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Abstract

An electro-magnetic controllable dry friction damper has been designed and numerically simulated. The
gust response of a three degree-of-freedom typical airfoil section with a control surface using this non-linear
damper has been studied theoretically. The effects of the different gust excitations and parameter variations
of the non-linear damper on the non-linear aeroelastic response are discussed. The numerical results show
the present electro-magnetic dry friction damper can be used to alleviate the dynamic response to both a
periodic and a linear frequency sweep gust excitation, especially for the plunge and pitch responses. The
results are also verified by an experimental investigation in a wind tunnel presented in a companion paper,
Part 2.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, several types of semi-active electrorheological (ER) or magnetorheological (MR)
dampers have been used for vibration attenuation of various dynamical systems. It has been
shown that these dampers, when combined with appropriate control strategies, can be used to
achieve improved performance of the dynamical system [1–3]. The design and applications of MR
devices have been an area of recent interest due to the controllable characteristics of MR
materials. Ref. [4] demonstrated how some of the key characteristics of MR fluids can be
improved, such as increasing their yield stress, thereby permitting a wider variety of applications.
Refs. [5–8] described work on modelling the dynamic characteristics of MR devices through a
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variety of approaches. New approaches to developing MR devices are being explored and new
designs are being tested, e.g., Refs. [9,10]. Also there are several important patents on MR devices.
However, for most ER or MR dampers, the structural parameters of the dampers, such as

cylinder piston, magnetic flux and coil masses and the magnetic flux shear stiffness, significantly
change the characteristics of the dynamical system. Another property of these dampers is the dry
friction force caused by the seal ring. This force has almost a constant value and is per se
uncontrollable.
The present MR damper design follows that of Ref. [11], although we did not use a magnetic

flux with the fluid material to form the magnetic circuit. A simple damping device is constructed to
generate a controllable dry friction force in an aeroelastic model. This damping device is called an
electro-magnetic dry friction damper (EMD). The EMD device provides a non-linear dry friction
damping force which can be represented by

fD ¼ fdðIÞ tanh
’h

v0
þ

h

d0

� �
;

where fd ðIÞ is an experimentally determined dry friction force amplitude which is dependent upon
the current ðIÞ of the EMD magnetic circuit and h and ’h are the input displacement and velocity
variables.
A theoretical/experimental study of the self-excited aeroelastic response of a three degree-of-

freedom (d.o.f.) typical airfoil section with a freeplay in the control surface and non-linear
stiffness in plunge or torsion directions has been made by the Duke team as well as other
investigators [12]. For a summary of the literature on non-linear aeroelasticity and corresponding
references, see Ref. [13]. Here, a first theoretical (Part 1)/experimental (Part 2) study of the non-
linear aeroelastic response to a gust excitation for a three d.o.f. typical airfoil with an electro-
magnetic dry friction damper is conducted. The theoretical aerodynamic forces are obtained from
Peters’ finite-state airloads model, see Ref. [14]. In the present paper a time-domain computer
simulation method proposed in Ref. [15] is extended to calculate non-linear gust response when
the time-correlated gust loads are known. Of course, the Peters’ finite-state airloads model
considers the effect of gust loads on the aerodynamics as well as the motion-induced
aerodynamics. Sinusoidal and linear frequency sweep gust loads are used. The present theoretical
results may be helpful in better understanding physically the alleviation of a typical airfoil section
response due to gust loads using an electro-magnetic dry friction damper.

2. Numerical model and controllable EMD damper

The numerical (and experimental) model consists of a two-dimensional NACA 0012
rectangular wing model mounted on support mechanisms including the EMD dampers which
are placed outside of the wind tunnel. The wing model includes two parts: a main wing and a
control surface or flap which is attached at the trailing edge of the main wing. The pitch axis of the
main wing is located at the quarter-chord. The support mechanism at each end of the rectangular
wing is a bi-cantilevered beam which provides the plunge stiffness. Two EMD dampers are
symmetrically mounted on both the top and bottom of the wind tunnel and the output end of each
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EMD damper is connected to the free end of the bi-cantilever beam through a steel plate and the
magnetic powder. A schematic of the experimental model is shown in Fig. 1.
The configuration of the EMD damper is shown in Fig. 2(a). The damping device consists of

three parts: the first is an electro-magnetic generator caused by a spool wire in a low-carbon steel
bar with two low-carbon steel blocks at the bar ends. The second is a low-carbon steel plate which
is fixed to the plunge spring system of the aeroelastic model. There is a gap between the steel
blocks of the electro-magnetic generator and the steel plate. The third is the special magnetic
material powder (carbonyl iron powder) which fills the gap. The carbonyl iron powder (BASF
#819011, Mount Olive, NJ) is mono-disperse with a mean diameter of about five microns. In this
system, a controllable dry friction force can be obtained that depends upon the dimensions of the
damping device and the input current. The basic principle for the controllable dry friction force is
shown in Fig. 2(b). When no magnetic field acts, the powder (magnetic cell) is randomly dispersed
in the gap as given in Part 1; a small dry friction force is provided by the dry friction between the
magnetic powder and the steel surfaces. When the magnetic field acts, the powder aggregates like
a ‘‘bent-wall’’ as shown in Part 2. Therefore, the layered shear friction in the powder itself and
also between the powder and the steel surfaces increases. How much it increases depends upon the
driving current and the structural parameters of the damping device.
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Fig. 1. Schematic of the aeroelastic model in the wind tunnel.
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3. Gust loads

Atmospheric turbulence creates a gust load which can be represented by two different
mathematical descriptions. One is associated with a discrete gust representation usually of a
deterministic nature. On the other hand, continuous turbulence can be represented by a stochastic
process. In the present work, a discrete gust representation is used.
In general, atmospheric turbulence is considered to be a function of three spatial dimensions

and time. In this paper, the atmospheric turbulence velocity field is composed of only a lateral
component and the frozen gust assumption is used [16]. For the frozen gust, the gust field is given
by

wgðx0Þ ¼ wgðx � UtÞ;

where x; t are co-ordinates fixed with respect to airfoil and x0; t0 are co-ordinates fixed with respect
to the fluid atmosphere.
Since x and t only appear in the above combination, we may consider the alternative functional

form

wg ¼ wg t �
x

U

� �
:
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Fig. 2. (a) EMD damper configuration and (b) basic theoretical model.
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Following thin airfoil theory, the lateral gust velocity is expanded as

wg ¼
XN
n¼0

wgn cosðnfÞ; ð1Þ

where f ¼ cos�1 ðx=bÞ:
We assume that at t ¼ t0; the leading-edge of airfoil has a gust velocity

wgl ¼ wg t0 þ
b

U

� �
ðx ¼ �bÞ;

and at the trailing-edge of airfoil the gust velocity is

wgt ¼ wg t0 �
b

U

� �
ðx ¼ bÞ:

If the gust is known as a discrete time series with a constant sampling time step length, Dt; the gust
at any chordwise position of the airfoil ðxjÞ is

wgcðt0Þ ¼ wg t0 þ
xj

U

� �
¼ wgðt0 þ jDtÞ;

where j is an integral number starting from the leading-edge ðj ¼ 1Þ and ending at the trailing-edge
ðj ¼ nsÞ; ns ¼ 2b=UDt:
At t ¼ t0; the wgn coefficients of Eq. (1) can be determined by

wg0ðt0Þ ¼
1

p

Z p

0

wgcðt0; xÞ df ¼
1

p

Z b

�b

wgcðt0Þ
b sin ðcos�1 ðx=bÞÞ

dx ¼
1

bp

Xns

j¼1

wgcðt0;xjÞDx

sinðcos�1 fjÞ
; ð2Þ

where Dx ¼ UDt; xj ¼ jDx and fj ¼ ðxj � bÞ=b; and

wgnðt0Þ ¼
2

p

Z p

0

wgcðt0; xÞcos nf df ¼
2

bp

Xns

j¼1

wgcðt0; xjÞ cosðn cos�1 fjÞDx

sinðcos�1 fjÞ
: ð3Þ

Thus, wg0ðt0Þ and wgnðt0Þ can be determined using a standard numerical integration code. When
we use a time integral method to solve the non-linear state equations of motion, those coefficients
are evaluated at each time step.
In this paper, two special gusts are used. One is a continuous sinusoidal gust. It is expressed as

wgðtÞ ¼ %wgs sinot; ð4Þ

where o is the gust excitation frequency. The other is a continuous frequency sweep gust and it is
expressed as

wgðtÞ ¼ %wgs sin o1 þ
o2 � o1

2T
t

� �
t; ð5Þ

where o1;o2 and T are the minimum frequency, maximum frequency, and the sweep duration
respectively.
For a sinusoidal gust, the wgn coefficients of Eq. (1) are determined by

wg0ðt0Þ ¼
1

p

Z p

0
%wgs sinðot � DcÞ df ¼

%wgs

bp
½C0 sinot � S0 cosot�; ð6Þ
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where

C0 ¼
Xns

j¼1

cosDcDx

sinðcos�1 fjÞ
; S0 ¼

Xns

j¼1

sin DcDx

sinðcos�1 fjÞ
;

and for nX1;

wgnðt0Þ ¼
2

p

Z p

0
%wgs sinðot � DcÞcos nf df ¼

2 %wgs

bp
½Cn sinot � Sn cosot�; ð7Þ

where

Cn ¼
Xns

j¼1

cosDc cosðn cos�1 fjÞDx

sinðcos�1 fjÞ
; Sn ¼

Xns

j¼1

sin Dc cos ðn cos�1 fjÞDx

sinðcos�1 fjÞ
;

and Dc is a phase difference which is defined as Dc ¼ xj=lg and lg is the gust wavelength which is
defined as lg ¼ U=o: Note that the integral terms, C0;Cn;S0 and Sn do not need to be evaluated at
each time step.

4. State-space theoretical model

A schematic of a typical airfoil section with an electro-magnet dry friction damper is shown in
Fig. 1. The aeroelastic typical section has three d.o.f. plunge ðhÞ; torsion ðaÞ of the main wing and
rotation ðbÞ of the control surface about the point, c.
The differential equations of structural motion expressing the equilibrium of the moments

about point a of the entire airfoil, of the moments on the control surface about point c; and of the
vertical forces on the airfoil are as follows:

Ia .aþ Ib .bþ bðc � aÞSb .bþ Sa .h þ Ca ’aþ Kaa ¼ Ma;

Ia .aþ Ib .bþ Ia .aþ bðc � aÞSb .aþ Sb .h þ Cb ’bþ Kbb ¼ Mb;

M .h þ Sa .aþ Sb .bþ Ch
’h þ Khh ¼ L � fDdðy � l=2Þ � fDdðy þ l=2Þ;

fD ¼ fdðIÞ tanh
’h

v0
þ

h

d0

� �
: ð8Þ

Note that the damper forces act at the wing elastic axis.
Eq. (8) may be expressed in a compact matrix form as

½Ms�f .yg þ ½Cs�f ’yg þ ½Ks�fyg ¼ ½S1�ðfFag � fFNgÞ; ð9Þ

where fyg is expressed as fh; a; bgT; fFNg ¼ ffdðIÞ tanhð ’h=v0 þ h=d0Þ=l; 0; 0gT;

½S1� ¼

1=Mrb 0 0

0 1=Mrb
2 0

0 0 1=Mrb
2

2
64

3
75;

½Ks� ¼

Kh 0 0

0 Ka 0

0 0 Kb

2
64

3
75;
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and ½Cs� is the structural damping matrix. An attempt has been made here to include structural
damping in the theoretical model in a logical and physically meaningful way using viscous modal
damping coefficients, see Ref. [15].
The non-linear damping force fdðIÞ is the yield force and is the only parameter controlled by the

input current.
The right side of Eq. (8) forms a vector of aerodynamic forces, fFag ¼ fL;Ma;Mbg

T: We use
Peters’ finite-state incompressible airloads model for a deformable airfoil [14] to determine these
aerodynamic forces in a matrix form. They are

½S1�fFag ¼ l0fPg � ½Ka�fyg � ½Ca�f ’yg � ½Ma�f .yg þ ½G1�fwgng þ ½G2�f ’wgng: ð10Þ

For matrices fPg; ½Ka�; ½Ca�; ½Ma�; see Ref. [14] and for ½G1�; ½G2� see Ref. [17].
An approximate l0 is determined by

l0E
1

2

XN

n¼1

bnln: ð11Þ

The closed-form expressions for the bn are given in Ref. [18, Appendix C].
The inflow, ln; can be determined by an inflow matrix equation (see Ref. [18]). It is

½A�f’lg þ
U

b
flg ¼ ½B1�f .yg þ

U

b
½B2�f ’yg þ ½Bg�f ’wgng; ð12Þ

where the matrix ½A� is given in Ref. [18] and ½B1�; ½B2�; ½Bg� is given in Ref. [17].
Eq. (12) is basically an equation for the time evolution of vortex transport in the wake of the

airfoil. Combining Eqs. (8)–(12), and defining Xe ¼ f ’y; y; lgT; we obtain a set of state-space
equations with six structural states and N inflow states. These equations are

’Xe ¼ AeXe þ Be; ð13Þ

where

Ae ¼

Me Ce 0

0 Me 0

�B1 �U
b
B2 A

2
64

3
75
�1

0 �Ke Bn

Me 0 0

0 0 �U
b
I

2
64

3
75;

Be ¼

Me Ce 0

0 Me 0

�B1 �U
b
B2 A

2
64

3
75
�1

�Fd

0

0

8><
>:

9>=
>;þ ½Ge1�fwgng þ ½Ge2�f ’wgng

0
B@

1
CA;

and where sub-matrices Me; Ke and Ce are the equivalent mass, stiffness and damping matrices
comprised of structural and aerodynamic components, Me ¼ ½Ms� þ ½Ma�; Ce ¼ ½Cs� þ ½Ca�; Ke ¼
½Ks� þ ½Ka� and the sub-matrices, Bn;Ge1;Ge2; are given in Ref. [17].

5. Numerical results

The parameters of the numerical model come from the experimental model previously described
in Ref. [15]. The nominal values for the inertial, stiffness, and damping parameters of the
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experimental structural system were measured. A summary of the system parameters is given in
Table 1. The theoretical structural natural frequencies (without the EMD damping device) are
oa ¼ 7:91 Hz; ob ¼ 17:08 Hz and oh ¼ 4:07 Hz: Two sets of the EMD damper parameters are
included in the numerical study, i.e., v0 ¼ 0:13 cm=s; d0 ¼ 0:024 cm; and v0 ¼ 2:2 cm=s; d0 ¼
0:08 cm: The damping force fd varies from 0 to 2:0 N depending on the input current.

5.1. Non-linear damping force of EMD damper

The non-linear damping force of EMD damper can be represented by

fD ¼ fdðIÞ tanh
’h

v0
þ

h

d0

� �
: ð14Þ

The non-linear damping force of the EMD damper as described by Eq. (14) is shown in Fig. 3
for fD vs. ’h and fD vs. h: In this figure, the input displacement, h; is a sinusoidal motion. The
sinusoidal excitation frequency and amplitude are chosen as 5 Hz and 0:005 m; respectively. Three
different input currents, I1; I2 and I3 corresponding to fd ðIÞ ¼ 1; 5; 10 N are applied to the EMD
damper for v0 ¼ 0:13 cm=s; d0 ¼ 0:024 cm: The output damping force has a hysteretic behavior
and the damping force level increases as the input current Ii increases.
The non-linear damping force behavior also depends on the parameters v0 and d0 for a fixed

input current, I : When the input is a single harmonic motion with an amplitude, hs ¼ 0:5 cm; and
a frequency, o ¼ 5 Hz; the parameters are chosen to be fd ¼ 6 N and d0-N; say d0 ¼ 105 cm:
Several v0 were considered with a nominal value of v0 ¼ 0:13 cm=s: However 10� v0; 50� v0 and
100� v0 were also studied. The results are shown in Fig. 4. It is seen that the hysteretic behavior

ARTICLE IN PRESS

Table 1

Various parameters

Span (l) 0:52 m

Semi-chord (b) 0.127

Elastic axis (a) �0:0625 m

Hinge line (c) 0:0625 m

Mass of wing 0:713 kg

Mass of aileron 0:18597 kg

Mass/length of wing-aileron 1:73 kg=m
(Mass of support blocks) ð0:586� 2 kgÞ
Ia (per span) 0:0185 kgm

Ib (per span) 0:000254 kgm

Sa (per span) 0:0726 kg

Sb (per span) 0:00395 kg

Ka (per span) 42:8 kgm=s2

Kb (per span) 3:3 kgm=s2

Kh (per span) 2755:4 kgm=s2

za (half-power) 0.0175

zb (half-power) 0.016

zh (half-power) 0.012
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becomes more evident when v0 increases, but the damping force level decreases. Similar results are
obtained for the nominal parameters v0-N; say v0 ¼ 105 cm=s and d0 ¼ 0:024 cm when d0 is
increased to 100� d0: The results are shown in Fig. 5.
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Fig. 3. Non-linear damping force characteristics for three different input currents: (a) damping force vs. displacement,

(b) damping force vs. velocity.

Fig. 4. Non-linear damping force characteristics for different parameters, v0; in the open-loop system: (a) damping

force vs. displacement, (b) damping force vs. velocity; —, v0 ¼ 0:13 cm=s; ?; 10v0; -�-, 50v0; - -, 100v0:

Fig. 5. Non-linear damping force characteristics for different parameters, d0; in the open-loop system: (a) damping

force vs. displacement, (b) damping force vs. velocity; —, d0 ¼ 0:024 cm; ?; 10d0; -�-, 50d0; - -, 100d0:
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5.2. Stability of the linear aeroelastic model

When the non-linear damping force FN in Eq. (13) is set to zero, a linear aeroelastic model is
obtained. The aeroelastic eigenvalues obtained from solving these equations determine the
stability of the system. When the real part of any one eigenvalue, l; becomes positive, the entire
system becomes unstable.
Figs. 6(a) and (b) show a typical graphical representation of the eigenanalysis in the form of real

eigenvalues ReðliÞ (aeroelastic damping) vs. the flow velocity and also a root-locus plot for the
linear system. There is an intersection of ReðliÞ with the velocity axis at Uf ¼ 28:6 m=s; the critical
flutter velocity, as shown in Fig. 6(a) with a corresponding flutter oscillatory frequency, of ¼
5:56 Hz; as shown in Fig. 6(b).

5.3. Non-linear response to single harmonic gust load (Case 1)

We have used a standard Runge–Kutta algorithm in conjunction with Peters’ aerodynamic
model, Eq. (13), for time integration of the non-linear equations. The flow velocity is chosen as
U ¼ 18 m=s; lower than the flutter velocity. The peak gust angle of attack is ag ¼ 1
 and the
lateral peak gust velocity is wg ¼ Uag=57:3: The EMD damper parameters are v0 ¼ 0:13 cm=s;
d0 ¼ 0:024 cm and fd ¼ 0; 0.5, 1.0 and 2 N: The results are shown in Fig. 7 for the plunge, pitch
and flap rotation r.m.s. amplitude vs. the gust excitation frequency. As shown in Fig. 7(a), the
plunge resonant frequency is 4:58 Hz: When no EMD damper is included in the system, i.e.,
fd ¼ 0; the plunge resonant r.m.s. amplitude is 1:1 cm; the corresponding pitch r.m.s. amplitude is
1:2
 and the flap rational angle is 0:68
 as shown in Figs. 7(b) and (c), respectively. The pitch
resonant frequency is 7:4 Hz and flap resonant frequency is 17 Hz: When fd ¼ 0:5 N; the plunge
resonant frequency is still 4:58 Hz; but the r.m.s amplitude decreases to 0:59 cm: The
corresponding pitch and flap responses are also decreased at this frequency from 1:2
 to 0:67


and 0:68
 to 0:37
: However, there are slight increases of their resonant frequencies. When
fd ¼ 1:0 N; the plunge response has been significantly alleviated in the dominant resonant range.
Also the pitch and flap rotation responses show alleviation except for the flap response at the flap
resonant frequency. When fd ¼ 2:0 N; the plunge motion ‘‘sticks’’. The plunge d.o.f. of the
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Fig. 6. Stability analysis of the linear aeroelastic model: (a) for real part of eigenvalue, (b) for root-locus.
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dynamic system is constrained. The pitch resonant frequency has slightly increased, i.e., from 7.4
to 7:5 Hz: The pitch resonant amplitude is significantly decreased. The flap peak responses
disappear at frequencies, 4.58 and 7:4 Hz; and slightly increases at frequency 17 Hz:
Fig. 8 shows the plunge, pitch and flap rotation time histories at frequencies 4.5, 7.4 and 17 Hz;

respectively, for several EMD damping force levels. The response motions are basically single
harmonic with some higher harmonic content for the higher levels of damping forces.
Now consider the effects of the EMD damper parameters on the gust response. The damper

parameters are v0 ¼ 0:13 cm=s; d0 ¼ 0:024 cm or v0 ¼ 2:2 cm=s; d0 ¼ 0:08 cm: The gust load is the
same as before. Fig. 9 shows the gust response using the two sets of the damper parameters for the
frequency o ¼ 4:5 Hz and fd ¼ 1 N: The form of the dry friction damping forces are somewhat
different when d0 and v0 increase, i.e., the force hysteretic behavior is changed, but the force
amplitudes are the same. The gust responses are shown in Fig. 10. Fig. 10(a) shows the plunge
response vs. time. The dashed line is the result obtained for the second set of damper parameters.
The response motion is more like a sinusoid; this is because the EMD damper force is more like a
sinusoid than a square wave; see Fig. 9. Also the response amplitude increases because the new
damper parameters provides less dry friction force in an oscillation cycle; see Fig. 9. From Fig.
10(a) it is also seen that there is a phase angle shift between two results. Fig. 10(b) shows the
damping force vs. plunge response.
A similar result is shown in Fig. 11 for the pitch response vs. time.
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Fig. 7. R.m.s. frequency response vs. the gust excitation frequency: (a) for plunge, (b) for pitch and (c) for flap

response; —, fd ¼ 0 N; ?; fd ¼ 0:5 N; -�-, fd ¼ 1:0 N; - -, fd ¼ 2:00 N:
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When the damping force amplitude, fd decreases from fd ¼ 1 to 0:5 N; the effect of the EMD
damper parameter on the gust response decreases. The results are shown in Fig. 12. Thus, all the
damper parameters, fd ; d0 and v0; are important for the alleviation of the gust response.
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Fig. 9. Input damping force for different EMD damper parameters.

Fig. 8. Time history behavior: (a) for plunge response at o ¼ 4:5 Hz; (b) for pitch response at o ¼ 7:4 Hz; and (c) for

flap response at o ¼ 17 Hz; —, fd ¼ 0 N; ?; fd ¼ 0:5 N; -�-, fd ¼ 1:0 N; - -, fd ¼ 2:00 N:
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5.4. Non-linear response to two harmonic gust load (Case 2)

The gust generator installed in the Duke University low speed wind tunnel provides a two
harmonic gust load although the second harmonic component is small. In this numerical study,
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Fig. 10. Effect of damper parameters on plunge gust response at o ¼ 4:5 Hz for fd ¼ 1 N: (a) for plunge response and

(b) for hysteretic behavior; —, d0 ¼ 0:024 cm; v0 ¼ 0:13 cm=s; ?; d0 ¼ 0:08 cm; v0 ¼ 2:2 cm=s:

Fig. 11. Effect of damper parameters on pitch gust response at o ¼ 4:5 Hz for fd ¼ 1 N: —, d0 ¼ 0:024 cm; v0 ¼
0:13 cm=s; ?; d0 ¼ 0:08 cm; v0 ¼ 2:2 cm=s:

Fig. 12. Effect of damper parameters on plunge gust response at o ¼ 4:5 Hz for fd ¼ 0:5 N: (a) for plunge response and

(b) for hysteretic behavior; —, d0 ¼ 0:024 cm; v0 ¼ 0:13 cm=s; ?; d0 ¼ 0:08 cm; v0 ¼ 2:2 cm=s:
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the continuous periodic gust is expressed as

wgðtÞ ¼ %wgs1 sinot þ %wgs2 sinð2ot þ DfÞ; ð15Þ

where o; %wgs1 are the main gust excitation frequency and peak gust velocity and %wgs2;Df are the
second peak gust velocity and the phase angle between the main and second components gust
velocities. The main peak gust angle of attack is ag ¼ 1
 and the lateral main peak gust velocity is

%wgs1 ¼ Uag=57:3: The second peak gust velocity is assumed to be 0:2 %wgs1: The measured phase
angle Df has a random behavior around a mean of zero due to the tunnel turbulence. Here a
random average is taken, i.e., Df ¼ 0:
Fig. 13 shows the plunge, pitch and flap rotation r.m.s. amplitude vs. the gust excitation

frequency. As shown in Fig. 13(a), the plunge resonant frequency is 4:58 Hz: When no EMD
damper is included in the system, i.e., fd ¼ 0; the plunge resonant r.m.s. amplitude is 1:1 cm; the
corresponding pitch r.m.s. amplitude is 1:2
 and the flap rational angle is 0:68
 as shown in Figs.
13(b) and (c), respectively. The results are the same as shown in Fig. 7. It is interesting to find
there is a second significant peak amplitude at the half plunge resonant frequency. This is due to
the second harmonic gust component excitation. The r.m.s. response amplitude is about 0:4 cm
for plunge, 0:4
 for pitch and 0:25
 for flap. The pitch resonant frequency is 7:4 Hz and flap
resonant frequency is 17 Hz: When fd ¼ 0:5 N; the plunge resonant frequency has a slight
increase, but the r.m.s. amplitude decreases to 0.7 cm though it is higher than that for the single
harmonic gust excitation (0.59 cm). The peak amplitude at the half plunge resonant frequency
obviously decreases. The corresponding pitch and flap responses are also decreased at this
frequency from 1:2
 to 0:9
 (0:67
 for a single harmonic gust) and 0:68
 to 0:48
 (0:37
 for a single
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Fig. 13. R.m.s. frequency response vs. the gust excitation frequency for two harmonic gust excitation: (a) for plunge,

(b) for pitch and (c) for flap response; —, fd ¼ 0 N; ?; fd ¼ 0:5 N; -�-, fd ¼ 1:0 N; - -, fd ¼ 2:00 N:
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harmonic gust). Unfortunately, at the pitch resonant frequency the r.m.s. amplitude increases
both for the pitch and flap responses. When fd ¼ 1:0 N; the plunge response has been significantly
alleviated in the dominant resonant range for the single harmonic gust excitation, but not for the
two harmonic gust excitation. The plunge response still has an obvious peak at o ¼ 5 Hz even
though the r.m.s. amplitude is only 0:3 cm: The corresponding pitch and flap responses are similar
to the results for fd ¼ 0:5 N: When fd ¼ 2:0 N; the plunge frequency response is almost flat with
very small r.m.s. amplitude. The pitch resonant frequency has slightly increased, i.e., from 7.4 to
7:8 Hz: There is a second significant peak amplitude at half of the pitch resonant frequency. It is
also due to the second harmonic gust component excitation. The flap peak responses disappear at
frequencies, 3.8, 5 and 7:4 Hz for fd ¼ 1:0 N and a new flap peak response is created at half of the
flap resonant frequency. This means that the present structural system has only pitch and flap
degrees of freedom, and the plunge motion ‘‘sticks’’.
Fig. 14 shows the plunge time histories (a) and FFT analysis (b) for a fundamental gust

excitation frequency, 2:25 Hz; for several EMD damping force levels. For fd ¼ 0; the response
motion includes two harmonic components with a main gust frequency, 2:25 Hz and a second
harmonic gust frequency, 4:5 Hz (note that the latter is very near the plunge natural frequency).
As seen from the FFT plot, although the fundamental gust frequency is 2:25 Hz; the response is
dominated by 4:5 Hz; the second harmonic gust frequency. As the damping force level increases,
the response obviously decreases and the motion becomes more complex. This is because the
damping force is non-linear (dry friction behavior). An interesting result is that the harmonic
frequencies of the non-linear damping force are multiples of the fundamental gust frequency as
shown in Fig. 15. Fig. 15(a) is the time history of the non-linear damping force and Fig. 15(b) is
the corresponding FFT for gust excitation at the fundamental gust frequency, 2:25 Hz; for several
EMD damping force levels. The strong non-linear damping force leads to a non-linear aeroelastic
response.
From the above theoretical analysis, it is found that the damping device provides different

contributions to the dynamic system for different gust excitation frequencies. One can define an
alleviation ratio, Zf ; for the frequency response to a periodic gust, as

Zf ¼
Z om

o0

xnonlinearðoÞ do
Z om

o0

xlinearðoÞ do;
�

ð16Þ
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Fig. 14. Plunge response and FFT analysis for o ¼ 2:25 Hz: (a) for plunge response at o ¼ 2:25 Hz and (b) for FFT

analysis; - -, fd ¼ 0 N; ?; fd ¼ 0:5 N; -�-, fd ¼ 1:0 N; —, fd ¼ 2:00 N:
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where xnonlinearðoÞ is the non-linear frequency response r.m.s. amplitude (plunge or pitch or flap) as
obtained from the aeroelastic model with an EMD damper, and xlinearðoÞ is the frequency
response r.m.s. amplitude as determined from the linear model without an EMD damper. m is a
total sample frequency number; here m ¼ 100 and o0 ¼ 0:1 Hz; om ¼ 20 Hz:
The theoretical results are shown in Fig. 16 for both the single and the two harmonic gust load.

The plunge response alleviation is very evident. The pitch response alleviation is moderate.
Although there is local maxima at some gust frequencies, the average frequency response over the
gust frequency band still decreases as the damping force level increases. The flap response
alleviation is slight.
It is also found that the response alleviation ratio, Zf ; is greater for Case 2 than for Case 1. Note

that Case 1 is defined as a single harmonic gust excitation and Case 2 as a two harmonic gust
excitation, and the fundamental gust excitation amplitude is the same, a ¼ 1
: This result can be
explained as follows. Since the area within the hysteresis loop corresponds to the energy, W ;
dissipated in the dry friction damper per one cycle of the plunge displacement, an equivalent
damping coefficient, Ceq; can be determined from the following equation (assuming a sinusoidal
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Fig. 15. Nonlinear damping force response and FFT analysis for o ¼ 2:25 Hz: (a) for damping force at o ¼ 2:25 Hz;
and (b) for FFT analysis; —, fd ¼ 2 N; -�-, fd ¼ 1:0 N; ?; fd ¼ 0:5 N:

Fig. 16. Alleviation ratio, Zf ; for the frequency response to a single and a two harmonic gust excitations. Case 1: –3–,

flap; –W–, pitch; –�–, plunge. Case 2: � � 3 � �; flap; � � W � �; pitch; � � � � �; plunge.
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plunge motion):

Ceq ¼ W

Z 2p=o

0

ð ’hÞ2 dt;

,
ð17Þ

and thus,

Ceq ¼
W

poðhsÞ
2
;

where hs is the plunge amplitude and o is the plunge frequency.
From this equation it is found the equivalent damping coefficient decreases as the plunge

amplitude increases. The response amplitude for Case 2 is larger than that for Case 1 due to an
additional second harmonic gust excitation in Case 2. Therefore the equivalent damping
coefficient decreases, i.e., the damper provides less damping to the aeroelastic system in Case 2.

5.5. Non-linear response to a sweep frequency gust load

The nominal theoretical lateral peak gust angle of attack, ag; is chosen to be 1
 for a continuous
linear frequency sweep gust load. The minimum and maximum frequencies are 0 and 40 Hz; and
the sweep duration T is 3:2 s: The initial conditions are set to zero for all time simulations.
To depict concisely the non-linear response to the sweep frequency gust, an average PSD

analysis can be used. Here, 10 PSD time simulation realizations are taken. More than 10 PSD
realizations do not change the averaged results significantly.
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Fig. 17. Gust response to a sweep frequency gust for ag ¼ 1
: (a) for plunge, (b) for pitch and (c) for flap; —, fd ¼ 0 N;
?; fd ¼ 0:5 N; -�-, fd ¼ 1:0 N; - -, fd ¼ 2:00 N:
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Firstly, linear system results are examined without the EMD damper, fd ¼ 0: The results are
shown in Figs. 17 and 18 as indicated by the solid line. Fig. 17 shows the plunge, pitch and flap
rotation time histories and Fig. 18 shows the corresponding PSD analysis for U ¼ 18 m=s: From
Fig. 18 we find the three resonant frequencies are 4.58, 7.4 and 17 Hz which are very close to the
system natural frequencies. Due to an increased aerodynamic stiffness, the first aeroelastic natural
frequency (dominated by plunge motion) is higher than the first structural natural frequency
ð4:07 HzÞ in vacuo.
The results for several different dry friction damping levels are also plotted in the Figs. 17 and

18. The plunge and pitch gust responses significantly decrease as the damping level increases.
However, the flap rotation is almost independent of the damping force. The frequency response
behavior for a sweep frequency gust load is very similar to those for a single harmonic gust load
except for the response amplitude.
Fig. 19 shows the averaged PSD for an air speed of U ¼ 18 m=s; fd ¼ 0:5 N and several

different gust strengths, ag ¼ 0:5
; 1
 and 2
: For the smaller larger gust strengths, ag ¼ 0:5
 the
structural responses are significantly alleviated. However, for the larger gust strengths, ag ¼ 2:0
;
the damping force fd ¼ 0:5 N is not enough to alleviate the structural responses.
The effects of the EMD damper parameters on the gust response are also considered in the

sweep frequency gust. The damper parameters considered are v0 ¼ 0:13 cm=s; d0 ¼ 0:024 cm or
v0 ¼ 2:2 cm=s; d0 ¼ 0:08 cm: Fig. 20 shows the averaged PSD using the two sets of the damper
parameters for fd ¼ 1 N: The response amplitude increases for the latter damper parameters. This
is because these damper parameters provide less dry friction force in a sweep cycle.
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Fig. 18. Averaged PSD analysis for a sweep frequency gust for ag ¼ 1
: (a) for plunge, (b) for pitch and (c) for flap; —,

fd ¼ 0 N; ?; fd ¼ 0:5 N; -�-, fd ¼ 1:0 N; - -, fd ¼ 1:5 N; - - - , fd ¼ 2:00 N:
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When the damping force amplitude, f0 decreases from fd ¼ 1 to 0:5 N; the effect of the EMD
damper parameter on the gust response decreases. The results are shown in Fig. 21.
One can define an alleviation ratio, Zt; for the time response to a sweep frequency gust, as

Zt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mt

Xmt

i¼1
x2

i;nonlinear

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mt

Xmt

i¼1
x2

i;linear

s,
; ð18Þ

where xi;nonlinear is the non-linear time response (plunge or pitch or flap) as obtained from the
aeroelastic model with an EMD damper, and xi;linear is the time response as determined from the
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Fig. 19. Averaged PSD analysis for the damping force fd ¼ 0:5 N and ag ¼ 0:5
; 1
; 2
: (a) for plunge, (b) for pitch and

(c) for flap; —, ag ¼ 0:5
; ?; ag ¼ 1:0
; -�-, ag ¼ 2:0
:

Fig. 20. Effect of damper parameters on response for a sweep frequency gust and for fd ¼ 1:0 N: (a) for plunge PSD

and (b) for pitch PSD; —, d0 ¼ 0:024 cm; v0 ¼ 0:13 cm=s; ?; d0 ¼ 0:08 cm; v0 ¼ 2:2 cm=s:
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linear model without an EMD damper. The number, mt; is a total sample number (time series
number); here mt ¼ 5120:
The theoretical results for the gust loads, ag ¼ 1
 and 2
 are shown in Fig. 22. The plunge and

pitch response alleviations are very evident. The flap response alleviation is slight. It is also seen
that the response alleviation is less efficient when the gust load increases from ag ¼ 1
 to 2
: The
reason is the same as described in the explanation of Fig. 16. A larger gust load leads to a larger
response amplitude and the dry friction damper provides a smaller equivalent hysteresis damping.

6. Conclusions

An electro-magnetic, controllable dry friction damper has been designed and numerically
simulated. The non-linear gust response of a three d.o.f. typical airfoil section with a control
surface using this non-linear damper has been studied theoretically. Results for both a periodic
and a linear frequency sweep gust excitations show that the present electro-magnetic dry friction
damper can be used to alleviate the gust response, especially for the plunge and pitch responses.
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Fig. 22. Alleviation ratio, Zt; for the time response to a sweep frequency gust for ag ¼ 1
 and 2
: 1
: –3–, flap; –W–,

pitch; –�–, plunge. ag ¼ 2
: � � 3 � �; flap; � � W � �; pitch; � � � � �; plunge.

Fig. 21. Effect of damper parameters on response for a sweep frequency gust and for fd ¼ 0:5 N: (a) for plunge PSD

and (b) for pitch PSD; —, d0 ¼ 0:024 cm; v0 ¼ 0:13 cm=s; ?; d0 ¼ 0:08 cm; v0 ¼ 2:2 cm=s:
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Appendix A. Nomenclature

a position of pitch hinge
b semi-chord of the airfoil section
c position of flap hinge
Ch;Ca;Cb structural damping coefficients for h; a;b generalized co-ordinates
fD damping force from EMD damping device
h plunge displacement
I input current
Ia; Ib moments of inertia per unit span of wing–aileron and aileron about a and c,

respectively
Kh;Ka;Kb structural stiffness coefficients for h; a; b generalized co-ordinates
l span length of the airfoil
L lift force
Ma aerodynamic moment about the midchord
Mb aerodynamic moment about the flap axis
Mr reference mass/length of wing–aileron system
n inflow expansion index
N number of inflow states
p aerodynamic pressure
q aerodynamic modal co-ordinate
t time
U airspeed
Uf flutter airspeed
wgðx; tÞ lateral gust velocity
wgn expansion coefficients of wgðx; tÞ
%wgs amplitude of sinusoidal gust
x streamwise co-ordinate
y co-ordinate normal to x

a torsional angle or pitch rotation of wing
ag gust angle of attack
b flap rotational angle
Zt; Zf gust response alleviation ratio for frequency sweep and periodic gust excitation,

respectively
l induced flow due to free vorticity
ln expansion coefficients for l
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r air density
o gust excitation frequency
oh;oa;ob uncoupled plunge, torsional and flap natural frequencies, respectively
ð�Þ dðÞ=dt:
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