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Abstract

Sensitivity analyses of eigensolutions and eigenfunctions of 3-D frame structures using the exact
frequency equation from the transfer dynamic stiffness matrix that was derived on Timoshenko beam
theory were developed in this paper. Based on the sensitivity data of frame structures, the minimum weight
design with an exact frequency constraint can be carried out efficiently. Three examples that demonstrated
the results obtained by the proposed method, are in good agreement with those computed by ANSYS.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Sensitivity analyses concern the relationship between design variables to the structural response
such as displacement, natural frequency, etc. Once the sensitivity data is available, most structural
optimization problem can be solved using efficient gradient based method. Huag et al. [1]
presented several design sensitivity formulas and numerical methods. Design optimization is a
problem associated with all fields of engineering. Optimization deals with problems of minimizing
or maximizing a function with several variables usually subject to equality and inequality
constraints. A lot of different approaches have been developed to find optimum designs. When
gradient information is available, the approaches generally show better convergence. Also, many
methods and algorithms have been developed for optimum design of structural system. Most of
the methods deal with continuous design variables and use mathematical programming
techniques based on discrete models such as finite element method. Tong and Liu [2] presented
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an optimization procedure based on discrete model for the minimum weight optimization. Also,
natural frequency responses can reflect the relationship between dynamic loads and structural
responses and they are used to represent the dynamic limit in some structural dynamic
optimization problems based on the discrete system. Sergeyev and Mroz [3] developed an efficient
method of sensitivity and optimization of space frame with natural frequency constraints, which
based on the discrete model. Negm and Maalawi [4] described an exact frequency optimization
analysis for a typical wind turbine tower structure without gradient constraints, which is only
based on Euler—Bernoulli beam theory in bending vibration.

Hence, we want to extend the sensitivity to 3-D frame vibration by using exact formulation
based on Timoshenko beam theory [5,6]. In structural optimization, if the structure is analyzed
using continuous methods such as the transfer matrix method (TMM) [7-9]. Dynamic properties
such as natural frequencies and frequency responses can be computed more accurately. Thus, we
suggest performing minimum weight design with consideration of the exact eigenvalue constraint
and gradient.

A method presented in this paper is to investigate the use of the transfer dynamic stiffness
matrix based on Timoshenko beam theory in the exact sensitivity analyses of eigenvalues and
eigenfunctions and to perform the optimal design of beam and frame structures with frequency
constraints using exact frequency sensitivity data.

2. Formulations of eigenvalue and eigenfunction problem

Given a 3-D frame consists of N prismatic members, the vibration analysis of each member
involves the solution of four differential equations: i.e., axial vibration, torsional vibration and
flexural vibration equations in two planes. So the vibration analysis of this frame involves the
solution of 4N differential equations. If the solution is exact, it satisfies the governing differential
equation and all the boundaries and interconnection condition. The direction of positive end
forces and displacements defined in the TMM are shown as Fig. 1 and the states for vibration
mode are defined in Table 1.

2.1. Eigenvalue problem formulation

In the Timoshenko beam theory, the equation of motions for torsional, axial and flexural
vibrations in two planes can be expressed as the following.

<

<
=
=

v, A” A° w, A°

/ v, / ' w
- V< <M M, —>>Z>Vx W —>>0, 0X—>>L W,
WaE i AE A

t Y v M, 0

X

<<

\
M z
@ (b)

Fig. 1. End forces (a) and displacements (b).
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Table 1
Definition of states for vibration mode
Vibration mode State
Displacement Force
Axial Wy Vi
Torsional 0, M,
Bending in x—y plane wy, 0. Vy, M.
Bending in x—z plane w:, 0, V., M,
For flexural vibration in x—y plane:
4
84Wy + 0+ Ty azwy _ ﬁxy 0Ty w, =0 ()
ox* 2 0x? 4 Y '
For flexural vibration in x—z plane:
oMw. 10+ T\ O W AT S
4‘+< 2x) 7 ﬁL4 = Jw:=0. )
ox / ox /
For axial vibration in x direction:
d>w, 5
T o =0, Q)
For torsional vibration within x direction:
d?0,
oo T A0 =0, @)

where u = pA, A, = kA, ¢ = (uw? /GAS)lz r.=+/L /A Ty = (prio? /151,)12 [)’ = (uw? /EIZ)Z“
ry = I T4, v = (R0 [ ELP, B = (u0o? | EL, B2 = 0* [(E/p), B = 0*/(GJ,/pl,), and p, E,
A, L, I, 1, G, k, and J,(x) are mass density, Young’ s modulus, cross-sectional area, moment of
inertia about z- and y-axis, mass polar moment of inertia of the shaft per unit length, shear
modulus, Timoshenko’s shear coefficient and the torsional constant depended on the shape of its
cross-section, respectively.

The general solutions of deformation w)(x), slope 0.(x), shear force V,(x) and moment M.(x)
for transverse free vibration in x—y plane are shown below:

14 /ll . X /11 X
Wy(x) = — M |:A1 7 sinh (/1] 7) + Az TCOSh (/11 7)

—Aj )“Tzsin ()Q ;) + Ay }l cos (}Q 1)] ®)

2

= /34_1;1{(6 + /lf) [Al cosh (/11 )—;) + A, sinh (}Vl ;)} .

(o — 22 {Ag cos (zz ;) + Ay )72 sin (zz ;)] } 6)

0(x)
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V,(x) = A cosh (m 7 ) + A, sinh </11 ;) + Az cos </12 ;) + A4 sin (ig ;), 7

M.(x) = 7 {( + 3 ) [Al sinh(}q ;) + A COSh()vl ;)}

—(o — /13) [A3 sin (/12 1) Ay cos(/lz )—IC)] } ®)

The general solutions of deformation w.(x), slope 0,(x), shear force V-(x) and moment M (x)
for transverse free vibration in x—z plane are shown below:

wa(x) = — ﬁf—; [Bl %smh (Al ;) + B )71 cosh (zl ;)
—33%5111(12 1) +B4/11 cos(Jz l)} )
0,(x) = [3 l; {(a + /11) [Bl cosh (Jl 7) + B, sinh </11 lﬂ
+(o — /13) [33 cos <iz ;) + By /1—12 sin (iz ;)] }, (10)
V.(x) = Bj cosh (m Z> + B, sinh (il Z) + Bs cos (ﬂvz ;) + By sin ()Q ;), (11)

M, (x) = ;—i{(a + }%)}—1 {Bl sinh </11 ;) + B, cosh (ll ;)}

(o= 37 [Busin(17) - Bacos(127)] | (12

The general solutions of deformation w,(x) and shear force V,(x) for axial free vibration are
shown below:

wx(x) = Cj cos f,x + Cysin f,x, (13)
Ve=—Ci EAp,sin f,x + C, EA B, cos f x. (14)

The general solutions of slope 0,(x) and moment M (x) for torsional free vibration are shown
below:

0(x) = D cos f,x + D, sin f,x, (15)

M, =—D, GJ, ,sin ,x + Dy GJ, 5, cos f3,x. (16)

In general, the force and displacement can be expressed in a matrix form as

T\ _ pe (17)
f - 2
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where
For axial vibration:
d Wy cos fi,x sin f5,x
= and B= . .
S Vy —EAf,sinf,x EAP,cosf,x
For torsional vibration:
d 0 cos fi,x sin f5,x
= and B= ]
f M, —GJ,B,sinf,x  GJ;f,cosf,x

For flexural vibration in x—y plane:

wy,
{ d } e
o nl
Mz
and
_ B_ISEI sinh () | l) /;Z% cosh (Zl )_;) /:221 sin ()vz ;) I;I%Z cos (/12 7) -
| en(ng) L A (3) O B en(ag) S B
cosh (/11 ;) sinh (/11 ;) cos (22?) sin (22;)
_7_1(0 ti%)il sinh ().1 ;) v} ;4/1%)11 cosh (21 ;) Ko ﬁjg))z in (ﬂ,z ;) —lo 7 i%)iz 0s (/12 )—IC) ]
For flexural vibration in x—z plane:
W,
d| | 0
o)
M,
and
;;Il}smh(il D = 13; cosh(1,) ﬁ’fﬂ( y ﬁ—I;I(; 8y
P(o + 12) Plo+7) P(o — )2 ) P(o — )2)
. ﬁa ;I cos (21 )—IC> ﬁf‘ —'E_'Iy ()4 ;) ﬁo‘; EIyZ cos (/L,z ;) ; EIyZ sin (/Lz )—;)
cosh (il ;) sinh (/11 ;) cos (ig )—;) sin ()»2 ;)
lo + i)k ;j%)/h sinh (11 ;) lo+ ik ;ﬁ)}q cosh (21 ?) o= Xk ﬁf%)b sin (iz ;) fo = ﬁfg)b cos (iz )—;) |

Note that C is unknown coefficient vector and depends on the boundary conditions.

593
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2.1.1. Transfer matrix
The unknown constants in terms of states can be expressed as

dy
Sy = {fx } = B(x)C. (18)
At point x = 0, Eq. (12) can be obtained as
S = {dO } — B(0)C. (19)
Jo
Thus, the coefficient C can be obtained by
C = B0)'-S,. (20)
Substitute Eq. (20) into Eq. (19) to yield
Sy = B(x)B(0)"' - So =T - Sy, (21)

where T is the transfer matrix and expressed as

T = B(x)B(0)"! (22)

2.1.2. Derivation of transfer dynamic stiffness matrix
For rearranging TMM into a dynamic stiffness matrix form, the transfer matrix solution in
mixed form appears as Eq. (21)

Sy = T(x) - So. (23)
Eq. (23) can be rewritten as
dy Tia T, d,
Se=4 Lo |7 T ) S, (24)
fx T}"d Tﬂ fO

Rearrange Eq. (24) as

() fefs)
Jx dy d,

where K is the 12 x 12 transfer dynamic stiffness matrix for a 3-D beam member.

The global transfer dynamic stiffness matrix K is obtained by assembling the TDSM for each
member in the structure. After applying the boundary condition, the eigenvalue problem for free
vibration can be written as

—Ty' Tua T,
Ty — TyTy'Taw Ty Ty

Kr(0)Ur =0, (26)

where K, Ug are the reduced global transfer dynamic stiffness matrix and eigenvector,
respectively.
Assume that all entries in Kz are a continuously differentiable with respect to design variables.
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2.2. FEigenfunction problem formulation

Once we know the natural frequencies and the eigenvectors, which are the responses at the
nodes, we may compute eigenfunction for the continuous structure use the dynamic shape
function approach. Thus, we will derive the dynamic shape function first.

Recall Egs. (5) and (6), the general solutions of deformation and slope for transverse free
vibration in x—y plane are

Wwy(x) = g I4EI [cl 1 smh(/l] 1) + czll cosh(/h z)
—C3)“75in<)v2 7) Lo 1 cos(z2 l)} (5))
0.(x) = ﬂ:;lz{(a +22) [cl cosh (/11 ;) + G, sinh (/11 ;)] .
+(o — 23) [C3 cos </L2 l) + C4/1l sin (/12 ;)] } (6")

Recall Egs. (9) and (10), the general solutions of deformation and slope for transverse free
vibration in x—z plane are

14 ;ul . X )u] X
wa(x) = — ﬁ4—Ely [Bl 7 sinh (xh 7) + BzT cosh (/11 7)

—Bs % sin (/12 )—;) + By /1—12 cos (/12 ;)] , 9)

0,(x) = n l; {(o + Al){Bl cosh(ﬂl 7) + B s1nh</11 lﬂ

+(o — 2)[33 cos(@ 1) —|—B4lllsm<)2 l)]} (10")
Recall Eq. (13), the general solution of the deflection for axial free vibration must be taken to be
wy(x) = Cj cos fix + C; sin fix. (13%)
Recall Eq. (15), the general solution of the slope for torsional free vibration must be taken to be
0.(x) = Cj cos fx + C; sin fx. (15"

In general, the displacement function for beam element can be expressed as
[U]=[D(x)]- C. (27

For a typical beam element, the displacement at both ends can be taken as

U; D(x; =0)

W=y ] = ey = | 1AM (28)
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Solve Eq. (28) for the coefficient, we get

[CT=[4]"-[U°] (29)
Substituting Eq. (29) into Eq. (27), we have
[U] = [D()]-[4]" - [U] = [N]- [U°], (30)
where N is dynamic shape function and expressed as
[N] = [D()] - [4]"". (1)

Thus, the eigenfunction can be determined by the eigenvector and the dynamic shape function.

For each beam member, the eigenfuction corresponding to a particular frequency can be
computed from Eq. (30). Note that U is the eigenfunction and U* is the end displacement for each
beam member.

3. Sensitivity analysis

The computation for derivatives of eigensolution and eigenfunction with respect to design
variables a will be performed in the following:

3.1. FEigensolution sensitivity

Let w, be a natural frequency and let the corresponding eigenvector {¢} be normalized to unit
length. Thus, Eq. (26) can be rewritten as

[Kr(wn)[{¢} = {0}, (32)
and
(P} {gy = 1. (33)
Differentiate the above equation with respect to «, we have
[KRl{¢} + [Krl{¢'} =0, (34)
and
{p} g} = 0. (35)

Now, using the chain rule of differentiation as given below:
dKR GKR GKR awn

K, = = : 36
R da oo +6a),1 oo (36)

Substituting Eq. (36) into Eq. (34) yields
8KR aKR 66()”

I J—
Em b+ 20, 0o ¢+ Krop' = 0. (37)
Rewriting the above equation, we have
OKR / / OKg
Kpp' = ——¢.
S b+ K = — 20 (38)
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Putting Eqgs. (38) and (35) together, we have
[Z1{y} = {0}, (39)

= { 4), }
wn

' 0

where

0K
[Ql=| O ’
0

Note that both the eigenvalue and eigenvector sensitivity, o/, and ¢', are computed from
Eq. (39). 0Kr/0x and 0Kg/0w, are assembled from the corresponding derivative of the dynamic
stiffness matrix of the system.

3.2. Eigenfunction sensitivity

Once eigenvector sensitivity ¢’ for the whole structure is available, the eigenfunction for each
member in the structure can be obtained by

Ul = N - ¢ + NLoL, (40)

where Ug is the eigenfunction sensitivity for the member ¢ in global co-ordinate, N¢. the dynamic
shape function of the member ¢ in global co-ordinate, qSZ is the eigenvector sensitivity for the
member ¢ in global co-ordinate, NZ is the derivative with respect to a design variable of the
dynamic shape function of the member ¢ in global co-ordinate.

4. Optimization design
In this section, exact natural frequency solutions are employed in dynamic response constraints.

Therefore, the minimum weight of frame structures with continuous design variables can be
achieved by solving the following constrained minimization problem:

Find x; (41)

Minimize W,(x) = >_1", A(x)p,L:, (42)
Subjectto A;=4; or g(x)= i +1<0

J 1= 7"r g - Alr VY (43)

X,‘GS[,
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where W,(x) is the weight of the frame structure. x; is the ith design variable, which is the
dimension for the cross-section of the ith member of a frame with the same sectional
area. A;, p; and L; are the cross-sectional area corresponding to x;, density and length of the ith
member, respectively. 4; is the ith eigenvalue of the frame structure. 4; is the frequency limit for
the ith eigenvalue. S; is a given continuous dimensions for the ith design variable, which implicitly
include the lower bound LB;and upper bound UB; of the ith design variable.

Once the sensitivity data are available, the objective and constraint sensitivity can be computed
by using the following equations to be useful in reducing the set of the optimization:

-V
Voalxi) = —— (44)
VWx) =Y VAX)p;Li, (45)
i=1

where Vg (x;) is the constraint gradient for ith design variable, V W, (x)the objective gradient,
V/L- = Oi(xl-)/éxi, VA(XI) = GA(xl-)/Oxi.

5. Numerical examples
Three numerical examples, a 3-D portal frame, a two-level portal frame and a three-story space
structure demonstrated the principle and algorithm described in the above sections. Fig. 2 shows a

3-D portal frame with four nodes and three members. The structure is completely fixed at nodes 1
and 4. Fig. 3 shows a two-level portal frame with six nodes and six members. The structure is

A 3-D Portal Frame

2 3
100 | 2
80
B0
.~ fl B
40+
20r
1
ok ‘
-20 0 20 40 60 80 100 120
X

Fig. 2. 3-D portal frame.
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A 3-D 2-level Portal Frame
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Fig. 3. Two-level portal frame.

completely fixed at nodes 1 and 4. Fig. 4 shows a three-story space structure with 16 nodes and 24
members. The structure is completely fixed at nodes 1-4. The length of each member for those
three examples is as shown in Table 2, including Young’s modulus, shear modulus, density and
cross-sectional area.

5.1. Sensitivity of natural frequency

For 3-D portal frame, let X, X, and X3 be the diameters of members 1, 2 and 3, respectively.
The resulting first natural frequency of this example is 3.6151 Hz by Timoshenko beam theory.
The sensitivity of this first natural frequency to the three design variables is shown in Table 3.
These results are validated by the central difference calculation (using dw, /0x; = wi(x; + Ax;) —
o1(x; — Ax;)/2Ax;, i = 1-3, Ax; = 0.001). These sensitivity data indicated that increasing X; and
X5 would increase w; while increase X, will cause w; to decrease.

For two-level portal frame, Let X, X, X3,X4, X5, and X designate the diameters of members 1,
2,3, 4,5, and 6, respectively. The resulting first natural frequency of this example is 1.0885 Hz by
Timoshenko beam theory. The sensitivity of this first natural frequency to the six design variables
is shown in Table 4. These results are validated by the central difference calculation. These
sensitivity data indicated that increasing X; and X3 would increase w; while increase X», Xy, X5,
and X will cause w; to decrease.

For three-story space structure, let X, X5, X3, X4, X5, and X4 be the diameters of members 1-4,
59, 10-12, 13-16, 17-20, and 21-24, respectively. The first natural frequency of this example is
1.4399 Hz by Timoshenko beam theory. The sensitivity data shown in Table 5 are validated by the
central difference calculation. These sensitivity data indicated that increasing X, X», X3, and X4
would increase w; while increase, X5 and X4 will cause w; to decrease.
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A 3-stary Space Structure
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Fig. 4. Three-story space structure.

Table 2

Material properties for three examples

Length (in) 100
Young’s modulus E (psi) 1x107

Shear modulus G (psi) 0.8 x 107
Mass density p (Ib/in’) 0.1/386.4
Cross-sectional area (in%) 4

Table 3

Sensitivity of the first natural frequency for 3-D portal frame

Timoshenko beam theory

dw, /0X, 8.3795
dw, [0X, ~6.6970
dw, /0Xs 8.3795
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Table 4
Sensitivity of the first natural frequency for two-level portal frame

Timoshenko beam theory

0w /10X, 2.7633
0w /0X> —0.1572
0w /0X5 2.7633
0w /0X4 —0.4441
0w /6Xs —1.4510
dw) /0X; —0.4441
Table 5

Sensitivity of the first natural frequency for three-story space structure

Timoshenko beam theory

6w1/6X1 2.3351

0w /0X> 2.1302

0w /0X3 0.8794

6(,!)1/6X4 0.5504

6w1/6X5 —0.7193

0w /0Xs —1.1742

Table 6

Comparison of optimal design using proposed method for 3-D portal frame
Without gradient With gradient

Minimum weight 0.42342 0.42369

Constraint value —2.1602E-9 —2.1602E-9

X1 3.149 3.15

X2 1 1

X3 3.1489 3.15

5.2. Optimal design example

To illustrate the optimal design problem formulated in Section 4, the following three examples
were solved using constrained minimization by MATLAB.

For 3-D portal frame, we want to find the diameter of each member to minimize the weight of
structure which maintaining the first natural frequency larger than 50rad/s or 7.9577 Hz. The
design variables X;, X3, and X3 are the diameters of members 1, 2 and 3, respectively, for 3-D
portal frame. The lower and upper bounds for each design variables are 1 and 101n, respectively.

The results using the proposed method are given in Table 6. In addition, the optimal design
problem was solved with or without gradient data. The design history without using constraint
gradient is shown in Fig. 5. Fig. 6 shows design history when gradient data are used. In Fig. 5, the
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Design History: “ariable
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Fig. 5. Design history without constraint and objective gradients for 3-D portal frame using proposed method:
(a) history of variables and frequency, (b) history of objective function, and (c) history of constraint function.

number of solution iterations without gradient is 41. But, in Fig. 6, the number of solution
iterations using gradient is 13. So note that when gradient data are used, the solution converges in
fewer functional evaluations.

The optimal design shown in Table 7 was obtained by ANSYS based on subproblem
approximation method and first order optimization method. The evaluation for solution
converges 13 without gradient and 6 with gradient, respectively.

For two-level portal frame, we want to find the diameter of each member to minimize the
weight of structure which maintaining the first natural frequency larger than 20 rad/s or 3.183 Hz.
The design variables X, X>, X3,X4, X5, and X; are the diameters of members 1, 2, 3, 4, 5, and 6,
respectively. The lower and upper bounds for each design variables are 1 and 10in, respectively.

The results using the proposed method are given in Table 8. In addition, this optimal design
problem is solved with or without gradient data. The design history without using constraint
gradient is shown in Fig. 7. Fig. 8 shows design history when gradient data are used. In Fig. 7, the
number of solution iterations without gradient is 342. But, in Fig. 8, the number of solution
iterations using gradient is 23. So note that when gradient data are used, the solution can converge
in fewer functional evaluations.

The optimal design shown in Table 9 is obtained by ANSYS based on subproblem
approximation method and first order optimization method. The evaluation for solution
converges 21 without gradient and 7 with gradient, respectively.
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Fig. 6. Design history with constraint and objective gradients for 3-D portal frame using proposed method: (a) history
of variables and frequency, (b) history of objective function and objective gradient, and (c) history of constraint
function and constraint gradient.

Table 7

Comparison of optimal design using ANSYS for 3-D portal frame
Without gradient With gradient

Minimum weight 0.50618 0.43467

Constraint value —0.44824 0.12574

X1 3.6 3.1926

X2 1.1583 1

X3 3.256 3.1926

For three-story space structure, we want to find the diameter of each member to minimize the
weight of structure which maintaining the first natural frequency larger than 20 rad/s or 3.183 Hz.
The design variables X, X», X3,Xy, X5, and X4 are the diameters of members 1-4, 5-9, 10-12,
13-16, 17-20, and 21-24, respectively. The lower and upper bounds for each design variables are 1
and 101n, respectively.
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Table 8

Comparison of optimal design using proposed method for two-level portal frame
Without gradient With gradient

Minimum weight 0.83704 0.75406

Constraint value —1.2122E-6 —1.1183E-8

X1 4.1414 3.7062

X2 1 1

X3 4.0163 3.7062

X4 1.7171 1.9528

X5 1.0001 1

X6 1.7177 1.9528
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Fig. 7. Design history without constraint and objective gradients for two-level portal frame using proposed method:
(a) history of variables and frequency, (b) history of objective function, and (c) history of constraint function.

The results using the proposed method and ANSYS are given in Table 10. In addition, in each
theory, this optimal design problem is solved with gradient data directly after its solutions are
good agreement within the first two examples. Similar minimum weights are obtained from both
methods.

The design history with using gradients based on Timoshenko beam theory is shown in Fig. 9.
The number of its iterations using gradient shown in Fig. 9 is 19.
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Fig. 8. Design history with constraint and objective gradients for two-level portal frame using proposed method:
(a) history of variables and frequency. (b) history of objective function and objective gradient, and (c) history of
constraint function and constraint gradient.

Table 9

Comparison of optimal design using ANSYS for two-level portal frame
Without gradient With gradient

Minimum weight 1.5726 0.80218

Constraint value 0.14852 0.13498E—-2

X1 5.4261 3.8338

X2 2.0865 1.5402

X3 4.6181 3.8338

X4 3.5718 1.83

X5 2.644 1

X6 1.5806 1.83

6. Conclusions

The transfer dynamic stiffness matrix formulation is used in the sensitivity analysis of space
frame structures. The exact sensitivity of eigenvalues with respect to design variables has
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Table 10

Comparison of optimal design with gradients using proposed method and ANSYS for three-story space structure
Proposed method ANSYS

Minimum weight 4.6772 4.683

Constraint value —7.588E—9 —0.41294E—1

X1 4.0248 4.2662

X2 3.9694 4.0789

X3 3.3107 3.1194

X4 3.0763 2.8519

X5 2.0366 1.9738

X6 1 1.0
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Fig. 9. Design history with constraint and objective gradients for three-story structure using proposed method:
(a) history of variables and frequency, (b) history of objective function and objective gradient, and (c) history of
constraint function and constraint gradient.

computed and also has been used for optimum design. The influence of design variables to the
natural frequency was illustrated in examples. This derivation provides engineers valuable
information for structural design and modification. Numerical examples demonstrated the
accuracy of natural frequency sensitivity computed by exact formulation.
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In optimal design, the proposed method can solve the problem of minimum weight design with
constraints of eigenvalue using gradient. Three design examples demonstrate that. When gradient
data are used, the optimal design process converges faster than the one with no gradient data used
and the optimal design result presented is also agreed with that by ANSYS.
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