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Abstract

A study of the free vibration of Timoshenko beams and axisymmetric Mindlin plates is presented. The
analysis is based on the Chebyshev pseudospectral method, which has been widely used in the solution of
fluid mechanics problems. Clamped, simply supported, free and sliding boundary conditions of
Timoshenko beams are treated, and numerical results are presented for different thickness-to-length
ratios. Figenvalues of the axisymmetric vibration of Mindlin plates with clamped, simply supported and
free boundary conditions are presented for various thickness-to-radius ratios.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration of beams and plates is important in many applications pertaining to mechanical,
civil and aerospace engineering. Beams and plates used in real practice may have appreciable
thickness where the transverse shear and the rotary inertia are not negligible as assumed in the
classical theories. As a result, the thick beam model based on the Timoshenko theory and the
thick plate model based on the Mindlin theory have gained more popularity.

Research on the vibration of Timoshenko beams and Mindlin plates can be divided into three
categories. Firstly, there exist exact solutions only for a very restricted number of simple cases.
Secondly, studies of semi-analytic solutions, including the differential quadrature method [1-3]
and the boundary characteristic orthogonal polynomials [4,5], are available. Finally, there are the
most widely used discretization methods such as the finite element method and the finite difference
method. As it is more useful to have analytical results than to resort to numerical methods, most

*Corresponding author. Tel.: +82-41-860-2589; fax: + 82-41-863-0559.
E-mail address: jinhee@wow.hongik.ac.kr (J. Lee).

0022-460X/03/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0022-460X(03)00047-6



610 J. Lee, W.W. Schultz | Journal of Sound and Vibration 269 (2004) 609-621

efforts focus on developing efficient semi-analytic solutions. Although the Rayleigh—Ritz method
with the differential quadrature method and the boundary characteristic orthogonal polynomials
have been successful in the analysis of beams and plates, there are some drawbacks inherent in
these methods. For example, they require a process of constructing either weighting coefficients or
characteristic polynomials since there are no readily available formulas.

The pseudospectral method can be considered to be a spectral method that performs a
collocation process. As the formulation is straightforward and powerful enough to produce
approximate solutions close to exact solutions, this method has been highly successful in many
areas such as turbulence modelling, weather prediction and non-linear waves [6]. Even though this
method can be used for the solution of structural mechanics problems, it has been largely
unnoticed by the structural mechanics community, and few articles are available where the
pseudospectral method has been applied.

Soni and Amba-Rao [7] and Gupta and Lal [8] are among those who have applied the
pseudospectral method to the axisymmetric vibration analysis of circular and annular Mindlin
plates. Recently, the usefulness of the pseudospectral method in the solution of structural
mechanics problems has been demonstrated in a static analysis of the L-shaped Reissner—Mindlin
plate [9]. In the present work, the pseudospectral method is applied to the eigenvalue analysis of
Timoshenko beams and axisymmetric circular Mindlin plates.

2. Timoshenko beams

The equations of motion of a homogeneous beam of rectangular cross-section based on the
Timoshenko theory are derived as

oM 0’0

A =]

x TV e

ov W

ax e M

where W(x,t) and ©(x,?) are the lateral deflection and the rotation of the normal line, p is the
mass density, / is the thickness of the beam, and I = 4*/12 is the second moment of area per unit
width. The stress resultants M and V' are defined by

M = EI @,
ox
VzocGh(ﬂ—@), (2)
ox

where E is the modulus of elasticity, G is the shear modulus, and « is the shear coefficient.
Assuming the sinusoidal motion in time

O(x, 1) = 0(x) cos wt,
W(x,t) = w(x) cos wt, (3)
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the substitution of Eq. (2) into Eq. (1) yields

d?0 dw 5
2
— ochGﬁ + octh—W = —w’phw. 4)
dx dx?

When the range of the independent variable is given by xe[—L/2, L/2], where L is the length of
the beam, it is convenient to use the normalized variable

z:zfxe[—l,l], (5)

and (4) is rewritten as

2\? 2
EI[=) 0" — “w = —w’pl
<L> 0 ochGQ—l—ochGLw wpl0,
—ochG39'+ochG 2 2w”:—a)2 hw (6)
L L prmes

where ' stands for the differentiation with respect to z.
The boundary conditions are represented as follows:

clamped (C):

0=0, w=0, (7)
pinned (P):

M=0, w=0, (®)
free (F):

M=0, V=0, ©)
and sliding (S)

0=0, V=0, (10)

at the extremity z = +1.

In their attempts to compute the natural frequencies of axisymmetric circular and annular
Mindlin plates, Soni and Amba-Rao [7] and Gupta and Lal [8] formed fourth order linear
differential equations with variable coefficients in terms of the bending rotation by eliminating the
lateral deflection, and applied the pseudospectral method. The boundary conditions that did not
contain the eigenvalue were combined with the governing equations to form the characteristic
equations from which the eigenvalues were calculated. In the present study, the conceptual
simplicity of the pseudospectral method is used, and the solution of Eq. (6) is pursued without
eliminating w.

The series expansions of the exact solutions 6(z) and w(z) have an infinite number of terms. In
this study, however, the eigenfunctions 0(z) and w(z) are approximated by the (N 4+ 2)th partial
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sums as follows:
N+2

02)x0:) =D aTua(2),
n=1
N+2

WERRWE) =Y by T (2), (1)
n=1

where @, and b, are the expansion coefficients, and 7;,_(z) is the Chebyshev polynomial of the
first kind of degree of » — 1. Mikami and Yoshimura suggested an efficient way to handle the
boundary conditions by adopting two less collocation points than the number of expansion terms
[10]. The pseudospectral algebraic system of equations is formed by setting the residuals of Eq. (6)
equal to zero at the Chebyshev interpolation grid points
n(2i— 1)
TN
Expansions (11) are substituted into Eq. (6) and are collocated at z; to yield
N+2
4E1 20hG
Z [an{ﬁ T, 1(z) - OChGTnl(Zi)} t—7 by Trl,l(Zi)]
n=1

N+2
= —0’pl Y aTyi(z), (13)
n=1

zZj =

i=1,..N. (12)

N+2 N+2
20hG 4ahG
S {- T e+ BT @) = ot Y BTG = L.
n=1 n=1

This can be rearranged in the matrix form
[H]{d} + [H'[{d"} = ’(S]{d} +[STH{d"}), (14)
where the vectors {d} and {d'} are defined by
{d} = {a1a2--anbiby by},
{d'} = {ani1an2bybyia} ' (15)

The size of matrices [H] and [S]is 2N x 2N, and that of [H'] and [ST] is 2N x 4. The total number
of unknowns in {d} and {d'} is 2N + 4 whereas the number of equations in Eq. (13) is 2N. The
remaining four equations are obtained from the boundary conditions. When Eq.(11) is

substituted into Egs. (7)—(10), the boundary conditions at z, = +1 are expressed as follows:
clamped (C):

N+2 N+2
Z anTn—l(Zb) =0, Z bnTn—l(Zb) =0, (16)
n=1 n=1
pinned (P):
N+2 N+2

Z anT;{h](Zb) = O, Z bnTnfl(Zb) = 0, (17)
n=1 n=1
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free (F):

N+2 N+2 2b

Z an T;;—I(Zb) = 09 Z{an Tnfl(Zb) - TnT;lz_l(Zb)} = 0, (18)
n=1 n=1

and sliding (S):

N+2 N+2 2b

Z anTn—l(Zb) = 0: Z{anTn—l(zb) - Ln Trlzl(zb)} = 0. (19)
n=1 n=1

The physical boundary condition of the Timoshenko beam is accomplished by picking one set of
conditions up from Egs. (16)—(19) at z; = —1 and another at z; = 1. The clamped—clamped (C-C)
boundary condition, for example, consists of the following four equations:

N+2 N+2
Y aT, i (=1)=0, > bT(=1)=0,
n=1 n=1
N42 N+2
> T a()=0, Y b,T, (1) =0. (20)
n=1 n=1
Eq. (20) can be rearranged in the matrix form
[Ul{d} + [VI{d} = {0}, 1)
where {0} is a zero vector. Since {d'} can be expressed as
{d"} = —[V]'[Ul{d}, (22)

Eq. (14) can be reformulated as
(H] — H[V]'[UD{d} = ?([S] - [S'I[V] ' [UD{d}. (23)

The solution of Eq. (23) yields the estimate for the natural frequencies and the corresponding
eigenmodes. This procedure can be applied to any boundary condition pair of C-C, C-P, C-F,
C-S, P-P, P-F, P-S, F-F, F-S or S-S.

The algebraic problem is solved for the eigenvalues using the Eispack GRR subroutine. A
preliminary run for the convergence check of the eigenvalues of the Timoshenko beam with C—C
boundary condition is carried out for 4#/L = 0.01, and the result is given in Table 1. The number
of collocation points which determines the size of the problem changes from 10 to 40. This clearly
shows the rapid convergence of the pseudospectral method that requires less than N = 20 for the
first 6 eigenvalues to converge to 6 significant digits, and less than N = 35 for the convergence of
the lowest 15 modes to 6 significant digits. The numbers given in Tables 1-5 are non-
dimensionalized frequency parameters A; defined as

2=l |2 24
= I’ (24)

where m is mass per unit length of the beam. Throughout the paper, Poisson’s ratio and the shear
coefficient of the beam are v = 0.3 and o = 5/6, respectively. Computational results with N = 35
for C—C, P-P, F-F and P-S boundary conditions are given in Tables 2-5, where the eigenvalues
based on the classical theory [11] are added for comparison. The natural frequencies are calculated
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Table 1
Convergence test of the non-dimensionalized frequency parameter A; of the Timoshenko beam as the number of the
collocation points N increases (clamped—clamped boundary condition, v = 0.3, o = 5/6, h/L = 0.01)

Mode N =10 N=15 N =20 N =25 N =30 N =35 N =40
1 4.72840 4.72840 4.72840 4.72840 4.72840 4.72840 4.72840
2 7.84691 7.84690 7.84690 7.84690 7.84690 7.84690 7.84690
3 10.9827 10.9800 10.9800 10.9800 10.9800 10.9800 10.9800
4 14.1132 14.1062 14.1062 14.1062 14.1062 14.1062 14.1062
5 18.1397 17.2246 17.2246 17.2246 17.2246 17.2246 17.2246
6 21.5723 20.3422 20.3338 20.3338 20.3338 20.3338 20.3338
7 38.0443 23.4481 23.4325 23.4325 23.4325 23.4325 23.4325
8 42.2513 27.1739 26.5192 26.5192 26.5192 26.5192 26.5192
9 — 30.4163 29.6033 29.5926 29.5926 29.5926 29.5926
10 — 40.1211 32.6684 32.6515 32.6514 32.6514 32.6514
11 — 43.8761 36.2185 35.6947 35.6946 35.6946 35.6946
12 — 79.1294 39.3662 38.7331 38.7209 38.7209 38.7209
13 — 83.0320 46.4220 41.7474 41.7294 41.7293 41.7293
14 — — 49.8430 45.1366 44.7191 44.7189 44.7189
15 — — 68.0861 48.1952 47.7008 47.6888 47.6888

Table 2

Non-dimensionalized frequency parameter /; of the Timoshenko beam (clamped—-clamped boundary condition, v = 0.3,
o=15/6, N =235)

Mode  Classical theory  //L

0.002 0.005 0.01 0.02 0.05 0.1 0.2
1 4.73004 4.72998 4.72963 4.72840 4.72350 4.68991 4.57955 4.24201
2 7.85320 7.85295 7.85163 7.84690 7.82817 7.70352 7.33122 6.41794
3 10.9956 10.9950 10.9917 10.9800 10.9341 10.6401 9.85611 8.28532
4 14.1372 14.1359 14.1294 14.1062 14.0154 13.4611 12.1454 9.90372
5 17.2788 17.2766 17.2651 17.2246 17.0679 16.1590 14.2324 11.3487
6 20.4204 20.4168 20.3985 20.3338 20.0868 18.7318 16.1487 12.6402
7 23.5619 23.5567 23.5292 23.4325 23.0682 21.1825 17.9215 13.4567
8 26.7035 26.6960 26.6567 26.5192 26.0086 23.5168 19.5723 13.8101
9 29.8451 29.8348 29.7808 29.5926 28.9052 25.7421 21.1185 14.4806
10 32.9867 32.9729 32.9009 32.6514 31.7558 27.8662 22.5735 14.9383
11 36.1283 36.1103 36.0168 35.6946 34.5587 29.8969 23.9479 15.6996
12 39.2699 39.2470 39.1281 38.7209 37.3126 31.8418 25.2479 16.0040
13 42.4115 42.3829 42.2345 41.7293 40.0169 33.7078 26.2831 16.9621
14 45.5531 45.5178 45.3355 44.7189 42.6712 35.5011 26.4595 16.9999
15 48.6947 48.6519 48.4308 47.6888 45.2754 37.2275 26.9237 17.9357

for different thickness-to-length ratios from /4/L = 0.002 to 0.2. These results show that the
Timoshenko beam results are very close to the Bernoulli-Euler results when //L is less than 0.01.
As h/L grows larger, however, the computed natural frequencies tend to show some quantitative
differences from the Bernoulli-Euler results.
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Table 3
Non-dimensionalized frequency parameter 4; of the Timoshenko beam (pinned—pinned boundary condition, v = 0.3,
o=5/6, N =35)

Mode  Classical theory  //L

0.002 0.005 0.01 0.02 0.05 0.1 0.2

1 3.14159 3.14158 3.14153 3.14133 3.14053 3.13498 3.11568 3.04533
2 6.28319 6.28310 6.28265 6.28106 6.27471 6.23136 6.09066 5.67155
3 9.42478 9.42449 9.42298 9.41761 9.39632 9.25537 8.84052 7.83952
4 12.5664 12.5657 12.5621 12.5494 12.4994 12.1813 11.3431 9.65709
5 15.7080 15.7066 15.6997 15.6749 15.5784 14.9926 13.6132 11.2220
6 18.8496 18.8473 18.8352 18.7926 18.6282 17.6810 15.6790 12.6022
7 21.9911 21.9875 21.9684 21.9011 21.6443 20.2447 17.5705 13.0323
8 25.1327 25.1273 25.0988 24.9988 24.6227 22.6862 19.3142 13.4443
9 28.2743 28.2666 28.2261 28.0845 27.5599 25.0111 20.9325 13.8433
10 31.4159 31.4053 31.3498 31.1568 30.4533 27.2263 22.4441 14.4378
11 34.5575 34.5434 34.4697 34.2145 33.3006 29.3394 23.8639 14.9766
12 37.6991 37.6807 37.5853 37.2565 36.1001 31.3581 25.2044 15.6676
13 40.8407 40.8174 40.6962 40.2815 38.8507 33.2896 26.0647 16.0241
14 43.9823 43.9531 43.8021 43.2886 41.5517 35.1410 26.2814 16.9584
15 47.1239 47.0880 46.9027 46.2769 44.2026 36.9186 26.4758 17.0019
Table 4

Non-dimensionalized frequency parameter 4; of the Timoshenko beam (free—free boundary condition, v = 0.3, & = 5/6,
N = 35)

Mode  Classical theory  //L

0.002 0.005 0.01 0.02 0.05 0.1 0.2

1 4.73004 4.73000 4.72982 4.72918 4.72659 4.70873 4.64849 4.44958
2 7.85320 7.85304 7.85217 7.84908 7.83679 7.75404 7.49719 6.80257
3 10.9956 10.9952 10.9928 10.9843 10.9508 10.7332 10.1255 8.77287
4 14.1372 14.1362 14.1311 14.1131 14.0426 13.6040 12.5076 10.4094
5 17.2788 17.2770 17.2678 17.2350 17.1078 16.3550 14.6682 11.7942
6 20.4204 20.4174 20.4022 20.3483 20.1415 18.9813 16.6358 12.8163
7 23.5619 23.5575 23.5341 23.4516 23.1394 21.4834 18.4375 13.5584
8 26.7035 26.6970 26.6630 26.5436 26.0979 23.8654 20.0959 13.6520
9 29.8451 29.8360 29.7885 29.6228 29.0138 26.1335 21.6283 14.6971
10 32.9867 32.9744 32.9104 32.6881 31.8846 28.2949 23.0452 14.7384
11 36.1283 36.1122 36.0282 35.7382 34.7084 30.3571 24.3472 15.8190
12 39.2699 39.2492 39.1415 38.7719 37.4839 32.3275 25.5006 159135
13 42.4115 42.3854 42.2500 41.7882 40.2099 34.2132 26.2976 16.9742
14 45.5531 45.5207 45.3534 44.7861 42.8861 36.0205 26.3874 16.9918

15 48.6947 48.6552 48.4512 47.7647 45.5121 37.7554 27.1340 17.9829
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Table 5
Non-dimensionalized frequency parameter 4; of the Timoshenko beam (pinned-sliding boundary condition, v = 0.3,
o=5/6, N =35)

Mode  Classical theory  //L

0.002 0.005 0.01 0.02 0.05 0.1 0.2
1 1.57080 1.57080 1.57080 1.57076 1.57066 1.56997 1.56749 1.55784
2 4.71239 4.71235 4.71216 4.71149 4.70880 4.69027 4.62769 4.42026
3 7.85398 7.85382 7.85294 7.84983 7.83746 7.75423 7.49632 6.80658
4 10.9956 10.9951 10.9927 10.9842 10.9505 10.7319 10.1223 8.78525
5 14.1372 14.1362 14.1311 14.1130 14.0423 13.6020 12.5056 10.4663
6 17.2788 17.2770 17.2677 17.2348 17.1073 16.3524 14.6697 11.9320
7 20.4204 20.4174 20.4021 20.3481 20.1408 18.9784 16.6448 13.1407
8 23.5619 23.5575 23.5340 23.4514 23.1384 21.4804 18.4593 13.2379
9 26.7035 26.6970 26.6629 26.5432 26.0966 23.8628 20.1378 13.8936
10 29.8451 29.8360 29.7884 29.6224 29.0123 26.1320 21.7007 14.4219
11 32.9867 32.9744 32.9103 32.6876 31.8828 28.2952 23.1646 15.0377
12 36.1283 36.1121 36.0280 35.7375 34.7064 30.3601 24.5434 15.5100
13 39.2699 39.2492 39.1413 38.7712 37.4816 32.3343 25.8482 16.3112
14 42.4115 42.3854 42.2498 41.7874 40.2074 34.2249 26.1196 16.5209
15 45.5531 45.5207 45.3531 44.7852 42.8834 36.0386 26.5417 17.4685

3. Axisymmetric Mindlin plates

The eigenvalue problem of the axisymmetric vibration of circular Mindlin plates can be solved
through the same procedure as the Timoshenko beam problem. The equations of motion of a
homogeneous, isotropic axisymmetric circular plate based on the Mindlin theory are

oM, 1 foad 4
or +;(M,—M@)—Q—plw,
o0 1 oW
~0 = ph—— 2
o + r 0= ph ERR (25)

where the transverse deflection W (r,?) and the bending rotation normal to the midplane in the
radial direction ¥(r, ¢) are the dependent variables. The stress resultants M,, My and Q are defined

by
or r

'd oY
My :D<——|—v—),
r or

0= KZGh<‘P+aaL:/>, (26)

where D = Eh*/12(1 — v?) is the flexural rigidity, and x?> = n%>/12 is the shear correction factor.
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Assuming the sinusoidal motion in time

Y(r,t) = Y(r)cos wt,

W (r,t) = w(r) cos ot (27)
the substitution of Eq. (26) into Eq. (25) yields

dy 1dy (1  «*Gh K> Gh dw , pl
@ (72 )‘”— p &~ “p”
dy ¢ d®w ldw , P
—w? L 2
dr+ +dr2+rdr 26" (28)

We consider the following boundary conditions:
clamped: w=0, =0,
simply supported: w =0, M, =0,
free: M, =0, Q=0. (29)
The distance from the origin in a circular plate, r, can be normalized as

z:%emJL (30)

where R is the radius of the circular plate, and Eq. (28) becomes

1 «x*Gh x*>Gh 5 pl
z‘p”+ V- <2R2 >lﬂ W= ot
1 ! 1 1 /" 1 ! 2 P
_ — — — W= —w——w. 1
Rzp —i—ZRlp—i-sz +2R2W il (31)

Fornberg [12] recommended that in the axisymmetric analysis using the pseudospectral method it
is advantageous to extend the range of the independent variable over [—1, 1] and then to use the
symmetry and antisymmetry to reduce the actual calculations to within [0, 1]. The conditions at
the center of the plate for the axisymmetric vibration are =0 and Q = 0. The boundary
conditions at z = 0 are satisfied when the approximations of y/(z) and w(z) are given by

N N+1
VR RYE) =D a2,
n=1
N+1
W@ RW(E) = Y baTona(2). (32)
n=1

The number of collocation points is less than that of expansion terms in Eq. (32) by one because
the conditions at z = 0 have already been considered, and the collocation points are defined by

n(2i—1)

v i=1,...,N. (33)

Z; = COS
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The eigenfunction expansions (32) are substituted into Eq. (31) and are collocated at z; to yield
N+1

1 1 1 x> Gh
Z an{ﬁ Ty, 1(zi) + R 75, 1(z) — <ﬁ + T) T2n1(Zi)}
n=1 ! i

N+l

K ol
baTs, 5(z1) = —0* =Y a, Ty 1(2)),
’D 2 T D 2

N+1 1 1 , p Nl
b,, =5 1 i T; i - - e b,,T,,, i) :1,,N 34
+ Z: {Rz m-21Z )+ R 2n72(2 )} W 26 ; n-2(21) l (34)

n=1

The eigenvalue problem (34) can be written in the matrix form Eq. (14), where the vector {d'} is
redefined by

{d'} = {ani1byi}, (35)

and the size of matrices [H'] and [ST] is (2N x 2). The total number of unknowns in {d} and {d'}
is 2N + 2, whereas the number of equations in Eq. (34) is 2N. The remaining two equations are
obtained from the boundary conditions. When eigenfunction approximations (32) are substituted
into Eq. (29), the boundary conditions are expressed as follows:
clamped boundary condition:
N+l N+1

> anTo () =0, > b,Tr (1) =0, (36)
n=1 n=1
simply supported boundary condition:
N+1 NA]
Z an{Ténfl(l) + VT2n71(1)} = 0, Z bnT2n72(1) = 0, (37)
n=1 n=1
free boundary condition:
N+1
Z an{Ténfl(l) + VTanl(l)} = 0:
n=1
N+1 b
> {anTznl(l) + % Tgn2(1)} =0. (38)
n=1

Each of the boundary conditions (36)—(38) can be written in the matrix form (21), and the
eigenvalue problem (34) is reformulated into the matrix form (23). Computational results with
N = 35 for clamped, simply supported and free boundary conditions are given in Tables 6-8,
where the eigenvalues based on the classical theory [13] are added for comparison. The natural
frequencies are calculated for different thickness-to-radius ratios from /4/R = 0.005 to 0.25.
Results show good agreement with the thin plate results when A/R is small, and deviate
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Table 6
Non-dimensionalized frequency parameter ﬂvf of the axisymmetric vibration of the Mindlin plate (clamped boundary
condition, v = 0.3, N = 35)

Mode Classical theory //R

0.005 0.01 0.02 0.05 0.1 0.15 0.2 0.25

1 10.2158 10.215 10.213 10.204 10.145 9.9408 9.6286 9.2400 8.8068
2 39.771 39.762 39.733 39.620 38.855 36.479 33.393 30.211 27.253
3 89.104 89.060 88.926 88.401 84.995 75.664 65.551 56.682 49.420
4 158.183 158.05 157.65 156.08 146.40 123.32 102.09 85.571 73.054
5 247.01 246.69 245.74 242.06 220.73 176.42 140.93 115.56 97.198
6 355.568 354.92 353.00 345.64 305.71 232.97 180.99 145.94 117.90
7 483.872 482.69 479.19 466.04 399.32 291.71 221.62 174.97 122.43
8 631.914 629.91 624.05 602.37 499.82 351.82 262.45 178.76 144.42
9 799.702 796.52 787.27 753.72 605.79  412.77 301.11 205.32 148.75
10 987.216 982.42 968.52 919.15 716.07  474.18 305.15 210.53 170.38
11 1187.5 1167.4 1097.7 829.74 535.81 336.52 237.46 181.05
12 1411.7 1383.6 1288.4 946.07 597.43 345.59 248.18 195.12
13 1654.8 1616.7 1490.5 1064.5 657.61 380.88 268.60 216.40
14 1916.7 1866.3 1702.9 1184.5 662.37 388.16 290.67 220.58
15 2197.4 2131.8 1924.8 1305.7 698.63 425.43 299.71 243.02
Table 7

Non-dimensionalized frequency parameter /lf of the axisymmetric vibration of the Mindlin plate (simply supported
boundary condition, v = 0.3, N = 395)

Mode Classical theory //R

0.005 0.01 0.02 0.05 0.1 0.15 0.2 0.25

1 4.977 4.9349 4.9345 4.9335 4.9247 4.8938 4.8440 4.7773 4.6963
2 29.76 29.716 29.704 29.656 29.323 28.240 26.715 24.994 23.254
3 74.20 74.131 74.054 73.752 71.756 65.942 59.062 52.514 46.775
4 138.34 138.23 137.96 136.92 130.35 113.57 96.775 82.766 71.603
5 221.99 221.30 218.65 202.81 167.53 136.98 113.87 96.609
6 325.37 323.89 318.28 286.79 225.34 178.23 145.13 108.27
7 448.29 445.52 435.05 380.13 285.44 219.86 166.29 121.50
8 590.71 585.93 568.13 480.94 346.83 261.51 176.28 131.65
9 752.54 744.82 716.60 587.65 408.91 291.55 191.38 146.17
10 933.71 921.89 879.54 698.97 471.31 303.05 207.23 163.30
11 1134.1 1116.8 1056.0 813.85 533.80 318.34 227.28 170.65
12 1353.6 1329.1 1245.0 931.50 596.23 344.39 237.98 194.94
13 1592.1 1558.5 1445.6 1051.2 649.28 359.27 268.49 198.98
14 1849.6 1804.5 1657.0 1172.6 658.55 385.53 269.03 219.11

2125.7 2066.7 1878.2 1295.1 677.58 408.98 298.91 236.92

—_
(9]
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Table 8
Non-dimensionalized frequency parameter Zf of the axisymmetric vibration of the Mindlin plates (free boundary
condition, v = 0.3, N = 35)

Mode Classical theory //R

0.005 0.01 0.02 0.05 0.1 0.15 0.2 0.25

1 9.084 9.0028 9.0017 8.9976 8.9686 8.8679 8.7095 8.5051 8.2674
2 38.55 38.436 38.416 38.335 37.787 36.041 33.674 31.111 28.605
3 87.80 87.715 87.609 87.189 84.443 76.676 67.827 59.645 52.584
4 157.0 156.70 156.37 155.04 146.76 126.27 106.40 90.059 76.936
5 245.9 245.35 244.53 241.31 222.38 181.46 146.83 120.57 99.545
6 354.6 353.61 351.89 345.31 308.98 239.98 187.79 149.63 114.53
7 483.1 481.42 478.24 466.27 404.44 300.38 228.39 171.18 126.34
8 631.0 628.70 623.31 603.32 506.96 361.73 267.32 183.36 138.59
9 798.6 795.37 786.79 755.54 615.01 423.41 297.08 199.04 154.77
10 986.0 981.36 968.36 922.00 727.37 484.92 310.03 217.13 166.06
11 1186.5 1167.7 1101.7 843.04 545.74 330.92 231.82 182.35
12 1410.8 1384.3 1293.8 961.26 604.75 351.70 251.78 197.61
13 1654.1 1617.9 1497.3 1081.4 653.92 372.16 268.69 208.73
14 1916.2 1868.1 1711.3 1202.9 667.41 397.54 285.12 228.95
15 2197.0 2134.3 1934.9 1325.5 695.93 416.63 308.16 238.49

considerably from those of the Kirchhoff plate as 4#/R grows larger. The numbers given in
Tables 6-8 are non-dimensionalized frequency parameters /1? defined as
RZ

/D/ph’

4. Conclusions

A pseudospectral method using the Chebyshev polynomials as the basis functions is applied to
the free vibration analysis of Timoshenko beams and radially symmetric Mindlin plates. Because
the formulation is so simple and efficient, allowing the process of calculating weighting
coefficients and characteristic polynomials to be avoided, this method has merits over other semi-
analytic methods. Rapid convergence, good accuracy as well as the conceptual simplicity
characterize the pseudospectral method. The results from this method agree with those of
Bernoulli-Euler beams and Kirchhoff plates when the thickness-to-length (radius) ratio is very
small, however, deviate considerably as the thickness-to-length (radius) ratio grows larger.
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