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Abstract

Sensitivity analyses of eigensolutions and eigenfunctions of 3-D frame structures using the exact
frequency equation from the transfer dynamic stiffness matrix that was derived on Timoshenko beam
theory were developed in this paper. Based on the sensitivity data of frame structures, the minimum weight
design with an exact frequency constraint can be carried out efficiently. Three examples that demonstrated
the results obtained by the proposed method, are in good agreement with those computed by ANSYS.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Sensitivity analyses concern the relationship between design variables to the structural response
such as displacement, natural frequency, etc. Once the sensitivity data is available, most structural
optimization problem can be solved using efficient gradient based method. Huag et al. [1]
presented several design sensitivity formulas and numerical methods. Design optimization is a
problem associated with all fields of engineering. Optimization deals with problems of minimizing
or maximizing a function with several variables usually subject to equality and inequality
constraints. A lot of different approaches have been developed to find optimum designs. When
gradient information is available, the approaches generally show better convergence. Also, many
methods and algorithms have been developed for optimum design of structural system. Most of
the methods deal with continuous design variables and use mathematical programming
techniques based on discrete models such as finite element method. Tong and Liu [2] presented
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an optimization procedure based on discrete model for the minimum weight optimization. Also,
natural frequency responses can reflect the relationship between dynamic loads and structural
responses and they are used to represent the dynamic limit in some structural dynamic
optimization problems based on the discrete system. Sergeyev and Mroz [3] developed an efficient
method of sensitivity and optimization of space frame with natural frequency constraints, which
based on the discrete model. Negm and Maalawi [4] described an exact frequency optimization
analysis for a typical wind turbine tower structure without gradient constraints, which is only
based on Euler–Bernoulli beam theory in bending vibration.

Hence, we want to extend the sensitivity to 3-D frame vibration by using exact formulation
based on Timoshenko beam theory [5,6]. In structural optimization, if the structure is analyzed
using continuous methods such as the transfer matrix method (TMM) [7–9]. Dynamic properties
such as natural frequencies and frequency responses can be computed more accurately. Thus, we
suggest performing minimum weight design with consideration of the exact eigenvalue constraint
and gradient.

A method presented in this paper is to investigate the use of the transfer dynamic stiffness
matrix based on Timoshenko beam theory in the exact sensitivity analyses of eigenvalues and
eigenfunctions and to perform the optimal design of beam and frame structures with frequency
constraints using exact frequency sensitivity data.

2. Formulations of eigenvalue and eigenfunction problem

Given a 3-D frame consists of N prismatic members, the vibration analysis of each member
involves the solution of four differential equations: i.e., axial vibration, torsional vibration and
flexural vibration equations in two planes. So the vibration analysis of this frame involves the
solution of 4N differential equations. If the solution is exact, it satisfies the governing differential
equation and all the boundaries and interconnection condition. The direction of positive end
forces and displacements defined in the TMM are shown as Fig. 1 and the states for vibration
mode are defined in Table 1.

2.1. Eigenvalue problem formulation

In the Timoshenko beam theory, the equation of motions for torsional, axial and flexural
vibrations in two planes can be expressed as the following.
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Fig. 1. End forces (a) and displacements (b).
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For flexural vibration in x2y plane:

@4wy

@x4
þ

sþ txy

l2

� �
@2wy

@x2
�

b4
xy � stxy

l4

 !
wy ¼ 0: ð1Þ

For flexural vibration in x2z plane:

@4wz

@x4
þ

sþ txz

l2

� �@2wz

@x2
�

b4
xz � stxz

l4

� �
wz ¼ 0: ð2Þ

For axial vibration in x direction:

d2wx

dx2
þ b2

ewx ¼ 0: ð3Þ

For torsional vibration within x direction:

d2yx

dx2
þ b2

t yx ¼ 0; ð4Þ

where m ¼ rA; As ¼ kA; s ¼ ðmo2=GAsÞl2; rz ¼
ffiffiffiffiffiffiffiffiffiffi
Iz=A

p
; txy ¼ ðmr2zo

2=EIzÞl2; b
4
xy ¼ ðmo2=EIzÞl4;

ry ¼
ffiffiffiffiffiffiffiffiffiffi
Iy=A

p
; txz ¼ ðmr2yo

2=EIzÞl2; b
4
xz ¼ ðmo2=EIzÞl4; b

2
e ¼ o2=ðE=rÞ; b2

t ¼ o2=ðGJt=rIpÞ; and r; E;
A; Iz; Iy; Ip; G; k; and JtðxÞ are mass density, Young’s modulus, cross-sectional area, moment of
inertia about z- and y-axis, mass polar moment of inertia of the shaft per unit length, shear
modulus, Timoshenko’s shear coefficient and the torsional constant depended on the shape of its
cross-section, respectively.

The general solutions of deformation wyðxÞ; slope yzðxÞ; shear force VyðxÞ and moment MzðxÞ
for transverse free vibration in x2y plane are shown below:
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þ A2 sinh l1

x

l

� �h i
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l
sin l2
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� �	 
�
; ð6Þ
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Table 1

Definition of states for vibration mode

Vibration mode State

Displacement Force

Axial wx Vx

Torsional yx Mx

Bending in x2y plane wy; yz Vy; Mz

Bending in x2z plane wz; yy Vz; My
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VyðxÞ ¼ A1 cosh l1
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MzðxÞ ¼
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: ð8Þ

The general solutions of deformation wzðxÞ; slope yyðxÞ; shear force VzðxÞ and moment MyðxÞ
for transverse free vibration in x2z plane are shown below:
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VzðxÞ ¼ B1 cosh l1
x

l
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MyðxÞ ¼
l2
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The general solutions of deformation wxðxÞ and shear force VxðxÞ for axial free vibration are
shown below:

wxðxÞ ¼ C1 cos bex þ C2 sin bex; ð13Þ

Vx ¼ �C1 EA be sin bex þ C2 EA be cos bex: ð14Þ

The general solutions of slope yxðxÞ and moment MxðxÞ for torsional free vibration are shown
below:

yxðxÞ ¼ D1 cos btx þ D2 sin btx; ð15Þ

Mx ¼ �D1 GJt bt sin btx þ D2 GJt bt cos btx: ð16Þ

In general, the force and displacement can be expressed in a matrix form as

d

f

( )
¼ BC; ð17Þ
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where

For axial vibration:

d

f

( )
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( )
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:

For torsional vibration:
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For flexural vibration in x2y plane:
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For flexural vibration in x2z plane:

d

f

( )
¼

wz

yy

Vz

My

8>>><
>>>:

9>>>=
>>>;
;

and

B ¼

�l3l1
b4 EIy

sinh l1
x

l

� � �l3l1
b4 EIy

cosh l1
x

l

� � l3l2
b4 EIy

sin l2
x

l

� � �l3l2
b4 EIy

cos l2
x

l

� �
l2ðsþ l21Þ

b4 EIy

cosh l1
x

l

� � l2ðsþ l21Þ

b4 EIy

sinh l1
x

l

� � l2ðs� l22Þ

b4 EIy

cos l2
x

l

� � l2ðs� l22Þ

b4 EIy

sin l2
x

l

� �
cosh l1

x

l

� �
sinh l1

x

l

� �
cos l2

x

l

� �
sin l2

x

l

� �
lðsþ l21Þl1

b4
sinh l1

x

l

� � lðsþ l21Þl1
b4

cosh l1
x

l

� �
�

lðs� l22Þl2
b4

sin l2
x

l

� � lðs� l22Þl2
b4

cos l2
x

l

� �

2
6666666666664

3
7777777777775
:

Note that C is unknown coefficient vector and depends on the boundary conditions.
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2.1.1. Transfer matrix

The unknown constants in terms of states can be expressed as

Sx ¼
dx

fx

( )
¼ BðxÞC: ð18Þ

At point x ¼ 0; Eq. (12) can be obtained as

S0 ¼
d0

f0

( )
¼ Bð0ÞC: ð19Þ

Thus, the coefficient C can be obtained by

C ¼ Bð0Þ�1 � S0: ð20Þ

Substitute Eq. (20) into Eq. (19) to yield

Sx ¼ BðxÞBð0Þ�1 � S0 ¼ T � S0; ð21Þ

where T is the transfer matrix and expressed as

T ¼ BðxÞBð0Þ�1 ð22Þ

2.1.2. Derivation of transfer dynamic stiffness matrix

For rearranging TMM into a dynamic stiffness matrix form, the transfer matrix solution in
mixed form appears as Eq. (21)

Sx ¼ TðxÞ � S0: ð23Þ

Eq. (23) can be rewritten as

Sx ¼
dx

fx

( )
¼

Tdd Tdf

Tfd Tff

" #
d0

f0

( )
¼ TðxÞ � S0: ð24Þ

Rearrange Eq. (24) as

f0

fx

( )
¼

�T�1
df Tdd T�1

df

Tfd � Tff T�1
df Tdd Tff T�1

df

" #
d0

dx

( )
¼ K �

d0

dx

( )
; ð25Þ

where K is the 12� 12 transfer dynamic stiffness matrix for a 3-D beam member.
The global transfer dynamic stiffness matrix KG is obtained by assembling the TDSM for each

member in the structure. After applying the boundary condition, the eigenvalue problem for free
vibration can be written as

KRðaÞUR ¼ 0; ð26Þ

where KR; UR are the reduced global transfer dynamic stiffness matrix and eigenvector,
respectively.

Assume that all entries in KR are a continuously differentiable with respect to design variables.
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2.2. Eigenfunction problem formulation

Once we know the natural frequencies and the eigenvectors, which are the responses at the
nodes, we may compute eigenfunction for the continuous structure use the dynamic shape
function approach. Thus, we will derive the dynamic shape function first.

Recall Eqs. (5) and (6), the general solutions of deformation and slope for transverse free
vibration in x2y plane are

wyðxÞ ¼ �
l4

b4 EIz

C1
l1
l
sinh l1

x

l

� �
þ C2

l1
l
cosh l1

x

l

� �	

�C3
l2
l
sin l2

x

l

� �
þ C4

l2
l
cos l2

x

l

� �

; ð50Þ

yzðxÞ ¼
�l2

b4 EIz

�
ðsþ l21Þ C1 cosh l1

x

l

� �
þ C2 sinh l1

x

l

� �h i
:

þðs� l22Þ C3 cos l2
x

l

� �
þ C4

l2
l
sin l2

x

l

� �	 
�
: ð60Þ

Recall Eqs. (9) and (10), the general solutions of deformation and slope for transverse free
vibration in x2z plane are

wzðxÞ ¼ �
l4

b4 EIy

B1
l1
l
sinh l1

x

l

� �
þ B2

l1
l
cosh l1

x

l

� �	

�B3
l2
l
sin l2

x

l

� �
þ B4

l2
l
cos l2

x

l

� �

; ð90Þ

yyðxÞ ¼
l2

b4 EIy

�
ðsþ l21Þ B1 cosh l1

x

l

� �
þ B2 sinh l1

x

l

� �h i
:

þðs� l22Þ B3 cos l2
x

l

� �
þ B4

l2
l
sin l2

x

l

� �	 
�
: ð100Þ

Recall Eq. (13), the general solution of the deflection for axial free vibration must be taken to be

wxðxÞ ¼ C1 cos bx þ C2 sin bx: ð130Þ

Recall Eq. (15), the general solution of the slope for torsional free vibration must be taken to be

yxðxÞ ¼ C1 cos bx þ C2 sin bx: ð150Þ

In general, the displacement function for beam element can be expressed as

½U 
 ¼ ½DðxÞ
 � C: ð27Þ

For a typical beam element, the displacement at both ends can be taken as

½Ue
 ¼
Ui

Uj

" #
¼

Dðxi ¼ 0Þ

Dðxj ¼ LÞ

" #
� ½C
 ¼ ½A
 � C: ð28Þ
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Solve Eq. (28) for the coefficient, we get

½C
 ¼ ½A
�1 � ½Ue
: ð29Þ

Substituting Eq. (29) into Eq. (27), we have

½U 
 ¼ ½DðxÞ
 � ½A
�1 � ½Ue
 ¼ ½N
 � ½Ue
; ð30Þ

where N is dynamic shape function and expressed as

½N
 ¼ ½DðxÞ
 � ½A
�1: ð31Þ

Thus, the eigenfunction can be determined by the eigenvector and the dynamic shape function.
For each beam member, the eigenfuction corresponding to a particular frequency can be

computed from Eq. (30). Note that U is the eigenfunction and Ue is the end displacement for each
beam member.

3. Sensitivity analysis

The computation for derivatives of eigensolution and eigenfunction with respect to design
variables a will be performed in the following:

3.1. Eigensolution sensitivity

Let on be a natural frequency and let the corresponding eigenvector ffg be normalized to unit
length. Thus, Eq. (26) can be rewritten as

½KRðonÞ
ffg ¼ f0g; ð32Þ

and

ffgTffg ¼ 1: ð33Þ

Differentiate the above equation with respect to a; we have

½K 0
R
ffg þ ½KR
ff

0g ¼ 0; ð34Þ

and

ffgTffg ¼ 0: ð35Þ

Now, using the chain rule of differentiation as given below:

K 0
R ¼

dKR

da
¼

@KR

@a
þ

@KR

@on

@on

@a
: ð36Þ

Substituting Eq. (36) into Eq. (34) yields

@KR

@a
fþ

@KR

@on

@on

@a
fþ KRf

0 ¼ 0: ð37Þ

Rewriting the above equation, we have

@KR

@on

fo0
n þ KRf

0 ¼ �
@KR

@a
f: ð38Þ
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Putting Eqs. (38) and (35) together, we have

½Z
fyg ¼ fQg; ð39Þ

where

fyg ¼
f0

o0
n

( )
;

½z
 ¼
KR

@KR

@on

f

fT 0

2
64

3
75;

½Q
 ¼
�
@KR

@a
f

0

2
4

3
5:

Note that both the eigenvalue and eigenvector sensitivity, o0
n and f0; are computed from

Eq. (39). @KR=@a and @KR=@on are assembled from the corresponding derivative of the dynamic
stiffness matrix of the system.

3.2. Eigenfunction sensitivity

Once eigenvector sensitivity f0 for the whole structure is available, the eigenfunction for each
member in the structure can be obtained by

U
q0

G ¼ N
q
G � fq0

e þ N
q0

Gf
q
e ; ð40Þ

where U
q0

G is the eigenfunction sensitivity for the member q in global co-ordinate, N
q
G the dynamic

shape function of the member q in global co-ordinate, fq0

e is the eigenvector sensitivity for the
member q in global co-ordinate, N

q0

G is the derivative with respect to a design variable of the
dynamic shape function of the member q in global co-ordinate.

4. Optimization design

In this section, exact natural frequency solutions are employed in dynamic response constraints.
Therefore, the minimum weight of frame structures with continuous design variables can be
achieved by solving the following constrained minimization problem:

Find xi ð41Þ

Minimize WeðxÞ ¼
Pm

i¼1 AðxiÞriLi ; ð42Þ

Subject to liXlir or gðxÞ ¼
�li

lir

þ 1p0;

xiASi;

ð43Þ
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where WeðxÞ is the weight of the frame structure. xi is the ith design variable, which is the
dimension for the cross-section of the ith member of a frame with the same sectional
area. Ai; ri and Li are the cross-sectional area corresponding to xi; density and length of the ith
member, respectively. li is the ith eigenvalue of the frame structure. lir is the frequency limit for
the ith eigenvalue. Si is a given continuous dimensions for the ith design variable, which implicitly
include the lower bound LBiand upper bound UBi of the ith design variable.

Once the sensitivity data are available, the objective and constraint sensitivity can be computed
by using the following equations to be useful in reducing the set of the optimization:

rgdðxiÞ ¼
�rli

lir

; ð44Þ

rWeðxÞ ¼
Xm

i¼1

rAðxiÞriLi; ð45Þ

where rgdðxiÞ is the constraint gradient for ith design variable, rWeðxÞthe objective gradient,
rli ¼ @lðxiÞ=@xi; rAðxiÞ ¼ @AðxiÞ=@xi:

5. Numerical examples

Three numerical examples, a 3-D portal frame, a two-level portal frame and a three-story space
structure demonstrated the principle and algorithm described in the above sections. Fig. 2 shows a
3-D portal frame with four nodes and three members. The structure is completely fixed at nodes 1
and 4. Fig. 3 shows a two-level portal frame with six nodes and six members. The structure is
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Fig. 2. 3-D portal frame.
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completely fixed at nodes 1 and 4. Fig. 4 shows a three-story space structure with 16 nodes and 24
members. The structure is completely fixed at nodes 1–4. The length of each member for those
three examples is as shown in Table 2, including Young’s modulus, shear modulus, density and
cross-sectional area.

5.1. Sensitivity of natural frequency

For 3-D portal frame, let X1; X2; and X3 be the diameters of members 1, 2 and 3, respectively.
The resulting first natural frequency of this example is 3.6151Hz by Timoshenko beam theory.
The sensitivity of this first natural frequency to the three design variables is shown in Table 3.
These results are validated by the central difference calculation (using @o1=@xi ¼ o1ðxi þ DxiÞ �
o1ðxi � DxiÞ=2Dxi; i ¼ 1–3, Dxi ¼ 0:001). These sensitivity data indicated that increasing X1 and
X3 would increase o1 while increase X2 will cause o1 to decrease.

For two-level portal frame, Let X1; X2; X3;X4; X5; and X6 designate the diameters of members 1,
2, 3, 4, 5, and 6, respectively. The resulting first natural frequency of this example is 1.0885Hz by
Timoshenko beam theory. The sensitivity of this first natural frequency to the six design variables
is shown in Table 4. These results are validated by the central difference calculation. These
sensitivity data indicated that increasing X1 and X3 would increase o1 while increase X2; X4; X5;
and X6 will cause o1 to decrease.

For three-story space structure, let X1; X2; X3; X4; X5; and X6 be the diameters of members 1–4,
5–9, 10–12, 13–16, 17–20, and 21–24, respectively. The first natural frequency of this example is
1.4399Hz by Timoshenko beam theory. The sensitivity data shown in Table 5 are validated by the
central difference calculation. These sensitivity data indicated that increasing X1; X2; X3; and X4

would increase o1 while increase, X5 and X6 will cause o1 to decrease.
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Fig. 3. Two-level portal frame.
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Fig. 4. Three-story space structure.

Table 2

Material properties for three examples

Length (in) 100

Young’s modulus E (psi) 1� 107

Shear modulus G (psi) 0.8� 107

Mass density r (lb/in3) 0.1/386.4

Cross-sectional area (in2) 4

Table 3

Sensitivity of the first natural frequency for 3-D portal frame

Timoshenko beam theory

@o1=@X1 8.3795

@o1=@X2 �6.6970

@o1=@X3 8.3795
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5.2. Optimal design example

To illustrate the optimal design problem formulated in Section 4, the following three examples
were solved using constrained minimization by MATLAB.

For 3-D portal frame, we want to find the diameter of each member to minimize the weight of
structure which maintaining the first natural frequency larger than 50 rad/s or 7.9577Hz. The
design variables X1; X2; and X3 are the diameters of members 1, 2 and 3, respectively, for 3-D
portal frame. The lower and upper bounds for each design variables are 1 and 10 in, respectively.

The results using the proposed method are given in Table 6. In addition, the optimal design
problem was solved with or without gradient data. The design history without using constraint
gradient is shown in Fig. 5. Fig. 6 shows design history when gradient data are used. In Fig. 5, the
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Table 4

Sensitivity of the first natural frequency for two-level portal frame

Timoshenko beam theory

@o1=@X1 2.7633

@o1=@X2 �0.1572

@o1=@X3 2.7633

@o1=@X4 �0.4441

@o1=@X5 �1.4510

@o1=@X6 �0.4441

Table 5

Sensitivity of the first natural frequency for three-story space structure

Timoshenko beam theory

@o1=@X1 2.3351

@o1=@X2 2.1302

@o1=@X3 0.8794

@o1=@X4 0.5504

@o1=@X5 �0.7193

@o1=@X6 �1.1742

Table 6

Comparison of optimal design using proposed method for 3-D portal frame

Without gradient With gradient

Minimum weight 0.42342 0.42369

Constraint value �2.1602E�9 �2.1602E�9

X1 3.149 3.15

X2 1 1

X3 3.1489 3.15
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number of solution iterations without gradient is 41. But, in Fig. 6, the number of solution
iterations using gradient is 13. So note that when gradient data are used, the solution converges in
fewer functional evaluations.

The optimal design shown in Table 7 was obtained by ANSYS based on subproblem
approximation method and first order optimization method. The evaluation for solution
converges 13 without gradient and 6 with gradient, respectively.

For two-level portal frame, we want to find the diameter of each member to minimize the
weight of structure which maintaining the first natural frequency larger than 20 rad/s or 3.183Hz.
The design variables X1; X2; X3;X4; X5; and X6 are the diameters of members 1, 2, 3, 4, 5, and 6,
respectively. The lower and upper bounds for each design variables are 1 and 10 in, respectively.

The results using the proposed method are given in Table 8. In addition, this optimal design
problem is solved with or without gradient data. The design history without using constraint
gradient is shown in Fig. 7. Fig. 8 shows design history when gradient data are used. In Fig. 7, the
number of solution iterations without gradient is 342. But, in Fig. 8, the number of solution
iterations using gradient is 23. So note that when gradient data are used, the solution can converge
in fewer functional evaluations.

The optimal design shown in Table 9 is obtained by ANSYS based on subproblem
approximation method and first order optimization method. The evaluation for solution
converges 21 without gradient and 7 with gradient, respectively.
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Fig. 5. Design history without constraint and objective gradients for 3-D portal frame using proposed method:

(a) history of variables and frequency, (b) history of objective function, and (c) history of constraint function.
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For three-story space structure, we want to find the diameter of each member to minimize the
weight of structure which maintaining the first natural frequency larger than 20 rad/s or 3.183Hz.
The design variables X1; X2; X3;X4; X5; and X6 are the diameters of members 1–4, 5–9, 10–12,
13–16, 17–20, and 21–24, respectively. The lower and upper bounds for each design variables are 1
and 10 in, respectively.
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Fig. 6. Design history with constraint and objective gradients for 3-D portal frame using proposed method: (a) history

of variables and frequency, (b) history of objective function and objective gradient, and (c) history of constraint

function and constraint gradient.

Table 7

Comparison of optimal design using ANSYS for 3-D portal frame

Without gradient With gradient

Minimum weight 0.50618 0.43467

Constraint value �0.44824 0.12574

X1 3.6 3.1926

X2 1.1583 1

X3 3.256 3.1926
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The results using the proposed method and ANSYS are given in Table 10. In addition, in each
theory, this optimal design problem is solved with gradient data directly after its solutions are
good agreement within the first two examples. Similar minimum weights are obtained from both
methods.

The design history with using gradients based on Timoshenko beam theory is shown in Fig. 9.
The number of its iterations using gradient shown in Fig. 9 is 19.
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Table 8

Comparison of optimal design using proposed method for two-level portal frame

Without gradient With gradient

Minimum weight 0.83704 0.75406

Constraint value �1.2122E�6 �1.1183E�8

X1 4.1414 3.7062

X2 1 1

X3 4.0163 3.7062

X4 1.7171 1.9528

X5 1.0001 1

X6 1.7177 1.9528

Fig. 7. Design history without constraint and objective gradients for two-level portal frame using proposed method:

(a) history of variables and frequency, (b) history of objective function, and (c) history of constraint function.
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6. Conclusions

The transfer dynamic stiffness matrix formulation is used in the sensitivity analysis of space
frame structures. The exact sensitivity of eigenvalues with respect to design variables has
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Fig. 8. Design history with constraint and objective gradients for two-level portal frame using proposed method:

(a) history of variables and frequency. (b) history of objective function and objective gradient, and (c) history of

constraint function and constraint gradient.

Table 9

Comparison of optimal design using ANSYS for two-level portal frame

Without gradient With gradient

Minimum weight 1.5726 0.80218

Constraint value 0.14852 0.13498E�2

X1 5.4261 3.8338

X2 2.0865 1.5402

X3 4.6181 3.8338

X4 3.5718 1.83

X5 2.644 1

X6 1.5806 1.83
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computed and also has been used for optimum design. The influence of design variables to the
natural frequency was illustrated in examples. This derivation provides engineers valuable
information for structural design and modification. Numerical examples demonstrated the
accuracy of natural frequency sensitivity computed by exact formulation.
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Table 10

Comparison of optimal design with gradients using proposed method and ANSYS for three-story space structure

Proposed method ANSYS

Minimum weight 4.6772 4.683

Constraint value �7.588E�9 �0.41294E�1

X1 4.0248 4.2662

X2 3.9694 4.0789

X3 3.3107 3.1194

X4 3.0763 2.8519

X5 2.0366 1.9738

X6 1 1.0

Fig. 9. Design history with constraint and objective gradients for three-story structure using proposed method:

(a) history of variables and frequency, (b) history of objective function and objective gradient, and (c) history of

constraint function and constraint gradient.
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In optimal design, the proposed method can solve the problem of minimum weight design with
constraints of eigenvalue using gradient. Three design examples demonstrate that. When gradient
data are used, the optimal design process converges faster than the one with no gradient data used
and the optimal design result presented is also agreed with that by ANSYS.
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