with VP ¼ 4 m=s; (b) influence

of centrifugal force (Fc) and moving speed (VP) on the maximum vertical central displacements of the arch, jd59ðtÞjmax;
(c) influence of frictional force (with frictional coefficient m) and moving speed (VP) on jd59ðtÞjmax: The vertical static

deflection at the midpoint of the beam is dst 59 ¼ 0:85578� 10�4 m:
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straight-beam segments or the circular-arch segment) being modelled by the straight-beam
elements. For this reason, the curves obtained from the conventional straight-beam elements are
called the S–S curves hereafter. It is noted that the positions of nodes 16 and 21 on the hybrid
beam shown in Fig. 9 are corresponding to those of nodes 11 and 21 on the 120� circular arch
shown in Fig. 5. The moving speed for either Figs. (7a), 8(a) or 10(a) is Vp ¼ 4m/s.

In Figs. 10(b) and (c), the S–C curves denote the dynamic responses of the hybrid beam
obtained from a combination of the straight-beam elements (to model the two identical straight-
beam segments) and the curved-beam (arch) elements (to model the 120� circular-arch segment).
It is seen that the maximum vertical central displacements for the hybrid beam, d56ðtÞj jmax;
associated with the S–C curves are smaller than the corresponding ones associated with the S–S
curves. However, both the S–C curves and the S–S curves have the same trend. It is noted that, in
the S–C method, all the property matrices for either the straight-beam elements or the curved-
beam elements must be transformed into the ones associated with the common global co-ordinate
system before they are assembled to establish the overall property matrices of the entire hybrid
curved beam. Of course, transformation for the external force vectors given by Eqs. (25) and (34)
is also required.

7.6. Influence of rotatory inertia

From Table 2 one sees that the influence of rotatory inertia (R.I.) on the lowest five natural
frequencies is negligible for the arch studied in this paper. This is the reason why the influence of
rotatory inertia (R.I.) on the dynamic responses is also negligible as one may see from Fig. 11. In
Fig. 11, the ordinates denote the dynamic magnification factors of the vertical central
displacements (Di ¼ diðtÞj jmax=dsti) and the abscissas denote the moving-load speeds. Among the
three figures, Fig. 11(a) is for the ‘‘clamped–clamped’’ 120� arch with static deflection dst 58 ¼
0:18357� 10�4 m; Fig. 11(b) is for the ‘‘hinged–hinged’’ 120� arch with dst 59 ¼ 0:85578�
10�4 m; and Fig. 11(c) is for the hybrid beam with dst 56 ¼ 0:35445� 10�4 m:

From Figs. 11(a) and (b) one sees that the magnification factor of the midpoint for the
‘‘clamped–clamped’’ 120� arch, D58E47:5; is much greater than that for the same arch with
‘‘hinged–hinged’’ supports, D59E14: However, this does not mean that the maximum vertical
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Fig. 10. Dynamic responses of the ‘‘hybrid beam’’ subjected to a moving load with P ¼ 50; 000 N: (a) time histories for

the vertical displacements of nodes 16 and 21, d41ðtÞ and d56ðtÞ with VP ¼ 4 m=s; (b) influence of centrifugal force (Fc)

and moving speed (VP) on the maximum vertical central displacements of the beam, jd56ðtÞjmax; (c) influence of frictional

force (with frictional coefficient m) and moving speed (VP) on jd56ðtÞjmax: The vertical static deflection at the midpoint of

the beam is dst 56 ¼ 0:35445� 10�4 m:
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‘‘hinged–hinged’’ 120� arch with dst 59 ¼ 0:85578� 10�4 m; and (c) for hybrid beam with dst 56 ¼ 0:35445� 10�4 m:
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central displacements of the 120� arch with ‘‘clamped–clamped’’ supports are much greater than
the corresponding ones with ‘‘hinged–hinged’’ supports. The actual situation is reversed as one
may see from the following statement. The ‘‘overall’’ maximum vertical central displacement of
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Fig. 12. Influence of moving-load speed (VP) on the maximum bending moments about the y-axis at the midpoints of
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beam shown in Fig. 9.
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the 120� arch with ‘‘clamped–clamped’’ supports is given by (see Fig. 11(a))

d58ðtÞj jmax¼ D58dst58E47:5� 0:18357� 10�4 ¼ 8:72� 10�4 m; ð46aÞ

and that with ‘‘hinged–hinged’’ supports is given by (see Fig. 11(b))

d59ðtÞj jmax¼ D59dst59E14� 0:85578� 10�4 ¼ 11:98� 10�4 m: ð46bÞ

From Eqs. (46a) and (46b), one sees that the ‘‘overall’’ maximum vertical central displacement of
the 120� arch with ‘‘clamped–clamped’’ supports is about 72.8% of that with ‘‘hinged–hinged’’
supports. This is a reasonable result, because the flexural stiffness of the 120� arch with
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Fig. 13. The lowest five mode shapes of the clamped–clamped 120� circular arch (cf., Fig. 5).
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‘‘clamped–clamped’’ supports is much greater than that with ‘‘hinged–hinged’’ supports. It is
evident that the magnification factor (Di) will be meaningless if the associated static deflection
(dst i) is not given. For this reason, the values of the associated static deflections (dst i) are shown in
the captions of the relevant figures in this paper.

7.7. Influence of moving speed on the maximum central bending moments

Since the maximum bending moments induced by the maximum deflections at the relevant
positions of a structural system are the important data for structural design, the influence of the
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Fig. 14. The lowest five mode shapes of the hinged–hinged 120� circular arch (cf., Fig. 5).
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moving-load speed (VP) on the maximum bending moments about the y-axis at the midpoints of
the 120� arch and the hybrid beam, MyiðtÞ

�� ��
max

; was shown in Fig. 12. Where Fig. 12(a) is for the
120� arch with ‘‘clamped–clamped’’ supports and Fig. 12(b) is for the same arch with ‘‘hinged–
hinged’’ supports, while Fig. 12(c) is for the hybrid beam with given data and supporting
conditions shown in Fig. 9. The values of MyiðtÞ

�� ��
max

shown in Fig. 12 were obtained from

%F

 �

¼ %K
� �

%dðtÞ

 �

max
; ð47Þ

where f %Fg is the overall force vector, ½ %K
 is the overall stiffness matrix and f%dðtÞgmax is the overall
nodal displacement vector corresponding to the maximum vertical central displacement diðtÞj jmax:
Comparing the curves of Figs. 12(a)–(c) with the corresponding solid curves shown in Figs. 7(b),
8(b) and 10(b), one sees that the trend for the maximum bending moments is the same as that for
the maximum displacements as one may expect, because the bending moments are induced by the
deflections.

8. Conclusions

1. For a uniform circular arch with constant curvature, the numerical values for the coefficients of
the element stiffness matrix and those of the mass matrix are invariant if the subtended angle of
each arch element is a constant. In addition, because the formulations are based on the polar
co-ordinate system, transformation of each arch element matrix (from local co-ordinate system
into global one) is not required before assembling. This is one of the main features that the arch
element is superior to the straight-beam element for the dynamic analysis of the arches. Besides,
for the same mesh density the accuracy of the arch element presented in this paper is much
better than that of the conventional straight-beam element.

2. In theory, one may model an arch by a structural member composed of many straight-beam
elements as precisely as possible by increasing the number and reducing the size of the straight-
beam elements. However, the accuracy of the straight-beam elements is always worse than that
of the arch elements.

3. For the first and second mode shapes of a circular arch with either clamped–clamped or
hinged–hinged supports, their ‘‘crests’’ are near the position at 1

4
(or 3

4
) of the arch length and

their ‘‘nodes’’ are near the middle of the arch, therefore, when the circular arch is subjected to a
load moving circumferentially, the maximum response occurs at the position near 1

4
of the arch

length. This is different from a clamped–clamped or hinged–hinged ‘‘straight beam subjected to
a moving load, where the maximum response occurs at the middle of the straight beam.

4. The higher the moving-load speed the larger the centrifugal force, thus, the dynamic response
of a circular arch due to a moving load decreases with increasing the moving-load speed. The
frictional force has also the effect of reducing the dynamic response of an arch due to a moving
load, but this effect is usually negligible.

5. If the finite element method (FEM) modelling both the straight-beam segments and the
circular-arch segment with the straight-beam elements is called the S–S method, while that
modelling the straight-beam segments with the straight-beam elements and the circular-arch
segment with the curved-beam elements is called the S–C method, then, for the hybrid beam
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subjected to a moving load, studied in this paper, the dynamic responses of the beam obtained
from the S–S method are greater than the corresponding ones obtained from the S–C method.
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