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Abstract

A clamped–free beam with partial active constrained layer damping (ACLD) treatment is modelled by
using the finite element method. The Golla–Hughes–McTavish (GEM) method is employed to account for
the frequency-dependent characteristic of the viscoelastic material (VEM). As the resultant finite element
model contains too many degrees of freedom due to the introduction of dissipative coordinates, a model
reduction is performed to bring the system back to its original size. Finally, optimal output feedback gains
are designed based on the reduced models. Numerical simulations are performed to study the effect of
different ACLD treatment configurations, with various element numbers, spacing and locations, on the
damping performance of a flexible beam. Results are presented for damping ratios of the first two vibration
modes. It is found that to enhance the second mode damping, without deteriorating the first mode
damping, splitting a single ACLD element into two and placing them at appropriate positions of the beam
could be a possible solution.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Traditionally, passive constrained layer damping (PCLD) treatments are employed to damp out
the vibrations of structures due to their reliability and simplicity, but the drawback of them is that
once installed, the damping cannot be adjusted, and they fail to adapt to the changing
environment. In other words, they are not ‘‘smart’’. Recently, active damping has received much
attention, yet it is difficult to implement at high-frequency ranges. Safety and reliability cannot be
guaranteed as well. The respective loopholes of the passive and active damping lead to the
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development of the so-called hybrid damping. Active constrained layer damping (ACLD)
treatments, in which a piezoelectric (PZT) layer is used to replace the constraining layer of PCLD
treatment, thereby integrating the advantages of both passive and active damping, has been
proposed. As a result, a smart, fail-safe and efficient vibration control over broad frequency bands
can be obtained.
However, it is well known that the performance of ACLD treatment highly depends on the

combinations of design variables. Some parametric studies have been conducted by several
researchers. Huang et al. [1] studied the performance of a hybrid-damped beam with different
sizing, length, and thickness of treatments. The structure considered is partially covered by one
ACLD element only and just a simple velocity feedback control is used. Trindade et al. [2]
analyzed and compared the performance of segmented hybrid damping of a cantilever beam with
that of a passive one for various viscoelastic layer thickness and treatment length. Baz and Ro [3]
developed optimal design and control strategies for a beam fully treated with ACLD elements.
The design parameters include the thickness and shear modulus of the viscoelastic layer and the
control gains. Liao and Wang [4] investigated the viscoelastic material (VEM) effect on active
constrained-layer-based structures. They focused on how the VEM parameter will influence the
passive damping ability, the active action authority and their combined effect in ACLD
configuration.
This work aims at studying the effect of different ACLD treatment configurations on the system

damping of a flexible beam. A clamped–free beam with partial ACLD treatment is modelled by
using the finite element method. The Golla–Hughes–McTavish (GHM) method is employed to
account for the frequency-dependent characteristic of the VEM. As the resultant finite element
model contains too many degrees of freedom (d.o.f) due to the addition of dissipative co-
ordinates, a model reduction is performed to bring the system back to its original size. Optimal
output feedback gains are then designed based on the reduced models. Finally, simulation results
are presented for the damping ratios of the first two modes of vibration.

2. Finite element model

Figs. 1a and b show a clamped–free beam with one and two ACLD elements, respectively. A
finite element model is developed based on the following assumptions:

(1) The rotary inertia is negligible. Shear deformations in the PZT layers and the base beam are
negligible.

(2) The transverse displacement w is the same in all layers.
(3) Young’s modulus of the VEM is negligible compared to those of the beam and PZT materials.
(4) Linear theories of elasticity, viscoelasticity and piezoelectricity are used.
(5) There is perfect continuity at the interface, and no slip occurs between the layers.
(6) The applied voltage is uniform throughout the ACLD element.

The model for the clamped–free beam with partial ACLD treatments is divided into treated
beam elements and pure beam elements.
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2.1. Treated beam elements

2.1.1. Kinematics relationships
The geometry and deformation of the section of the beam where ACLD element is attached is

shown in Fig. 2. The axial displacement of the neutral axis of the base beam, the sensor layer, the
VEM layer and the constraining layer are ub; us; uv and uc; respectively. w and y denote the
transverse displacement and rotation, respectively. The shear strain of the VEM layer is given by

g ¼ y� c; ð1Þ

where c is the shear angle of the VEM layer. With perfect bonding conditions, the following
kinematics relations could be derived:

us ¼ ub �
ðhc þ hbÞ
2

y; ð2Þ

uv ¼
ðub þ ucÞ
2

þ
ðhc � 2hs � hbÞ

4
y; ð3Þ
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Fig. 1. (a). Clamped–free beam partially treated with one ACLD element—Case I. (b) Clamped–free beam partially

treated with two ACLD elements— Case II.
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g ¼
ðuc � ubÞ

hv

þ
ðhc þ 2hv þ 2hs þ hbÞ

2hv

y ð4Þ

2.1.2. Shape functions

Fig. 3 shows a treated beam element. Nodal displacements are given by

fUge ¼ fwi yi ubi uci wj yj ubj ucjg
T: ð5Þ

The transverse displacement w; the rotation y; the axial displacement of the base beam ub and the
axial displacement of the constraining layer uc are expressed in the nodal displacements by finite
element shape functions

w ¼ ½Nw	fUge; y ¼ ½Ny	fUge; ub ¼ ½Nub
	fUge; uc ¼ ½Nuc

	fUge; ð6a2dÞ
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Fig. 2. Geometry and deformation of a beam with ACLD treatment.

Fig. 3. Nodal displacement of a treated beam element.
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where the shape functions are given by
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: ð6e2hÞ

From Eqs. (2)–(4), us; uv and g can be expressed in the nodal displacement as follows:

us ¼ ½Nus
	fUge; uv ¼ ½Nuv

	fUge; g ¼ ½Ng	fUge; ð7a2cÞ

where

½Nus
	 ¼ ½Nub

	 �
hb þ hs

2

� �
½Ny	;

½Nuv
	 ¼
1

2
ð½Nuc

	 þ ½Nub
	Þ þ

hc � 2hs � hb

4

� �
½Ny	;

½Ng	 ¼
1

hv

ð½Nuc
	 � ½Nub

	Þ þ
hc þ 2hv þ 2hs þ hb

2hv

� �
½Ny	: ð7d2fÞ

2.1.3. Energy expressions
Base beam layer

The potential energy of base beam due to axial displacement is:

1

2

Z Le

0

Ebhbb
@ub

@x

� �2
dx ¼

1

2
fUgTe ½Kbu	fUge; ½Kbu	 ¼ Ebhbb

Z Le

0

½Nub
	0T½Nub

	0 dx: ð8a;bÞ

The potential energy of base beam due to transverse displacement is:

1

2

Z Le

0

EbIb

@2w

@x2

� �2
dx ¼

1

2
fUgTe ½Kbw	fUge; ½Kbw	 ¼ EbIb

Z Le

0

½Nw	00T½Nw	00 dx: ð9a;bÞ
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The kinetic energy of base beam due to axial displacement is:

1

2

Z Le

0

rbhbb
@ub

@t

� �2
dx ¼

1

2
f ’UgTe ½Mbu	f ’Uge; ½Mbu	 ¼ rbhbb

Z Le

0

½Nub
	T½Nub

	 dx: ð10a;bÞ

The kinetic energy of base beam due to transverse displacement is:

1

2

Z Le

0

rbhbb
@w

@t

� �2
dx ¼

1

2
f ’UgTe ½Mbw	f ’Uge; ½Mbw	 ¼ rbhbb

Z Le

0

½Nw	T½Nw	 dx: ð11a;bÞ

Constraining layer

For one-dimensional structures with uni-axial loading, the constitutive equations of PZT
materials [5] can be written as

e

D

" #
¼

SE
11 d31

d31 et33

" #
s

E

" #
; ð12Þ

where D is the electrical displacement, E is the electric field, e is the mechanical strain in the x
direction, and s is the mechanical stress in the x direction. SE

11 is the elastic compliance constant,
et33 is the dielectric constant, and d31 is the piezoelectric constant.
The potential energy of constraining layer due to axial displacement is:

1

2

Z Le

0

Echcb
@uc

@x

� �2
dx ¼

1

2
fUgTe ½Kcu	fUge; ½Kcu	 ¼ Echcb

Z Le

0

½Nuc
	0 T½Nuc

	0 dx: ð13a;bÞ

The potential energy of constraining layer due to transverse displacement is:

1
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The kinetic energy of constraining layer due to axial displacement is:

1
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	 dx: ð15a;bÞ

The kinetic energy of constraining layer due to transverse displacement is:

1
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dx ¼

1

2
f ’UgTe ½Mcw	f ’Uge; ½Mcw	 ¼ rchcb

Z Le

0

½Nw	T½Nw	 dx: ð16a;bÞ

The virtual work done by the induced strain (force) is:

dWc ¼
Z Le

0

Ecd31bVcðtÞd
@uc

@x

� �
dx ¼ ½dU 	Te ffcge; ð17aÞ

where

ffcge ¼ Ecd31bVcðtÞ½0 0 0� 1 0 0 0 1	T: ð17bÞ

Sensor layer
The potential energy of sensor layer due to axial displacement is:
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	0 dx: ð18a;bÞ
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The potential energy of sensor layer due to transverse displacement is:
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The kinetic energy of sensor layer due to axial displacement is:

1

2

Z Le

0

rshsb
@us

@t

� �2
dx ¼

1

2
f ’UgTe ½Msu	fUge; ½Msu	 ¼ rshsb

Z Le

0

½Nus
	T½Nus

	 dx: ð20a;bÞ

The kinetic energy of sensor layer due to transverse displacement is:
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dx ¼
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VEM layer
The potential energy of VEM layer due to shear strain is:

1

2

Z Le
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Gvhvbg2 dx ¼
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fUgTe ½Kvg	fUge; ½Kvg	 ¼ Gvhvb

Z Le
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½Ng	T½Ng	 dx: ð22a;bÞ

The kinetic energy of VEM layer due to axial displacement is:
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2
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dx ¼

1
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	 dx: ð23a;bÞ

The kinetic energy of VEM layer due to transverse displacement is:

1

2

Z Le

0
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@w
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� �2
dx ¼

1

2
f ’UgTe ½Mvw	f ’Uge; ½Mvw	 ¼ rvhvb

Z Le

0

½Nw	T½Nw	 dx: ð24a;bÞ

2.1.4. Sensor equation
The sensor output voltage is given by

fVsge ¼
Esd31b

Ca
0

hb

2
þ hs �1 0 0

�hb

2
� hs 1 0

	 

fUge; ð25Þ

where b and Ca are the width and capacitance of the sensor layer, respectively.

2.2. Pure beam elements

The stiffness and mass matrices of pure beam elements have dimensions of 6� 6, and are
similar to those given by Eqs. (8b), (9b), (10b) and (11b).

2.3. Load vector

The virtual work done dWd by external disturbance force fd is:

dWd ¼
Z Le

0

fdðx; tÞdwðx; tÞ dx ¼ ½dU 	Te ffdg: ð26Þ

It is usually more convenient to consider the effects of such force at the global level.
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2.4. Equations of motion

Using Hamilton’s principle, the equations of motion for an ACLD element can be written as

½M	ef .Uge þ ½K 	efUge þ ½Kvg	efUge ¼ ffcge; ð27aÞ

where

½M	e ¼ ð½Mbu	 þ ½Mbw	Þ þ ð½Mcu	 þ ½Mcw	Þ þ ð½Msu	 þ ½Msw	Þ þ ð½Mvu	 þ ½Mvw	Þ;

½K 	e ¼ ð½Kbu	 þ ½Kbw	Þ þ ð½Kcu	 þ ½Kcw	Þ þ ð½Ksu	 þ ½Ksw	Þ: ð27b; cÞ

The GHM method [6,7] is now used to account for the damping due to the frequency-
dependent VEM. For one-dimensional structures, the GHM model represents the shear modulus
of VEM as a series of mini-oscillator terms in the Laplace domain:

s *GðsÞ ¼ GN 1þ
XN

k¼1

#ak
s2 þ 2#zk #oks

s2 þ 2#zk #oks þ #o2k

" #
: ð28Þ

The positive constants #ak; #ok and #zk govern the shape of the modulus function over the complex
s-domain. Introducing a column matrix of dissipation co-ordinates:

f #ZðsÞge ¼
#o2

s2 þ 2#z #os þ #o2
fUðsÞge: ð29Þ

Considering a single-term GHM expression [4], Eq. (27) can be written as follows:

½ %M	ef .qge þ ½ %D	ef ’qge þ ½ %K	efqge ¼ f %fcge; ð30aÞ

where

½ %M	e ¼
½M	e ½0	

½0	
#a
#o2
½L	

2
4

3
5; ½ %D	e ¼

½0	 ½0	

½0	
2#a#z
#o
½L	

2
64

3
75;

½ %K	e ¼
½K 	e þ ½Kvg	eð1þ #aÞ �#a½R	

�#a½R	T #a½L	

" #
;

fqge ¼
fUge

fZge

( )
; f %fcge ¼

ffcge

f0g

( )
; ð30b2fÞ

where fZge ¼ ½ #R	Tf #Zge; ½R	 ¼ ½ #R	½L	; ½L	 ¼ GN½ #L	; ½Kvg	e ¼ GN½ #Kvg	e; ½ #Kvg	e ¼ ½ #R	½ #L	½ #R	T ð30g2kÞ

½ #L	 is a diagonal matrix of the non-zero (necessarily positive) eigenvalues of matrix ½ #Kvg	e; and the
corresponding orthonormalized eigenvectors form the columns of the matrix ½ #R	:
For the clamped–free beam with distributed ACLD elements, through standard FEM

assembling procedures and with appropriate boundary conditions, the following global dynamic
equation can be derived:

½M	f .qg þ ½D	f ’qg þ ½K 	fqg ¼ fFcg þ fFdg: ð31Þ
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3. Model reduction

When it comes to control system design and dynamic analysis, the full mathematical model
given by Eq. (31) contains too many d.o.f. The GHM method models the viscoelastic effects
through the introduction of extra dissipation co-ordinates, thus increasing the system order and
making response calculations and controller design very computationally intensive. Therefore, it
is indispensable that a model reduction be performed to bring the system back to its original size.
An iterative dynamic condensation [8] is performed.
Eq. (31) can be partitioned as

Mmm Mms

Msm Mss

" #
.qm

.qs

( )
þ

Dmm Dms

Dsm Dss

" #
’qm

’qs

( )
þ

Kmm Kms

Ksm Kss

" #
qm

qs

( )
¼

Fm

Fs

( )
: ð32Þ

Define dynamic condensation matrix ½ %R	 relating the master d.o.f.s with the slave d.o.f.s, after i

iterations, the reduced order system equation is

½M ðiÞ
R 	f .qmg þ ½DðiÞ

R 	f ’qmg þ ½K ðiÞ
R 	fqmg ¼ fF

ðiÞ
R g; ð33aÞ

where

½M ðiÞ
R 	 ¼ ½Mmm	 þ ½ %RðiÞT	½Msm	 þ ½Mms	½ %RðiÞ	 þ ½ %RðiÞ	T½Mss	½ %RðiÞ	;

½DðiÞ
R 	 ¼ ½Dmm	 þ ½ %RðiÞ	T½Dsm	 þ ½Dms	½ %RðiÞ	 þ ½ %RðiÞ	T½Dss	½ %RðiÞ	;

½K ðiÞ
R 	 ¼ ½Kmm	 þ ½ %RðiÞ	T½Ksm	 þ ½Kms	½ %RðiÞ	 þ ½ %RðiÞ	T½Kss	½ %RðiÞ	;

fF
ðiÞ
R g ¼ fFmg þ ½ %RðiÞ	TfFsg;

½ %Rðiþ1Þ	 ¼ �½Kss	�1ð½Mss	½ %RðiÞ	½M ðiÞ
R 	�1½K ðiÞ

R 	 � ½Ksm	Þ: ð33b2fÞ

Guyan condensation is taken as an initial iteration approximation [9], so ½ %Rð0Þ	 ¼ �½Kss	�1½Ksm	:

4. Output feedback optimal control

Based on the reduced model, an output feedback controller is designed. Eq. (33a) can be
converted into the state-space form by introducing the state-space variable fxgT ¼
f fqmg f ’qmg g:

f ’xg ¼ ½A	fxg þ ½B	fVcg þ ½Bd 	fFdRg; ð34Þ

fVsg ¼ ½C	fxg; ð35Þ

where fFdRg is the reduced external disturbance force, ½A	 is the system matrix; ½B	 is the control
matrix; ½Bd 	 is the disturbance matrix; and ½C	 is the output matrix given by

½A	 ¼
½0	 ½I 	

�½MR	�1½KR	 �½MR	�1½DR	

" #
; ½B	 ¼

½0	

½MR	�1½Bo	

" #
;

½Bd 	 ¼
½0	

½MR	�1

" #
; ½C	 ¼ ½½Co	 ½0 		: ð36a-dÞ
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An optimal output feedback control scheme is adopted [10]. The control law is restricted to a
linear time-invariant output feedback of the form

fVcg ¼ �½Gc	fVsg; ð37Þ

where ½Gc	 is the output feedback gain matrix to be determined. The cost function used to
determine the gain matrix is given as

J ¼
Z

N

0

ðfxgT½Qc	fxg þ fVcg
T½Rc	fVcgÞ dt; ð38Þ

where ½Qc	 (positive semi-definite) and ½Rc	 (positive definite) are weighting matrices to be selected
by the designer. The optimal solution is found using the procedure in [11] that minimizes the
expected value of performance index

J ¼ trð½P	½X 	Þ; ð39Þ

where ½X 	 ¼ Efxð0ÞxTð0Þg and ½P	 satisfies the Ricatti equation

½Ac	T½P	 þ ½P	½Ac	 þ ½C	T½Gc	T½Rc	½Gc	½C	 þ ½Qc	 ¼ ½0	: ð40Þ

By applying optimality conditions for above problem, the optimal control gain matrix ½Gc	 can
be obtained by solving the following coupled non-linear algebraic matrix equations simulta-
neously with Eq. (40).

½Ac	½S	 þ ½S	½Ac	T þ ½X 	 ¼ ½0	; ð41Þ

½Gc	 ¼ ½Rc	�1½B	T½P	½S	½C	T½½C	½S	½C	T	�1: ð42Þ

Note that ½P	; ½S	 and ½Gc	 are matrices to be determined from the above three equations. ½Ac	
denotes the closed-loop system matrix

½Ac	 ¼ ½A	 � ½B	½Gc	½C	: ð43Þ

Several numerical approaches are available for solving Eqs. (40)–(42). In this study, the effective
iterative solution algorithm proposed by Moerder and Calise [12] is adopted.

5. Numerical example

To validate the reduced model, a clamped–free beam (Fig. 1b), with dimensions and parameters
given in Table 1, is considered. The beam is disturbed at its free end. The transverse displacement
response is measured there as well.
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Table 1

System parameters

L 0.2616m hb 0.002286m Ec 6.49� 1010N/m2 GN 5� 10�5 Pa
b 0.0127m rc 7600 kg/m3 Es 6.49� 1010N/m2 #a 6.0

hc 0.000762m rv 1250 kg/m3 Eb 7.1� 1010N/m2 #o 10000 rad/s

hv 0.00015m rs 7600 kg/m3 d31 �1.75� 10�10m/V #z 4.0

hs 0.000762m rb 2700 kg/m3 D0 1.5� 10�8 F/m

L.C. Hau, E.H.K. Fung / Journal of Sound and Vibration 269 (2004) 549–567558



The whole structure is divided into 11 elements (the number of elements used in the interspaces,
each ACLD element, and rest of the beam at the free end are one, three and three respectively).
Following the procedures described in Section 3, a model reduction is performed. Constrained by
ACLD requirements, all the dissipation co-ordinates are selected to be slave d.o.f.s. All others are
master d.o.f.s. Table 2 shows eigenvalues, modal frequencies and modal damping of the first three
vibration modes for the full model (FM) and reduced model (RM). Table 3 presents the relative
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Table 2

Eigenvalues, modal frequencies and damping ratios of the first three vibration modes for full model (FM) and reduced

model (RM)

1st mode 2nd mode 3rd mode

FM Eigenvalues:

Real (imaginary) �2.553 (7226.03) �14.851 (71133.8) �11.944 (73018.6)
Modal freq. (Hz) 35.97 180.45 480.43

Damping ratios (%) 1.129 1.309 0.396

RM Eigenvalues:

Real (imaginary) �2.536 (7226.18) �14.832 (71133.7) �11.903 (73018.6)
Modal freq. (Hz) 35.99 180.43 480.43

Damping ratios (%) 1.121 1.308 0.394

Table 3

Relative errors of modal frequencies and damping ratios of reduced model

Relative error of

modal frequency (%)

Relative error of

damping ratio (%)

1st mode 0.056 0.709

2nd mode 0.011 0.764

3rd mode 0 0.505

Fig. 4. Tip transverse vibration under impulse disturbance.

L.C. Hau, E.H.K. Fung / Journal of Sound and Vibration 269 (2004) 549–567 559



errors of the modal frequencies and modal damping of the RM. Fig. 4 is the transverse vibration
response at the free tip under an impulse disturbance. All these results indicate that the influence
of the truncated modes is negligible. Consequently, the reduced models are used for control
system design and analysis.

6. Comparisons among various configurations

To establish the hybrid damping systems, optimal output feedback approach is used, as
described in Section 4. The weighting matrices are ½Qc	 ¼ q½ %Qc	 and ½Rc	 ¼ ½I 	; where q represents
the weighting corresponding to the transverse vibration states only. q is the only design parameter
which is adjusted to obtain maximum damping ratio, and at the same time without making the
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Fig. 5. (a) Effect of location P on the 1st mode damping ratios—Case I. (b) Effect of location P on the 2nd mode

damping ratios—Case I.
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close-loop system unstable. Besides, the voltage applied to the actuator could not exceed the
breakdown voltage of the piezoelectric material.
To investigate the effects of different treatment configurations, subjected to total treatment

length (0.1308m) and height ðhc þ hv þ hs ¼ 1:674mmÞ constraints, on the damping character-
istics of the beam, two cases are considered—(I) one ACLD element (Fig. 1a) and (II) two ACLD
elements (Fig. 1b). In Case I, the passive and hybrid damping ratios of the first two modes are
plotted as function of element location P (Fig. 5). In Case II, the passive and hybrid damping
ratios of the first two modes are plotted as function of element spacing S for various location P

(Figs. 6–9).
In Case I, it can be observed from Fig. 5a that for the first mode, both the passive and hybrid

damping decrease with increase in distance between the fixed end and the left end of the element.
For the second mode, as shown in Fig. 5b, the damping ratio initially decreases with the departure
of the element, and increases with further departure and then decreases again. In both modes, it
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Fig. 6. (a) First mode damping ratios as function of spacing S—Case II, P ¼ 0:001m. (b) Second mode damping ratios
as function of spacing S—Case II, P ¼ 0:001m.
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can be seen that the hybrid damping is more effective for a configuration with higher passive
damping. Figs. 6–9 show the effects of different combinations of element location P and spacing S
on the damping ratios of the first two modes for Case II.
Results in Figs. 5–9 are analyzed and comparisons are given in Table 4. It can be observed from

Table 4 that placing a single ACLD element at about P ¼ 0:003m, the hybrid damping ratio of
the first and second modes are 6% and 1.2%, respectively. Moving the element to about
P ¼ 0:048m can increase the hybrid damping ratio of the second mode to about 3.4%, but at the
same time decreases the hybrid damping ratio of the first mode to 1%. Table 4 also reveals that a
two-element configuration, with an appropriate combination of P and S; can yield a higher
second mode damping as compared to a single-element configuration. Table 5 shows that a
maximum improvement of 31% on the second mode damping can be obtained with P ¼ 0:001m
and S ¼ 0:004m, when the first mode damping ratio is 5%.
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Fig. 7. (a) First mode damping ratios as function of spacing S—Case II, P ¼ 0:005m. (b) Second mode damping ratios
as function of spacing S—Case II, P ¼ 0:005m.
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7. Conclusions

In the present study, a clamped–free beam with partial active constrained layer damping
(ACLD) treatment is modelled by using the finite element method. The Golla–Hughes–McTavish
(GHM) method is employed to account for the frequency-dependent characteristic of the
viscoelastic material (VEM). As the resultant finite element model contains too many d.o.f.s. due
to the introduction of dissipative coordinates, a model reduction is performed to bring the system
back to its original size. Finally, optimal output feedback gains are designed based on the reduced
models. Numerical simulations are performed to study the effect of different ACLD treatment
configurations, with various element numbers, spacing and locations, on the damping
performance of a flexible beam. Results are presented for the damping ratios of the first two
vibration modes for two different cases (one element in Case I and two elements in Case II). It is
found that to enhance the second mode damping, without deteriorating the first mode damping,
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Fig. 8. (a) First mode damping ratios as function of spacing S—Case II, P ¼ 0:01m. (b) Second mode damping ratios
as function of spacing S—Case II, P ¼ 0:01m.
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Fig. 9. (a) First mode damping ratios as function of spacing S—Case II, P ¼ 0:02m. (b) Second mode damping ratios
as function of spacing S—Case II, P ¼ 0:02m.

Table 4

Comparison of 2nd mode damping ratios among various configurations in Cases I and II for given values of 1st mode

damping

1st mode

damping ratio (%)

Case I Case II

P (m) 2nd mode

damping ratio (%)

P (m) S (m) 2nd mode

damping ratio (%)

6 0.003 1.2 0.001 0.002 1.30

5 0.007 1.1 0.001 0.004 1.45

4 0.013 1.4 0.001 0.006 1.50

3 0.018 1.6 0.001 0.007 1.55

2 0.025 2.1 0.001 0.042 2.20

1 0.048 3.4 0.001 0.060 2.45
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splitting a single ACLD element into two and placing them at appropriate positions of the beam
could be a possible solution.
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Appendix. Nomenclature

½A	 system matrix
½Ac	 close-loop system matrix
½B	 control matrix
½Bd 	 disturbance matrix
b width of beam
½C	 output matrix
Ca capacitance of the sensor layer
D electrical displacement
D0 absolute permittivity of sensor layer
d31 piezoelectric constant
½D	 damping matrix
Ec;s;b Young’s modulus of constraining layer, sensor layer and base beam respectively
E electrical field
ffcge force of constraining layer
ffdge force of external disturbances
Gc control gain
GN equilibrium value of shear modulus
Gv shear modulus of VEM in time domain
hc;v;s;b thickness of constraining layer, VEM layer, sensor layer and base beam,

respectively
Ic;s;b moment of inertia of constraining layer, sensor layer and base beam, respectively
½K 	 stiffness matrix
Le length of treated beam elements
L length of base beam
½M	 mass matrix
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Table 5

Differences of 2nd mode damping ratios between Cases I and II in Table 4.

1st mode damping ratio (%) 1 2 3 4 5 6

Difference of 2nd mode damping ratios between Cases I and II (%) �27.94 4.76 �3.13 7.14 31.82 8.33
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Nw;y;uc;uv;us;ub;g shape functions of the transverse displacement, rotational angle, the axial
displacement of constraining layer, the axial displacement of VEM layer, the
axial displacement of sensor layer, the axial displacement of base beam and the
shear strain of VEM layer, respectively

fqg displacement vector
½ %R	 dynamic condensation matrix
SE
11 elastic compliance constant

s *GðsÞ complex modulus of VEM layer

fUge local nodal displacement vector
uc;s;b axial displacement of constraining layer, sensor layer and the base beam
Vc;sðtÞ control and sensed voltages of the constraining layer and senor layer,

respectively
w transverse displacement
#ZðsÞ dissipation co-ordination
#a; #o; #z positive constants of GHM model
g shear strain of VEM layer
e mechanical strain in the axial direction
et33 dielectric constant
y rotational angle
rc;v;s;b density of constraining layer, VEM layer, sensor layer and base beam

respectively
s mechanical stress in the axial direction

Superscript
0 partial differentiation with respect to x

Subscripts
b base beam
c constraining layer
i; j elemental node i; j
m master d.o.f.s
s slave d.o.f.s
R reduced order system
u axial displacement
v viscoelastic layer
w transverse displacement
g shear strain of VEM layer
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