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Abstract

In previous papers, we have shown that the time response of a fluid-loaded structure can be expressed in
terms of the resonance modes of the fluid/structure system. We first show the efficiency of such a
representation by comparing numerical predictions to experimental results. The main objective of this
paper is to consider the numerical aspects of this representation, namely the computation of the coupling
term in the variational equation and the computation of the resonance frequencies and modes. Three
methods are proposed to compute the resonance frequencies: an iterative technique, a Warburton
approximation and a perturbation technique (light fluid approximation). Numerical results are presented to
compare these three methods, for air and water-loading. The last part of the paper discusses the choice of
the number of resonance modes which is required to obtain a representation of the transient radiated
pressure with a sufficient accuracy.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In two previous papers [1,2], the authors showed how resonance modes can be used to express
the sound and vibratory behaviour of a structure immersed in a fluid. They proposed an example
which demonstrates that the resonance modes are quite convenient to describe the time response
of the fluid/structure system. It was a comparison between numerical and experimental results,
obtained in the case of a finite length cylindrical thin shell, with hemispherical end caps, immersed
in water.
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In this paper, we present the example of a baffled thin plate, with clamped boundaries, hit by a
small elastic sphere. The experimental plate is clamped in an aperture which connects two
anechoic rooms. The numerical predictions are obtained as a series of the fluid-loaded resonance
modes of the plate, computed as described here.
This work is focused on the numerical aspects of the representation based on resonance modes.

Three problems are apparent. The first one is the computation of the coupling term in the
variational equation. The second one is the computation of the resonance frequencies and modes
of the fluid-loaded structure. The last one is the study of some criteria to choose the number of
modes to be taken into account to obtain the time acoustic pressure radiated by the structure with
a sufficient accuracy. We must mention that our approach is similar to the method proposed in
Ref. [3].
The algorithms are developed on the example of a rectangular fluid-loaded baffled plate for its

simplicity. But they can be rather easily adapted to more complex structures, in particular, for the
numerical approximation of the coupling term.
The first aspect studied in this paper is the computation of the coupling term—corresponding to

the acoustic pressure exerted by the fluid on the plate—which, in particular, governs the structural
damping due to acoustic radiation. With the algorithm proposed, the accuracy of the numerical
approximation can be correctly estimated. In the variational equations, the coupling term is a
quadruple integral of the product of a Green’s kernel by two basis functions. The difficulty in
obtaining an accurate integration is due to the Green’s kernel singularity and to the oscillatory
properties of the three functions involved. This has been already discussed in several papers (see
Refs. [4–7], for example). But, in our opinion, the numerical approximation proposed here is
somewhat new, the accuracy can be easily controlled and the numerical algorithm is rather fast.
The second aspect is the computation of the resonance frequencies and modes. Three methods

are proposed here. The resonance modes are sought as an expansion into a series of basis
functions conveniently chosen. The variational equations lead to an infinite system of equations
which must be truncated. The most accurate numerical method for computing the resonance
modes is based on an iterative technique and applies to any kind of fluid loading (gas or liquid as
well). The second method is a Warburton type approximation which accounts for the diagonal
terms only; its advantage is to reduce the computing time. The third method is a perturbation
technique (light fluid approximation) which applies for weak loadings (when the fluid is typically a
gas) and was developed in a former paper [8]; it is the less time-consuming numerical
approximation.
The content of this paper is as follows. Section 2 briefly recalls the basic equations which govern

the motion of a fluid-loaded baffled plate, the definition of the resonance frequencies and
resonance modes and presents the series expansion of the solution (plate displacement and
radiated acoustic pressure) in terms of the resonance modes. The comparison between numerical
and experimental results shows the efficiency of the method. Section 3 is dedicated to the
numerical computation of the various terms which appear in the equations. In particular, the
approximation of the coupling term is described in some details and its numerical accuracy is
shown. In Section 4 three methods are described to compute the resonance frequencies and
modes. Numerical results are presented in Section 5. The convergence of the iterative procedure,
used to solve the exact system of equations, is shown. Two other series of results are obtained with
the Warburton approximation and with the light-fluid approximation; they are compared with

ARTICLE IN PRESS

D. Habault, P.J.T. Filippi / Journal of Sound and Vibration 270 (2004) 207–231208



those given by the first method which is the more accurate. Section 6 is concerned with the choice
of the number of modes to be taken into account in the computation. An experimental criterion is
proposed.

2. Statement of the problem—response of a fluid-loaded baffled plate

Let us consider a thin elastic plate occupying a domain S; with boundary @S; of the z ¼ 0 plane;
it is extended by a perfectly rigid baffle which occupies the plane complement %S of S (see Fig. 1).
The domain O; composed of the two half-spaces z > 0 and zo0; is occupied by a perfect fluid. The
plate has a thickness hðx; yÞ ¼ h0ð1þ eðx; yÞÞ which may vary around a constant value h0 by a
small amount e: The plate material has a density m; Young’s modulus E; a Poisson ratio n; the
plate rigidity is D ¼ Eh3=12ð1� n2Þ: The fluid is characterized by a density m0 and a sound speed
c0: The boundary condition along @S will be specified later. For simplicity, it is assumed that the
only energy source is a mechanical real force *FðM; tÞ ¼ *cðtÞf ðMÞ acting on the plate, which is zero
for to0: The system is assumed to be at rest for to0:

2.1. Basic equations

Here, we use the most classical equations for the plate motion and the acoustic field. In
particular, the structure and the fluid are supposed to have no damping (see, for example Refs. [9–
11]). If more accurate equations are necessary (damping in the fluid and/or in the material,
orthotropic material, etc.), the method proposed here remains unchanged.
The unknown functions of the problem are *WðM; tÞ the plate displacement and *PðQ; tÞ the

acoustic pressure. In rectangular co-ordinates, the governing equations are given by

D�
1

c20

@2

@t2

� �
*P ¼ 0 in O;
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Fig. 1. Sketch of the baffled fluid-loaded plate.
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Dþ mh
@2

@t2

� �
*W þ *%P ¼ *F on S

with D *W :¼DðDD *WÞ þ 2
@2

@x@y
ð1� nÞD

@2

@x@y
*W

� �

�
@2

@y2
ð1� nÞD

@2

@x2
*W

� �
�

@2

@x2
ð1� nÞD

@2

@y2
*W

� �
; ð1Þ

where D is the Laplacian operator and *%P ¼ Trþ *P � Tr� *P is the jump of the acoustic pressure
across z ¼ 0: The definitions of the symbols are listed in Appendix A. The plate operator D
reduces to DD2 if thickness is constant ðe � 0Þ: An additional equation is provided by the
continuity conditions on the plane z ¼ 0:

@ *P

@z
¼

�m0
@2 *W

@t2
on S;

0 on %S:

8<
: ð2Þ

Finally, the uniqueness of the solution is ensured by imposing the acoustic pressure to satisfy an
outgoing wave condition.
Let *GðS;Q; tÞ be the Green function of the wave equation which satisfies the homogeneous

Neumann condition on the plane z ¼ 0 and the outgoing wave condition.

*GðS;Q; tÞ ¼ �
dðt � R=cÞ

R
�

dðt � R0=cÞ
R0 ; ð3Þ

where R ¼ RðS;QÞ and R0 ¼ RðS0;QÞ; S is the point source and S0; its image through z ¼ 0: The
radiated sound pressure can thus be expressed in terms of the plate displacement as

*PðQ; tÞ ¼ � m0k *G *
ðQ;tÞ

@2 *W

@t2
#dS

� �

:¼ � m0k
Z

N

0

dt0
Z
S

*GðQ;M 0; t � t0Þ
@2 *WðM 0; t0Þ

@t02
dM 0; ð4Þ

where the symbol
*

ðQ;tÞ stands for the convolution product over the time and space variables; dS is
the Dirac measure on S; and k ¼ 1 in z > 0 and �1 in zo0: Introducing this relationship in the
second equation of Eq. (1) leads to an integrodifferential equation for the plate displacement only:

Dþ mh
@2

@t2

� �
*W � 2m0 *G *

ðM;tÞ

@2 *W

@t2
#dS

� �
¼ *F: ð5Þ

2.2. Eigenmodes and resonance modes of the fluid-loaded plate

In a recent paper [1], the authors and their co-authors have developed the concepts of
eigenvalues—eigenmodes and of resonance frequencies—resonance modes for a fluid-loaded
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structure. We just recall here the corresponding definitions together with the formal series
expansions of the response of the plate (displacement and radiated pressure) in the time domain.
Let yðoÞ denote the time Fourier transform of any function *yðtÞ defined by

yðoÞ ¼
Z þN

�N

*yðtÞeiot dt: ð6Þ

The Fourier transform of the Green function *G will be denoted by Go:

GoðS;QÞ ¼ �
expðikRÞ
4pR

�
expðikR0Þ
4pR0 ; ð7Þ

where k ¼ o=c0: The fluid-loaded plate equation becomes

DW � mho2W þ 2m0o
2Go *

M

ðW#dSÞ ¼ fc

with Go *
Q

ðW#dSÞ :¼
Z
S
GoðQ;M 0ÞW ðM 0Þ dM 0 ð8Þ

(
*
Q stands for the space convolution product). In the following, use is made of the variational form
of Eq. (8). Let us recall that the plate displacement belongs to the functional space, say HðSÞ; of
functions which are square integrable over S; together with their derivatives up to order 2, and
which satisfy the given boundary conditions along @S: Let U stand for any basis function ofHðSÞ:
The variational form of Eq. (8) is

AðW ;UÞ � mh0o2

Z
S
ð1þ eÞWUn �

m0
mh0

boðW ;UÞ
� �

¼ cðoÞ
Z
S

f Un

with

AðW ;UÞ ¼
Z
S

D
@2W

@x2
þ

@2W

@y2

� �
@2Un

@x2
þ

@2Un

@y2

� ��

þ ð1� nÞ 2
@2W

@x@y

@2Un

@x@y
�
@2W

@x2

@2Un

@y2
�

@2W

@y2
@2Un

@x2

� ��
;

boðW ;UÞ ¼ 2

Z Z
S

W ðMÞGoðM;M 0ÞUnðM 0Þ: ð9Þ

Un is the complex conjugate of U : bo describes the coupling between plate and fluid (bo ¼ 0; for a
plate in vacuo).
The eigenmodes #Wn and the eigenvalues Ln; with n ¼ y;�1; 1;y of the fluid-loaded plate

operator are the non-zero solutions to the homogeneous equation

Að #Wn;UÞ � Ln

Z
S
ð1þ eÞ #WnUn �

m0
mh0

boð #Wn;UÞ
� �

: ð10Þ

They are frequency dependent because the coupling term bo depends on o:
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The resonance modes Wn and the resonance angular frequencies on are the non-zero solutions
to the homogeneous equation

AðWn;UÞ � mh0o2
n

Z
S
ð1þ eÞWnUn �

m0
mh0

bon
ðWn;UÞ

� �
¼ 0: ð11Þ

It is useful to associate them by pairs numbered �n and þn because they have the following
property [1,12]:

on ¼ On � itn with On > 0; tn > 0; o�n ¼ �on

n ð12Þ

and the corresponding resonance modes are complex conjugate.
Let ðUm;m ¼ 1; 2;yÞ be a basis of the space HðSÞ: Each resonance mode can be sought as a

series of these basis functions:

WnðMÞ ¼
XN
m¼1

um
n UmðMÞ: ð13Þ

Eq. (11) leads to the following infinite system of equations:XN
m¼1

um
n AðUm;U

n

q Þ � mh0o2
n

Z
S
ð1þ eÞUmUq �

m0
mh0

bon
ðUm;U

n

q Þ
� �
 �

¼ 0;

q ¼ 1; 2;y;þN: ð14Þ

This system of linear algebraic equations has non-zero solutions if on is a resonance angular
frequency. In standard eigenvalue problems, the system of equations to be solved is of the form

A~uu ¼ LB~uu; ð15Þ

where A and B are two square matrices independent of L: System (14) is of the form

A~uu ¼ L Bþ CðLÞ½ 	~uu: ð16Þ

Because the matrix C depends on the eigenvalue, the classical methods for solving eigenvalue
problems cannot be used in a straightforward way.

2.3. Response of the fluid-loaded plate

The transient displacement of the plate has the following expansion in terms of the resonance
modes (see Ref. [2]):

*WðM; tÞ ¼ �i *cðtÞ *
t

Y ðtÞ
XN
n¼1

/f ;Wn
n S

L0
nðonÞ � 2mhon

WnðMÞe�iont

�

�
/f ;Wn

n S
n

L0n
n ðonÞ � 2mhon

n

Wn

n ðMÞeþio
n
nt

�
; ð17Þ

where
*
t denotes the time convolution product. This expression is, of course, valid for t > 0 only.
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By introducing formula (17) into expression (4), one gets the following series:

*PðM; tÞ ¼ sgnðzÞm0 *GðM; tÞ *
ðM;tÞ

@2

@t2
�i *cðtÞ *

t

Y ðtÞ

(
XN
n¼1

/f ;Wn
n S

L0
nðonÞ � 2mhon

WnðMÞe�iont

�

�
/f ;Wn

n S
n

L0n
n ðonÞ � 2mhon

n

Wn

n ðMÞeþio
n
nt

�)
: ð18Þ

With the assumption that *WðM; tÞ is a twice differentiable function, the convolution products
reduce to integrals and the numerical computation is rather straightforward. Details are given in
Ref. [2].

2.4. Comparison of numerical predictions with experimental results

The efficiency of the numerical method which is presented in this paper has been tested on a
very simple experiment. The Laboratoire de M!ecanique et d’Acoustique has a semi-anechoic
room connected to an anechoic one by an aperture. A clamped plate is set in this aperture. A small
ball is suspended at the extremity of a nylon thread a few centimetres in front of the plate. The ball
is moved apart from its equilibrium position and then released. It thus gives the plate a short
impulse, the strength of which is set to obtain a sufficiently loud acoustic signal. The acoustic
measurements are conducted in the semi-anechoic room. The plate can be considered, with a
rather fair accuracy, as clamped into a perfectly rigid baffle.
The plate is made of stainless steel. Its dimensions are 0:700
 0:546
 0:005 m3: For the

numerical predictions, we have adopted a density of 7800 kg=m3; Young’s modulus of
2:1
 1011 Pa and a Poisson ratio of 0.33. With these numerical data, the computed resonance
frequencies are in good agreement with the experimental ones.
The centre of the plate is used as the origin of the co-ordinate system. Two balls have been used:

a plexiglass ball which excites the plate at the point (x ¼ �0:075 m; y ¼ 0:0025 m); and a hard
rubber ball which impacts the plate at the point (x ¼ �0:115 m; y ¼ 0:0025 m). For both
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Fig. 2. Acoustic pressure radiated by a steel plate hit by a plexiglass ball (left) or a rubber ball (right): experimental

(continuous line) versus calculated (dashed line) results.
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excitations, the transient acoustic pressure is recorded at point (x ¼ �0:110 m; y ¼ 0:2625 m;
z ¼ 0:265 m). Both impulses have been modelled as a force *fðtÞ; with total duration 2W1 ¼ 10�4 s;
and with the following time dependence:

*fðtÞ ¼
1� cos

2pt

W1

� �
for 0otoW1=2;

1þ cos
2pðt � W1Þ

3W1

� �
for W1=2oto2W1:

8>>><
>>>: ð19Þ

The experimental signals and the numerical ones have been adjusted so that the amplitude of the
first peak is equal to 1. Because it has not been possible to record exactly the impact time, each
experimental curve has been shifted so that the maximum of its first peak coincides with the
maximum of the first peak of the numerical curve. This enables to compare the experiments with
the predictions. Fig. 2 shows the first 5 ms of the recorded signals versus the computed ones. A
fair agreement can be observed despite the fact that this experiment has been conducted in a
rather simple way, the aim being just to get an idea of the possibility to predict the phenomenon.
When the time increases besides the first milliseconds, the signal is much more regular. It
corresponds to the ‘‘reverberated’’ oscillations of the plate and shows the beats produced by the
time interferences between the different modes of the plate.

3. Computation of the coupling term bx

In this section and the following, we consider a rectangular plate with boundaries which can be
either clamped or simply supported, which occupies the domain S ¼ ½�Lxoxoþ
Lx;�Lyoyoþ Ly	 with Ly > Lx:
The first step is to define the basis functions Um as products of one-dimensional functions

Umðx; yÞ ¼ vmx
ðx=2LxÞvmy

ðy=2LyÞ: Let vpðxÞ represent the in vacuo resonance modes of a perfectly
elastic beam extending from x ¼ �1=2 to x ¼ þ1=2; and satisfying the same boundary conditions
as the plate in the x direction (clamped or simply supported at both ends of the beam). The set of
functions vmx

ðx=2LxÞvmy
ðy=2LyÞ is a convenient basis of orthogonal functions. They are chosen

with a L2-norm equal to 1.
By convention, the indices mx and my are equal to the total number of nodal lines inside the

plate domain, in the x and y directions, respectively: they start from 0. Since it is easier to index
the basis functions with a unique number, we have chosen to class them by groups in which the
total number of nodal lines is constant. Thus the index m of functions Umðx; yÞ :¼ vmx

ðxÞvmy
ðyÞ is

related to the indices mx and my as shown in Table 1. It is well known that when such a basis is
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Table 1

Numbering of the basis functions Um ¼ vmx
vmy

mx

my

m

0
0
1|{z}

0 1
1 0
2 3|fflffl{zfflffl}

0 1 2
2 1 0
4 5 6|fflfflfflfflffl{zfflfflfflfflffl}

0 1 2 3
3 2 1 0
7 8 9 10|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

?
?
?

Group # 1 2 3 4 y
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used, an in vacuo resonance mode which has mx nodal lines in one direction and my in the other
has a strongly dominant component on the function vmx

ðx=2LxÞvmy
ðy=2LyÞ: This property remains

true when fluid-loading is present and, thus, modes can always be identified by a couple of
integers.
In numerical approximations, the maximum number M of basis functions used is chosen so

that UM has almost the same density of nodal lines in x and y; more precisely, if we choose a
maximum number Nx of nodal lines in the x direction, the maximum number Ny in the y direction
is the closest integer to NxLy=Lx: As a consequence, in the highest order groups, some functions
may be missing (for example, with Nx ¼ Ny ¼ 2; the functions v0ðxÞv3ðyÞ and v3ðxÞv0ðyÞ are not
taken into account). This choice is, of course, arbitrary but quite reasonable—at least in the
authors’ opinion. The total number of basis functions is M ¼ ðNx þ 1ÞðNy þ 1Þ:

3.1. Numerical calculation of the plate terms

In Eq. (14), the first two terms,AðUm;Un
q Þ and

R
ð1þ eÞUmUq; involve the plate properties only.

If the plate has a constant thickness, they are calculated analytically. For varying thickness, the
terms which are independent of e are calculated analytically, while the other ones are
approximated by a Simpson’s algorithm.
The reason to choose such an algorithm is that the functions involved are very close to periodic

functions for which Simpson’s algorithm is well known to provide accurate results. We have
adopted the same number ns of Simpson’s points for all the integrations: ðNx þ 1Þns intervals in
the x direction and ðNy þ 1Þns intervals in the y direction. For a periodic function, this
corresponds to divide each half-period into ns intervals. The choice of ns ¼ 4 proved to be quite
sufficient: an increase of these numbers does not change the results by a significant amount (less
than 10�5 on the resonance frequencies).

3.2. Numerical calculation of the coupling term

As in the papers cited in introduction, simplifications are introduced by taking advantage of the
properties of the functions to be integrated: because of symmetry properties, most of the integrals
are equal to 0 and, for the others, the integration domain can be reduced to a quarter of the plate.
But the main numerical difficulty comes from the singularity of the Green’s kernel. The solution
proposed here can be easily used for any structure—plates, shells or three-dimensional bodies.
Let us write the explicit form of the coupling term as follows:

boðUm;U
n

q Þ ¼ �
Z
S

UmðPÞIqðPÞ dP;

where IqðPÞ ¼
Z
S

UqðP0Þgðjx � x0j; jy � y0jÞ dP0

and gðjx � x0j; jy � y0jÞ ¼
eikrðP;P0Þ

prðP;P0Þ
: ð20Þ

First note that the functions vpðxÞ are either even or odd in x: Let us recall that the function
Umðx; yÞ is odd in x (respectively in y) if mx (respectively my) is odd, and even if mx (respectively
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my) is even. So, any basis function has the following property:

Umðx; yÞ ¼ ð�sign xÞmxð�sign yÞmyUmðjxj; jyjÞ: ð21Þ

Because Green’s kernel g in Eq. (20) is a function of jx � x0j and jy � y0j; the integral Iq has the
same parity in x and y as Uq (the proof is very easy). As a consequence, the coupling term is zero
unless both functions Um and Uq have the same parity. This reduces highly the number of terms to
be evaluated numerically.
The integral IqðPÞ is a smooth function. So, as soon as IqðPÞ is known on the set of Simpson’s

points, the coupling term bo can easily be evaluated by the Simpson’s algorithm defined in the
previous subsection. Furthermore, because of the parity properties of Um and Iq; the integration
can be performed on a quarter of the plate only.
Nevertheless, because of the singularity of Green’s kernel g; IqðPÞ itself cannot be computed by

a Simpson’s rule (or any of the most classical algorithms), even if double precision arithmetic is
used. We therefore propose an algorithm which combines an analytical approximation and a
Simpson’s algorithm. Because of parity, the integral Iqðx; yÞ is expressed as

Iqðx; yÞ ¼
Z Lx

0

Z Ly

0

Uqðx0; y0Þ %gðx; x0; y; y0Þ dx0 dy0

with %gðx; x0; y; y0Þ ¼ gðjx � x0j; jy � y0jÞ þ ð�1Þqxgðjx þ x0j; jy � y0jÞ

þ ð�1Þqygðjx � x0j; jy þ y0jÞ þ ð�1Þqxþqygðjx þ x0j; jy þ y0jÞ; ð22Þ

where qx and qy are related to q as shown in Table 1. Let dx (resp. dy) be the interval in the x

direction (resp. the y direction) chosen in the Simpson’s algorithm. Let Y ðsÞ be the Heaviside
function on the rectangle s ¼ ðx � dx=2ox0ox þ dx=2; y � dy=2oy0oy þ dy=2Þ: The function %g is
split into a singular part %gS:

%gS ¼ Y ðsÞgðjx � x0j; jy � y0jÞ ð23Þ

and a regular part %gR:

%gRðx; x0; y; y0Þ ¼ ð1� Y ðsÞÞgðjx � x0j; jy � y0jÞ þ ð�1Þqxgðjx þ x0j; jy � y0jÞ

þ ð�1Þqygðjx � x0j; jy þ y0jÞ þ ð�1Þqxþqygðjx þ x0j; jy þ y0jÞ:

The product Uq %gR is integrated by the Simpson’s algorithm. The contribution of the singular term
is approximated by Z

s
Uqðx0; y0Þ %gSðjx � x0j; jy � y0jÞ dx0 dy0

CUqðx; yÞ
Z
s
%gSðjx � x0j; jy � y0jÞ dx0 dy0: ð24Þ

This last integral is equal to

Jðx; yÞ ¼
Z xþdx=2

x�dx=2

Z yþdy=2

y�dy=2
%gSðjx � x0j; jy � y0jÞ dx0 dy0

¼ 4

Z dx=2

0

Z dy=2

0
%gSðX ;Y Þ dX dY ; ð25Þ

ARTICLE IN PRESS

D. Habault, P.J.T. Filippi / Journal of Sound and Vibration 270 (2004) 207–231216



which is independent on x and y: Using polar co-ordinates ðr; yÞ; the integral becomes:

J ¼
Z y0

0

dy
Z dx=cosy

0

eikr

pr
r dr þ

Z p=2

y0
dy

Z dy=cosðp=2�yÞ

0

eikr

pr
r dr

with

y0 ¼ arctan
Ly

Lx

¼
1

ikp

Z y0

0

expðikdx=cos yÞ � 1
� �

dyþ
1

ikp

Z p=2

y0
expðikdy=cosðp=2� yÞÞ � 1
� �

dy: ð26Þ

It does not seem possible to obtain an analytical result. Since dx and dy are small, the terms to be
integrated are replaced by the first two terms of their Taylor series

eikz � 1 ¼ ikz �
k2z2

2
þ Oðk3z3Þ: ð27Þ

The integral can thus be evaluated analytically: the result is easily obtained with any kind of
mathematical software such as Mathematica. The accuracy of this approximation has been tested
on several numerical data by comparing the approximated analytical integral with an accurate
numerical integration performed with Mathematica which has more than 7 exact digits. The
results shown in Table 2 are obtained with the following data: Lx ¼ 0:35 m; Ly ¼ 0:50 m; Nx ¼ 7
and Ny ¼ 10 (88 basis functions). With ns ¼ 4; we get dx ¼ 2:19
 10�2 and dy ¼ 2:27
 10�2; with
ns ¼ 6; we get dx ¼ 1:67
 10�2 and dy ¼ 1:52
 10�2: It can be seen in Table 2 that the error
obtained with the smallest value of ns does not exceed 0:08 dB: such an accuracy is in general quite
sufficient for acoustic purposes.

4. Computation of the resonance frequencies and modes

4.1. Iterative procedure

We make the following hypothesis. To each in vacuo mode corresponds a fluid-loaded mode which
has the same number of nodal lines in the x and y directions. To our knowledge, this assumption is
confirmed experimentally. But we do not know if it can be proved. A subsequent assumption is that
the order of multiplicity of an in vacuo mode and of the corresponding fluid-loaded mode is the same.
For simplicity, in what follows we consider modes with multiplicity order equal to 1.
The resonance frequencies on are the values of the angular frequency for which Eq. (11) or (14)

have a non-zero solution. The resonance modes WnðMÞ are the corresponding solutions (uniquely
defined up to a multiplicative constant).
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Table 2

Error on the integration of the singular term %gS for two values of ns

Frequency (Hz) 100 250 500 750 1000

Error in dB for ns ¼ 4 8:0
 10�4 5:0
 10�3 2:0
 10�2 4:5
 10�2 8:0
 10�2

Error in dB for ns ¼ 6 3:5
 10�4 2:2
 10�3 8:1
 10�3 2:0
 10�2 3:5
 10�2
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In practice, the series expansion of Wn is truncated at a finite order, say R; and system (14) is
replaced by a system of R equations:XR

m¼1

um
n AðUm;U

n

q Þ � mh0o2
n

Z
S
ð1þ eÞUmUq �

m0
mh0

bon
ðUm;U

n

q Þ
� �
 �

¼ 0;

q ¼ 1; 2;y;R: ð28Þ

The direct way for evaluating the first R resonance frequencies is to look for the values of o for
which this system has non-zero solutions. A Marquardt’s algorithm is well adapted to this
problem but requires a large amount of calculations. Nevertheless, as shown in Ref. [13], very
accurate results can be obtained.
A more straightforward way, much less time consuming, is to use an iterative procedure which

is suggested by noting that the coupling term described by the integral operator bon
corresponds,

in some way, to a second order effect; the behaviour of the plate is mainly governed by the in
vacuo plate operator. In a first step, the in vacuo resonance angular frequencies oð0Þ

n and modes Zn

are computed by solving the classical eigenvalue problem:XR

m¼1

umð0Þ
n AðUm;U

n

q Þ � mh0oð0Þ2
n

Z
S
ð1þ eÞUmUq


 �
¼ 0; q ¼ 1; 2;y;R; ð29Þ

where the in vacuo modes are approximated by

ZnðMÞ ¼
XR

m¼1

umð0Þ
n UmðMÞ:

The main component of Zn has indexes ðnx; nyÞ: The system of equations (29) provides R in vacuo
resonance frequencies oð0Þ

n : The components of each resonance mode are chosen so
that its norm is unity. Then, for each resonance frequency of the coupled system, the operator
bon

in Eq. (28) is replaced by boð0Þ
n
; leading to a sequence of R classical eigenvalue problems:XR

m¼1

umð1Þ
n AðUm;U

n

q Þ � Lð1Þ
n

Z
S
ð1þ eÞUmUq �

m0
mh0

boð0Þ
n
ðUm;U

n

q Þ
� �
 �

¼ 0;

q ¼ 1; 2;y;R: ð30Þ

This system has R eigenfunctions W ð1Þ
n with a main component of indexes ðnx; nyÞ: The

approximation W ð1Þ
n of the fluid-loaded mode which corresponds to Zn is the eigenfunction for

which the couple ðnx; nyÞ is equal to ðnx; nyÞ:
Let Lð1Þ

n be the corresponding eigenvalue. A first order approximation of the resonance angular
frequency is related to this eigenvalue by

oð1Þ
n ¼

ffiffiffiffiffiffiffi
1

mh0

r ffiffiffiffiffiffiffiffi
Lð1Þ

n

q
if IðLð1Þ

n Þo0;

�
ffiffiffiffiffiffiffi
1

mh0

r ffiffiffiffiffiffiffiffi
Lð1Þ

n

q
if IðLð1Þ

n Þ > 0:

8>>><
>>>: ð31Þ

This choice ensures that oð1Þ
n has a positive real part as oð0Þ

n does and a negative imaginary part
describing a damping.
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To estimate the accuracy of this first order approximation, let us define the vectors V ð0Þ and V ð1Þ

by

V ð0Þ ¼
X

q

gð0Þq Uq; V ð1Þ ¼
X

q

gð1Þq Uq;

gð0Þq ¼
XR

m¼1

umð0Þ
n AðUm;U

n

q Þ � mh0oð0Þ2
n

Z
S
ð1þ eÞUmUq �

m0
mh0

boð0Þ
n
ðUm;U

n

q Þ
� �
 �

;

gð1Þq ¼
XR

m¼1

umð1Þ
n AðUm;U

n

q Þ � mh0oð1Þ2
n

Z
S
ð1þ eÞUmUq �

m0
mh0

boð1Þ
n
ðUm;U

n

q Þ
� �
 �

: ð32Þ

The norm of V ð0Þ; (resp. V ð1Þ), measures the error made when, in Eqs. (28), the exact solution
ðum

n ;onÞ is replaced by ðumð0Þ
n ;oð0Þ

n Þ (resp. ðumð1Þ
n ;oð1Þ

n Þ). A good estimate of the accuracy of the first
approximation is given by the ratio jjV ð1Þjj=jjV ð0Þjj:
As indicated before, umð0Þ

n are the components of the in vacuo resonance mode, and umð1Þ
n those

of the first approximation of the fluid-loaded resonance mode. Because of its construction, V ð0Þ is
different from zero.
The procedure is then repeated to obtain a sequence of approximate resonance angular

frequencies oðrÞ
n and modes. If the iterative process converges, the successive vectors V ðrÞ tend to

zero. The accuracy of the rth approximation is estimated by the ratio jjV ðrÞjj=jjV ð0Þjj: As it will be
seen in the next section, this procedure converges well even for a strong coupling.
Let us recall that expressions (17) and (18) of, respectively, the plate displacement and the

acoustic pressure require the value L0
nðonÞ of the derivative of Ln with respect to the angular

frequency. The successive approximations of the eigenvalues Ln allows an approximation of their
derivative L0

n by a finite difference formula to be obtained.

4.2. The Warburton approximation

A classical approximation for in vacuo plates is due to Warburton (see, for example Ref. [9]): it
consists in keeping only the diagonal terms in the resonance mode equation. This implies that each
resonance mode is approximated by only one basis function (a product of beam modes). The same
approximation can be used for a fluid-loaded plate, and Eq. (28) is replaced by

AðUm;U
n

mÞ � mh0o2
m

Z
S
ð1þ eÞUmUm �

m0
mh0

bom
ðUm;U

n

mÞ
� �

¼ 0;

m ¼ 1; 2;y;R: ð33Þ

Here again the iterative procedure previously described enables to obtain, for each mode, a
sequence of angular frequencies oðrÞ

n which converges to the solution of Eq. (33) but, of course, not
to the exact resonance frequency. Nevertheless, the advantage of this approximation is to divide
the computation time by a factor 2, or so, and to give a rather accurate result.
The accuracy of the approximation can be greatly improved by constructing the Warburton

approximation on the in vacuo modes of the plate instead of on the basis functions Um: Eq. (28)

ARTICLE IN PRESS

D. Habault, P.J.T. Filippi / Journal of Sound and Vibration 270 (2004) 207–231 219



becomes XR

m¼1

um
n oð0Þ2

n � o2
n

� � Z
S
ð1þ eÞZmZq � o2

n

m0
mh0

boð0Þ
n
ðZm;Z

n

q Þ	

 �

¼ 0;

q ¼ 1; 2;y;R: ð34Þ

Taking the first iteration of the Warburton’s approximation of this equation leads to

o2
mCoð0Þ2

m 1�
m0
mh0

boð0Þ
n
ðZm;Zn

mÞR
Sð1þ eÞZmZm

" #�1

: ð35Þ

4.3. The light-fluid approximation

Assuming a weak fluid-loading, that is m0=mh051; we obtain [8] the first order light-fluid
approximation:

o2
mCoð0Þ2

m 1þ
m0
mh0

boð0Þ
n
ðZm;Zn

mÞR
Sð1þ eÞZmZm

" #
: ð36Þ

Comparing Eqs. (35) and (36), it is easily seen that Eq. (36) is an approximation of Eq. (35) if the
ratio within brackets is smaller than 1, which is so for a weak coupling.
The classical approximation of ‘‘added mass’’, as it is described in Ref. [10], is a rough

analytical estimation of the integrals involved in Eq. (35) which has the advantages to clearly
describe the physical phenomenon and to give an idea of the effect of the fluid without the use of a
computer.

5. Numerical examples

The methods previously described have been tested on various examples, among them a
clamped steel plate with dimensions 2Lx ¼ 0:350 m and 2Ly ¼ 0:500 m: The main results
presented here were obtained for a constant thickness equal to h0 ¼ 0:005 m: Additional results
presented in Section 5.4 correspond to a varying thickness given by

h ¼ h0½1þ eðx; yÞ	

¼ h0 1þ
1

14

x

Lx

þ 1

� �2

cosðpx=LxÞ
y

Ly

þ 1

� �2

cosðpy=LyÞ

" #
; ð37Þ

with h0 ¼ 0:005 m: The maximum of eðx; yÞ is 0.5, that is h0oho1:5 h0:
The material has a density m ¼ 7800 kg=m3; Young’s modulus E ¼ 2
 1011 Pa and a Poisson’s

ratio n ¼ 0:3:
The fluid is either air with m0 ¼ 1:3 kg=m3 and c0 ¼ 340 m=s; or water with m0 ¼ 1000 kg=m3

and c0 ¼ 1500 m=s:
All computations are conducted with 20 basis functions which have up to 3 nodal lines parallel

to the y-axis and up to 4 nodal lines parallel to the x direction. Note that, because of this choice,
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some resonance modes can be missing in the upper part of the spectrum, but this does not matter
for the present purpose.
The last subsection is devoted to the computation of the transient response of a plate in air.

5.1. Convergence of the iterative procedure

The first result is to show that the iterative procedure converges. For this purpose, five
iterations have been calculated. Tables 3 and 4 present the successive approximations of the
resonance frequency of the mode (3-2) in air and in water. In both cases, the in vacuo resonance
frequency is used as the initial guess.
First of all, it must be noticed that the convergence test—jjV5jj=jjV0jj—is of order 10�12 in air,

and 10�10 in water. This confirms that the resonance frequencies obtained are close to the exact
value, that is the value for which Eq. (28) is satisfied.
For the plate in air, it appears that three iterations are quite sufficient. With water-loading, the

real part of the resonance frequency does not change after the third iteration and the imaginary
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Table 3

Resonance frequency of mode 2-3 in air: convergence of the iterative procedure

In vacuo plate f ð0Þ ¼ 2437:2 Hz

Air-loaded plate f ðiÞ (in Hz)

1st iteration 2435.3 (1�i0.0012617)
2nd iteration 2435.3 (1�i0.0012664)
3rd iteration 2435.3 (1�i0.0012665)
4th iteration 2435.3 (1�i0.0012665)
5th iteration 2435.3 (1�i0.0012665)

jjV ð5Þjj=jjV ð0Þjj 0:20580
 10�11

Table 4

Resonance frequency of mode 2-3 in water: convergence of the iterative procedure

In vacuo plate f ð0Þ ¼ 2437:2 Hz

Water-loaded plate f ðiÞ (in Hz)

1st iteration 1615.5 (1�i0.00026924)
2nd iteration 1629.6 (1�i0.00041743)
3rd iteration 1629.5 (1�i0.00041429)
4th iteration 1629.5 (1�i0.00041431)
5th iteration 1629.5 (1�i0.00041433)

jjV ð5Þjj=jjV ð0Þjj 0:82941
 10�9
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part presents a variation on the fifth digit only: so, here again, three iterations provide a
conveniently accurate result.
In Tables 3 and 4, the results are presented with five digits for the resonance frequencies and the

damping factors to show clearly how the procedure converges. But, of course, for engineering
applications, four digits on the resonance frequencies and two on the damping factors seem quite
sufficient.
Fig. 3 (mode 1-4) and Fig. 4 (mode 3-2) show the absolute value of: the in vacuo mode shape

(a), the water-loaded mode shape (b) and of the difference between these two functions (c). It
appears that the difference (absolute value) between the fluid-loaded mode and the in vacuo one
increases with the damping, that is with the amount of energy that the mode radiates: it is less
than 0.35 for the mode 1-4, and less that 0.1 for the mode 3-2.
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Fig. 3. Mode 1-4: (a) in vacuo mode; (b) water-loaded mode; (c) difference between the in vacuo and the water-loaded

modes.

D. Habault, P.J.T. Filippi / Journal of Sound and Vibration 270 (2004) 207–231222



5.2. Comparison between the solution of the exact equations and the Warburton’s approximation

Tables 5 and 6 present the first 20 resonance frequencies computed by the iterative method
applied to the exact equations and applied to the Warburton’s approximate equations. The fifth
column is the norm of the difference between the fluid-loaded plate Warburton’s approximation
of the modes W ðW Þ

n and the in vacuo ones Zn:
The first comment is that the Warburton’s approximation provides a reasonable accuracy.

Nevertheless, it is not quite satisfactory to find frequencies in air slightly higher than the in vacuo
ones. The second comment is that in air the resonance modes remain almost unchanged (a well-
known result), while in water the difference is not negligible.
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Fig. 4. Mode 3-2: (a) in vacuo mode; (b) water-loaded mode; (c) difference between the in vacuo and the water-loaded

modes.
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5.3. The light-fluid approximation

The light-fluid approximation requires some more computations than the first order
Warburton’s approximation. Indeed, in expression (36), the term bon

ð0ÞðZm;Zn
mÞ contains the in

vacuo resonance modes which are expressed as a truncated series of the basis functions Um: The
results presented in Table 5 are obtained for the first 20 air-loaded resonances with in vacuo
modes computed with 20 basis functions (product of beam modes). This approximation is quite
good. The error on the real part of the resonance frequencies does not exceed 1:4
 10�3; the error
on the relative damping is less than 4
 10�2: This accuracy is in general quite sufficient for
acoustical engineering purposes.

5.4. Plate with variable thickness

The relative variation eðx; yÞ of the plate thickness, as defined in Eq. (37) is represented on
Fig. 5. Compared to the constant thickness plate, the resonance frequencies of the plate (in vacuo
or fluid-loaded) are higher. This comes from an increase of the mean plate rigidity induced by the
increase of the mean thickness. Table 7 presents the first 20 resonance frequencies of the plate in
air and in water (20 basis functions, five iterations).
Figs. 6 and 7 present the modes (1-4) and (3-2) in air and in water. The influence of the

thickness variation on the in vacuo modes as well as on the modes in air is quite small. But in
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Table 5

Resonance frequencies (in Hz) for the plate in air: iterative procedure applied to exact equations and to the

Warburton’s approximated equations; light-fluid approximation

Mode index Vacuum Air (exact) Air (Warburton) jjZn � W ðW Þ
n jj Light-fluid approximation

0 0 275.2 274.1(1�i0.00204) 274.9(1�i0.00200) 0.00031 274.1(1�i0.00208)
0 1 440.0 438.7(1�i0.00077) 440.4(1�i0.00075) 0.00027 438.7(1�i0.00079)
1 0 663.8 662.2(1�i0.00104) 664.6(1�i0.00101) 0.00031 662.2(1�i0.00105)
0 2 715.2 713.7(1�i0.00047) 716.5(1�i0.00048) 0.00131 713.6(1�i0.00048)
1 1 817.2 815.4(1�i0.00077) 818.8(1�i0.00074) 0.00033 815.4(1�i0.00079)
1 2 1076.8 1074.7(1�i0.00068) 1078.2(1�i0.00066) 0.00065 1074.6(1�i0.00069)
0 3 1093.6 1091.7(1�i0.00044) 1095.7(1�i0.00045) 0.00150 1091.7(1�i0.00045)
2 0 1252.7 1250.7(1�i0.00088) 1254.3(1�i0.00088) 0.00081 1250.6(1�i0.00089)
2 1 1403.3 1401.1(1�i0.00090) 1405.3(1�i0.00089) 0.00096 1401.0(1�i0.00091)
1 3 1443.6 1441.1(1�i0.00075) 1444.8(1�i0.00075) 0.00082 1441.1(1�i0.00078)
0 4 1571.2 1568.6(1�i0.00066) 1573.9(1�i0.00066) 0.00268 1568.5(1�i0.00068)
2 2 1656.0 1653.5(1�i0.00099) 1654.7(1�i0.00098) 0.00252 1653.5(1�i0.00101)
1 4 1911.6 1908.8(1�i0.00107) 1915.0(1�i0.00106) 0.00100 1908.8(1�i0.00110)
2 3 2017.2 2014.6(1�i0.00116) 2009.1(1�i0.00116) 0.00059 2014.6(1�i0.00119)
3 0 2038.6 2036.4(1�i0.00114) 2040.9(1�i0.00117) 0.00068 2036.3(1�i0.00117)
3 1 2188.5 2186.3(1�i0.00120) 2192.2(1�i0.00122) 0.00051 2186.3(1�i0.00123)
3 2 2437.2 2435.3(1�i0.00127) 2438.0(1�i0.00129) 0.00054 2435.3(1�i0.00129)
2 4 2477.7 2475.6(1�i0.00134) 2468.6(1�i0.00134) 0.00047 2475.7(1�i0.00136)
3 3 2794.5 2793.1(1�i0.00125) 2785.6(1�i0.00127) 0.00028 2793.2(1�i0.00127)
3 4 3247.2 3246.6(1�i0.00104) 3236.3(1�i0.00108) 0.00016 3246.7(1�i0.00107)
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Table 6

Resonance frequencies (in Hz) for the plate in water: iterative procedure applied to the exact equations and to the

Warburton approximation

Mode Vacuum Water Water jjZn � W ðW Þ
n jj

Index (exact) (Warburton)

0 0 275.2 94.6 (1�i0.01681) 95.4 (1�i0.01627) 0.02912

0 1 440.0 202.4 (1�i0.00011) 203.3 (1�i0.00017) 0.02442

1 0 663.8 329.5 (1�i0.00034) 203.1 (1�i0.00042) 0.02930

0 2 715.2 371.2 (1�i0.00839) 358.3 (1�i0.02375) 0.19230

0 1 817.2 441.5 (1�i0.00027) 442.3 (1�i0.00006) 0.02673

1 2 1076.8 624.4 (1�i0.00001) 620.3 (1�i0.00064) 0.07404

0 3 1093.6 628.6 (1�i0.00158) 616.0 (1�i0.00294) 0.15805

2 0 1252.7 709.6 (1�i0.01395) 671.4 (1�i0.05011) 0.23586

2 1 1403.3 841.6 (1�i0.00094) 824.8 (1�i0.00346) 0.13886

1 3 1443.6 891.2 (1�i0.00061) 881.2 (1�i0.00000) 0.07679

0 4 1571.2 968.3 (1�i0.00651) 946.4 (1�i0.02934) 0.24222

2 2 1656.0 1042.1 (1�i0.00057) 1023.1 (1�i0.01405) 0.19341

1 4 1911.6 1237.3 (1�i0.00141) 1222.9 (1�i0.00201) 0.26060

2 3 2017.2 1322.7 (1�i0.00014) 1290.6 (1�i0.00491) 0.07357

3 0 2038.6 1279.5 (1�i0.00512) 1239.0 (1�i0.01249) 0.31761

3 1 2188.5 1418.0 (1�i0.00004) 1392.2 (1�i0.00140) 0.12869

3 2 2437.2 1629.4 (1�i0.00041) 1599.8 (1�i0.00390) 0.10121

2 4 2477.7 1683.6 (1�i0.00040) 1653.1 (1�i0.00499) 0.06546

3 3 2794.5 1923.4 (1�i0.00105) 1879.7 (1�i0.00198) 0.07298

3 4 3247.2 2292.6 (1�i0.00160) 2244.7 (1�i0.00255) 0.06118
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Fig. 5. Relative variation of the plate thickness.
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water, the variation of the plate thickness can induce a rather large modification of the modes
shape. It must be expected that, for strongly radiating modes, the perturbation of the mode shape
will be stronger in the thinnest region of the plate. This can be observed on the examples shown:
the mode (1-4), which corresponds to a damping factor about 8.5 times the damping factor of the
mode (3-2), is much more changed.
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Table 7

Resonance frequencies of the plate with varying thickness in air and water

Mode index Vacuum Air Water

0 0 287.7 286.7 (1�i0.00184) 105.6 (1�i0.01878)
0 1 469.2 467.9 (1�i0.00083) 225.9 (1�i0.00022)
1 0 722.0 720.5 (1�i0.00112) 372.0 (1�i0.00058)
0 2 778.9 777.4 (1�i0.00061) 419.7 (1�i0.00906)
1 1 876.0 874.3 (1�i0.00090) 489.7 (1�i0.00021)
1 2 1148.0 1146.0 (1�i0.00084) 683.5 (1�i0.00036)
0 3 1222.9 1220.9 (1�i0.00069) 733.2 (1�i0.00205)
2 0 1377.5 1375.5 (1�i0.00099) 808.8 (1�i0.01377)
2 1 1553.6 1551.6 (1�i0.00106) 963.4 (1�i0.00346)
1 3 1576.5 1574.3 (1�i0.00103) 1006.3 (1�i0.00019)
0 4 1760.5 1758.1 (1�i0.00111) 1128.7 (1�i0.00520)
2 2 1798.0 1795.9 (1�i0.00114) 1161.1 (1�i0.00101)
1 4 2114.4 2112.5 (1�i0.00132) 1414.2 (1�i0.00420)
2 3 2211.6 2209.8 (1�i0.00124) 1434.2 (1�i0.00012)
3 0 2218.6 2216.8 (1�i0.00120) 1499.8 (1�i0.00223)
3 1 2490.6 2489.6 (1�i0.00110) 1667.0 (1�i0.00376)
3 2 2665.9 2664.9 (1�i0.00112) 1828.4 (1�i0.00050)
2 4 2731.7 2730.9 (1�i0.00113) 1917.2 (1�i0.00100)
3 3 3096.4 3096.1 (1�i0.00090) 2200.5 (1�i0.00132)
3 4 3596.0 3595.9 (1�i0.00066) 2618.5 (1�i0.00204)
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Fig. 6. Variable thickness plate: mode 1-4 in air (a) and in water (b).
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To conclude this subsection, we must say that the iterative procedure converges less rapidly
when the thickness of the plate is not constant. This is certainly due to the fact that the in vacuo
modes are badly described by a single product of two beam modes. Nevertheless, each modal
function has a predominant component and, thus, the characterization of the modes by a pair of
indices representing the number of nodal lines in each direction remains meaningful. For more
complicated thickness variations, that is certainly not true.

5.5. Criterion for choosing the number of modes

When the transient response of a fluid-loaded plate is approximated by a truncated series of
resonance modes, it is important to have an a priori idea of the number of modes which is
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Fig. 7. Variable thickness plate: mode 3-2 in air (a) and in water (b).
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necessary to reach the desired accuracy. The aim of this section is to suggest an experimental
criterion for choosing correctly the number of modes to be accounted for.
We consider the same plate as in Section 2.4. It is excited by an impulsive point force *fðtÞ;

applied at the point of co-ordinates (x ¼ 0:165 m; y ¼ 0:230 m), of total duration W ¼ 4
 10�3s;
and given by

*fðtÞ ¼
1

W
1� cos

2pt

W

� �� �
for 0otoW: ð38Þ

The acoustic pressure is computed at the point ðx ¼ 0:100 m; y ¼ 0:000 m; z ¼ 0:265 mÞ:
The first step in choosing the number of modes is to consider the spectrum of the excitation.

More precisely, it must be noted that the acoustic pressure involves the integral of the plate
acceleration. In the frequency domain, the plate acceleration involves the product of the spectrum
of the excitation force by the square of the frequency. The spectrum in @t2

*fðtÞ is shown in Fig. 8.
Let omax be the highest angular frequency of the resonance modes used in the approximation of
the acoustic pressure. The result is exact if the spectrum of the second time derivative of the
excitation force is zero for o > omax:Unfortunately, this is never the case for an excitation of finite
duration. Nevertheless, the approximation will be accurate enough if this spectrum can be
considered as negligible for frequencies higher than omax: In Fig. 8, the three horizontal lines
correspond to neglecting the contribution of the frequencies which are 10, 15 and 20 dB lower
than the maximum level of the spectrum. This corresponds to accounting for 20, 40 and 80 modes
respectively. Fig. 9 shows the first 5 ms of the three truncated series. It is obvious that the crudest
approximation (20 modes) will not be sufficient in any practical case. But the difference between
the other two approximations is quite small. Nevertheless, the final choice of the number of modes
to be accounted for depends on the use which is made of the numerical predictions. For example,
the predicted acoustic pressure radiated by a structure can be used to conduct psychoacoustics
experiments (annoyance due to a noise, acoustic comfort in a vehicle, etc.) [14–16]. In that case,
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the number of modes must be increased until the difference between two successive
approximations cannot be detected by ear.

6. Conclusion

This paper is concerned with the numerical aspects of the computation of the response of a
fluid-loaded structure expressed as a series of the fluid-loaded resonance modes.
The main part is dedicated to the computation of the resonance frequencies and modes. From a

numerical point of view, the most time-consuming task is to compute the resonance frequencies
(and modes, in the case of a strong coupling). This means that when they are known, the response
of the structure can be evaluated quite easily for any kind of excitation. Three methods (iteration,
Warburton approximation, perturbation) are proposed and compared, for both weak and strong
coupling, on numerical simulations. These simulations show in particular, that the iterative
method converges rapidly even for a strong coupling. We do not know how to obtain a rigorous
proof of this convergence. Anyhow, it is probably related to the following point. The response of
the structure is the solution of an equation which includes a differential operator (corresponding
to the structure or the in vacuo operator) and an integral operator which describes the fluid-
loading. Because it is integral, the fluid-loading operator is a priori small compared with the
differential operator, even for strong coupling. This is why the classical approximations (see, for
example Ref. [10]) are so powerful. Let us also point out that the convergence of the iterative
method will not depend on the choice of the basis functions.
The numerical tests show that for a weak loading the shape of the resonance modes is quite

close to the shape of the in vacuo modes, but the damping of the resonance frequencies cannot be
neglected, at least for the first ones. This is a well-known result. Another result is that the
Warburton’s approximation, which is known to be powerful to compute the in vacuo frequencies,
is still efficient in the case of a fluid loading. Nevertheless, its accuracy decreases as the influence of
the fluid increases.
Another numerical aspect studied here is the computation of the coupling term which must be

evaluated accurately because it corresponds to the damping of the resonance frequencies.
The last aspect presented is the choice of the number of modes to be taken into account to

predict correctly the sound pressure in the case of a short-duration excitation. An example is
shown in this paper. The criterion depends on the accuracy needed in the evaluation of the sound
pressure. It should be noticed that prediction methods are now used to study the perceptive
properties of sounds radiated by vibrating structures, in order to define comfort and annoyance
criteria. The accuracy must be determined by series of subjective tests, where simulated sounds
and recorded sounds are compared.
In the first part of this paper, a comparison between numerical simulations and experimental

results is shown in the case of a baffled thin plate hit by a small ball. This experiment
will be carried out again with a better adapted set-up. It is quite similar to the experiment
described in Ref. [17], where the influence of the inelasticity of the phenomenon is taken into
account.
Let us finally point out that the methods presented here in the case of a baffled plate can be used

similarly for more complex structures.
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Appendix A. Nomenclature

B functions of time
M point on the plate
Q point in the fluid
sgnðzÞ or sign z sign of z
TrþPðMÞ ¼ limz>0-0 PðQÞ the co-ordinates of Q being x; y; z
Tr�PðMÞ ¼ limzo0-0 PðQÞ the co-ordinates of Q being x; y; z
*Fðt;MÞ ¼ *cðtÞf ðMÞ force on the plate, as a function of time
*WðM; tÞ displacement as a function of time
*PðM; tÞ sound pressure as a function of time
*%P jump of PðM; tÞ across the plane z ¼ 0
o angular frequency
yðoÞ Fourier transform of any function *yðtÞ
*Gðt;S;MÞ the Green’s function for the wave equation with homogeneous

Neumann conditions on z ¼ 0
GoðS;MÞ the Green’s function for the Helmholtz equation with

homogeneous Neumann conditions on z ¼ 0
u#dS tensor product of function u by distribution d on surface S
boðW ;UÞ coupling term
LnðoÞ and #Wnðo;MÞ eigenvalues and eigenmodes of the fluid-loaded plate
on and WnðMÞ resonance angular frequencies and modes of the fluid-loaded

plate
WnðMÞ ¼

P
N

m¼1 um
n UmðMÞ expansion of the nth resonance mode in terms of the basis

functions Um

ðUmÞ; m ¼ 1; 2;y;N a basis of the space HðSÞ with Umðx; yÞ ¼ vpðxÞvqðyÞ
vpðxÞ resonance mode of the in vacuo beam
Nx and Ny number of nodal lines in x and y
gðjx � x0j; jy � y0jÞ; %gS and %gR Green’s kernel in the coupling term, its singular part and its

regular part
oð0Þ

n nth resonance frequency of the in vacuo plate
ZnðMÞ ¼

PR
m¼1 umð0Þ

n UmðMÞ nth resonance mode of the in vacuo plate expressed as a series
of basis functions

Lð jÞ
n jth iteration of Ln

oð jÞ
n jth iteration of on

V ð jÞ jth iteration of a test vector used to check the convergence of
the iteration process
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