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Abstract

The similarity of modes of static buckling of spinning elastic ellipsoid shells and their elastic resonant
precession vibrations in compound rotation is investigated by theoretical simulation through the use of
immovable, slewing and rotating reference frames. It is established that the elongated shells lose their
equilibrium stability more readily in simple rotation, while the flattened ones are more easily involved in
resonant regimes of vibrations in compound rotations.

An elaborate approach may be used for numerical simulation of the critical states of thin-walled elastic
rotors of engines of aircrafts during their translational motions and attitude manoeuvres.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is common knowledge in the theory of the equilibrium of elastic rectilinear rotating shafts,
carrying rigid discs, that the centrifugal inertia forces generated by spinning can provoke system
stability loss. In these cases the axial line of the shaft buckles and assumes the shape of a plane
curve spinning together with the shaft [1]. In as much as in the considered case the inertia forces
moving the shaft off balance depend on the magnitudes of the shaft displacements, they are
positional ones. For this reason their inclusion into the constitutional equations causes change of
the structure of their remaining members. As this takes place, it turns out that the equation of its
critical equilibrium is identical in form to the characteristic equation of its free vibrations, whereas
the critical value of the rotation velocity equals the first frequency of free vibrations of the non-
rotating elastic system. Like simplified models, where the rotors are substituted by absolutely rigid
bodies and critical states of the system are considered to result from the elastic pliability of the
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shaft, they are usually used in investigations of the phenomena of static and dynamic loss of
stability of turbine structures. One would expect that the analogous bifurcational phenomena may
also occur in stationary rotation of thin-walled axisymmetrical shells of turbine rotors around an
immovable axis.

However, the character of mechanical behaviour of a thin-walled elastic rotor becomes much
more complicated in its compound rotation, when the rotor is installed on a flying apparatus
performing attitude manoeuvres and the rotor axis performs additional forced slewing with small
angular velocity in some plane. In this case, the precession elastic vibrations of the rotor are
excited as a result of superposition and interaction of different kinds of rotation. In the inertial
reference system, the vibrations manifest themselves as a stationary state deformed symmetrically
relative to the plane, containing the axes of the rotor spinning and slewing. Initiation of critical
states of a system performing compound rotation can be associated with precession resonances
realized at some (critical) values of the system rotation velocity [2,3].

Despite the apparent distinctions between the considered phenomena, they have essential
resemblances in the character of their proceeding, with the only difference that it is more
convenient to observe them in different co-ordinate systems. Thus, the static loss of the elastic
thin-wall rotor stability in simple rotation is realized in the form of its stationary buckling in the
co-ordinate system spinning together with the rotor. For this reason, in the inertial reference
frame it is manifested in the form of a rotating buckle.

In compound rotation, there is the inverse picture. In the co-ordinate system connected with the
rotor, its vibrations show themselves as buckles moving (processing) in the direction opposite to
the direction of the rotor spinning, which is known as inverse regular precession. In this
connection they appear as immovable buckles relative to the inertial reference frame. So it is
possible to achieve some similarities in the problem formulations and techniques of their solution
choosing a rotating co-ordinate system for the description of the first phenomenon and a slewing
reference frame for analysis of the second one.

In this connection, the simultaneous solution of these problems, establishment of the
possibilities of initiation of static and dynamic critical states of the shell rotors in simple and
compound rotations, and determination of what type of these instabilities comes earlier are of
interest.

Some issues of the dynamics of the rotating plate and shell systems were considered in
Refs. [4–9]. The precession vibrations of elastic discs and conic shells in compound rotation were
analyzed in Ref. [10].

2. Equations of dynamic equilibrium of a shell element

Let a thin-walled axisymmetric ellipsoidal shell be fixed by one of its circular bases to a rigid
carrier. The carrier rotates together with the co-ordinate system Oxyz relative to the axis of
symmetry Oz (Fig. 1) with the constant by module angular velocity o: The second contour of the
shell is free from constraints and forces. Introduce curvilinear orthogonal co-ordinate system
ox1x2x3 in the middle surface of the shell. Its co-ordinate line x1 lies in a generatrix section, x2 is
circumferentially directed, and x3 is oriented by an internal normal to the shell surface.
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Note that the constituent equations of the shell dynamics in compound rotation are adduced in
Ref. [10]. Here their concise survey used for formulation of the problem of the shell spinning
stability will be outlined.

Taking into account that, at initiation of critical phenomena in a rotating shell, it is prestressed
by centrifugal inertia forces, one uses the general form of geometrically non-linear equations of
dynamic equilibrium of its element [3]. In co-ordinate system Oxyz they appear as

raT
a þ p ¼ 0; raM

a þ ðea � TaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22 � a12a21

p
¼ 0 ða ¼ 1; 2Þ: ð1Þ

Here Ta is the vector of internal forces in the shell, Ma the vector of internal moments, ra the
symbol of the covariant derivative, p the vector of intensity of external distributed forces; and aij

the coefficients of the first quadratic form of the shell midsurface.
Using the relations between contravariant components of the functions of internal forces Tij

and moments Mij and covariant components of the functions of strains eij and curvature
increments mij;

Tij ¼ Eheab½vaijaab þ ð1� vÞaiaajb	=ð1 � v2Þ;

Mij ¼ Eh3mab½vaijaab þ ð1� vÞaiaajb	=12ð1 � v2Þ; ð2Þ
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expressing these functions via covariant components u1; u2; u3 of the displacement vector u and the
angles Wi of the cross-section rotation,

eij ¼ ðei@u=@xj þ ej@u=@xi þ WiWjÞ=2; Wi ¼ ð@u=@xiÞe3;

mij ¼ ð1=cikek@X=@xj þ 1=cjkek@X=@xiÞ=2; X ¼ cijWiej ði; j; k ¼ 1; 2Þ; ð3Þ

and taking into account change of the parameters b
j
i; bij of the second quadratic form at the

process of the shell deformation, one gains the equations of its dynamic equilibrium. Here, cij are
the components of the discriminant tensor of the surface.

3. Forces of inertia of compound and simple rotation

In the considered case only the inertia forces play the role of active forces applied to the shell.
To calculate them one uses the equality

p ¼ �gha; ð4Þ

where g is the shell material density, h its thickness and a the vector of the shell element absolute
acceleration.

Inasmuch as the inertia forces of a simple rotation constitute a particular case of the inertia
forces of the compound rotation, the more general case will be one’s special concern. Assume the
shell compound rotation to be conducted by forced in-plane slewing its axis Oz with the constant
angular velocity o0: Let o>o0:

The feature of the technique of calculation of the vectors a and p lies in the fact that it is more
convenient to define them in the rotating co-ordinate system Oxyz and thereupon to apply them in
Eqs. (1), using the local co-ordinate system ox1x2x3: To perform this transition, introduce
additional co-ordinate systems (Fig. 1): OX�Y�Z� is the inertial co-ordinate system with its
origin at the centre of the supporting contour of the shell with its axis OY� collinear with the
o0 vector; OXYZ the slewing co-ordinate system whose immovable axis OY coincides with the
OY�-axis and axis OZ is in line with the Oz-axis.

The a vector is calculated by the formula

a ¼ ae þ ar þ ac: ð5Þ

To define the vectors of the bulk ðaeÞ; relative ðarÞ and Coriolis ðacÞ accelerations the following
formulae are used [11]:

ae ¼ e � q þ ðx0 þ xÞ � ½ðx0 þ xÞ � q	; ar ¼ ’d2q=dt2; ac ¼ 2ðx0 þ xÞ � ðdq=dtÞ: ð6Þ

Here x0 þ x; e ¼ x0 � x are correspondingly the vectors of absolute angular velocity and angular
acceleration of the spinning co-ordinate system Oxyz; q is the radius vector of the shell element in
this system.

Assuming oco0; fulfilling vector procedures (6) and neglecting the value o2
0; the contravariant

components of the acceleration vectors (6) are found to be

a1
e ¼ �o2r sinj=

ffiffiffiffiffiffi
a11

p
þ 2o0or sinðot þ x2Þ cosj=

ffiffiffiffiffiffi
a11

p
� o2u1 sin2 j=a11 þ o2u3 sin j cosj=

ffiffiffiffiffiffi
a11

p
;
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a2
e ¼ �o2u2=a22;

a3
e ¼ o2r cosjþ 2o0or sinðot þ x2Þ sin jþ o2ðu1 sin j=

ffiffiffiffiffiffi
a11

p
� u3 cosjÞ cosj;

a1
c ¼ �2o ’u2 sin j=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
;

a2
c ¼ 2o ’u1 sinj=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
� 2o ’u3 cosj=

ffiffiffiffiffiffi
a22

p
; a3

c ¼ 2o ’u2 cosj=
ffiffiffiffiffiffi
a22

p
;

a1
r ¼ .u11=a11; a2

r ¼ .u2=a22; a3
r ¼ .u3: ð7Þ

Here r is the distance from the considered element to the rotation axis, j is the angle between
the tangent to the shell generatrix and the rotation axis. With the allowance made for Eqs. (4) and
(7), the contravariant components of the vector of intensity of inertia forces acting on the shell in
compound rotation are found:

p1 ¼ �ghð�o2r sin j=
ffiffiffiffiffiffi
a11

p
þ 2o0or sinðot þ x2Þ cosj=

ffiffiffiffiffiffi
a11

p
� o2u1 sin2 j=a11

þ o2u3 sin j cosj=
ffiffiffiffiffiffi
a11

p
� 2o ’u2 sin j=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
þ .u11=a11Þ;

p2 ¼ �ghð2o sin j 
 ’u1=
ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
� 2o cosj ’u3=

ffiffiffiffiffiffi
a22

p
þ .u2=a22 � o2u2=a22Þ;

p3 ¼ �ghðo2r cosjþ 2o0or sinðot þ x2Þ sin j

� o2ðu1 sinj=
ffiffiffiffiffiffi
a11

p
� u3 cos jÞ cosjþ 2o ’u2 cosj=

ffiffiffiffiffiffi
a22

p
þ .u3Þ: ð8Þ

They include three types of forces. The first one involves o2; does not depend on time and plays
the role of active static forces. The second force type incorporates the multiplier sinðot þ x2Þ;
depends on the phase function ot þ x2 and plays the role of active dynamic forces. The forces of
the third type contain the velocities ’u1; ’u2; ’u3 and accelerations .u1; .u2; .u3 and arise only at the
dynamic deforming of the shell.

In simple rotation the forces of the second and third types are not generated, so in this case

p1 ¼ �gh½o2r sinj=
ffiffiffiffiffiffi
a11

p
� o2u1 sin2 j=a11 þ o2u3 sin j cosj=

ffiffiffiffiffiffi
a11

p
	;

p2 ¼ 0; p3 ¼ �gh½o2r cosjþ o2ðu1 sin j=
ffiffiffiffiffiffi
a11

p
� u3 cosjÞ cosj	: ð9Þ

Expressions (8) and (9) are used for simulation of the inertia forces acting on a shell at the
precritical and critical states.

4. The equations of critical states of a shell in simple and compound rotation

The equations of shell dynamics in compound rotation follow from relationships (1)–(3)
transformed with allowance made for Eqs. (4)–(8). In this case it is necessary to take into account
the change of geometry of the shell at its loading and to use the values r þ Dr; jþ DW�1 instead of r

and j in the equalities containing the large value o2: Then the equations of the force group of
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system (1) assume the form

@T11=@x1 þ @T12=@x2 þ ð2G1
11 þ G2

21ÞT
11 þ G1

22T22 � b1
1T13

¼ gh½�o2ðr þ DrÞ sinðjþ DW�1 Þ=
ffiffiffiffiffiffi
a11

p
þ 2o0or sinðot þ x2Þ cosj=

ffiffiffiffiffiffi
a11

p
� 2o sin j ’u2=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
þ .u11=a11	;

@T12=@x1 þ @T22=@x2 þ ð3G2
12 þ G1

11ÞT
12 � b2

2T23

¼ gh½o2r cosj cosðp=2þ DW�2 Þ
ffiffiffiffiffiffi
a22

p
þ 2o sin j ’u1=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
� 2o cos j ’u3=

ffiffiffiffiffiffi
a22

p
þ .u2=a22 � o2u2=a22	;

@T13=@x1 þ @T23=@x2 þ ðG2
12 þ G1

11ÞT
13 þ b11T11 þ b22T22

¼ gh½o2ðr þ DrÞ cosðjþ DW�1 Þ þ 2o0or sinðot þ x2Þ sin j

þ 2o cos j ’u2=
ffiffiffiffiffiffi
a22

p
þ .u3	: ð10Þ

Here Gi
jk are the Christoffel symbols.

Note that existence of the multipliers sinðot þ x2Þ in the right of these equations is associated
with the type of inertia forces acting on the shell, in as much as they are harmonic relative
to x2 and t and run in the circumferential direction with the angular velocity o initiating the
shell precession vibrations with frequency o: At simulation of the precession vibrations excited
by these forces, it is believed that they are small because oco0: Owing to this assumption,
firstly the state of simple rotation with the velocity o is separated and the shell stress–strain
state is calculated. Thereupon, the precession vibrations of the shell in compound rotation are
analyzed with the help of the motion equations linearized in the vicinity of the first state. They
stem from Eqs. (10):

@DT11=@x1 þ @DT12=@x2 þ ð2G1
11 þ G2

21ÞDT11 þ G1
22DT22 � b1

1DT13

� gh½�o2 sin jDr=
ffiffiffiffiffiffi
a11

p
� o2r cosjDW�1 =

ffiffiffiffiffiffi
a11

p
� 2o sin jD ’u2=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
þ D .u1=a11	

¼ 2gho0or sinðot þ x2Þ cosj=
ffiffiffiffiffiffi
a11

p
;

@DT12=@x1 þ @DT22=@x2 þ ð3G2
12 þ G1

11ÞDT12 � b2
2DT23

� gh½�o2r cosjDW�2 =
ffiffiffiffiffiffi
a22

p
þ 2o sin jD ’u1=

ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
� 2o cosjD ’u3=

ffiffiffiffiffiffi
a22

p
þ D .u2=a22 � o2Du2=a22	 ¼ 0;

@DT13=@x1 þ @DT23=@x2 þ ðG2
12 þ G1

11ÞDT13 þ b11DT11 þ Db11T11 þ b22DT22 þ Db22T22

� gh½o2 cosjDr � o2r sin jDW�1 þ 2o cosjD ’u2=
ffiffiffiffiffiffi
a22

p
þ D .u3	

¼ 2gho0or sin j sinðot þ x2Þ: ð11Þ

On the left sides of these equations there are summands containing the multipliers Dr; DW�1 ; DW
�
2 ;

Db11; Db22: To calculate them

Dr ¼ Du1 sin j=
ffiffiffiffiffiffi
a11

p
� Du3 cosj; DW�1 ¼ ð�@Du3=@x1 � b1

1Du1Þ=
ffiffiffiffiffiffi
a11

p
;

DW�2 ¼ ð�@Du3=@x2 � b2
2Du2Þ=

ffiffiffiffiffiffi
a22

p
; Db11 ¼ �Dm11; Db22 ¼ �Dm22;

Dm11 ¼ @DW�1
ffiffiffiffiffiffi
a11

p
=@x1 � DW�1

ffiffiffiffiffiffi
a11

p
G1

11; Dm22 ¼ @DW�2
ffiffiffiffiffiffi
a22

p
=@x2 � DW�1

ffiffiffiffiffiffi
a11

p
G1

22 ð12Þ
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are used. In as much as the forces containing these multiplier change at the shell deformation, they
are positional ones. Taking into consideration that these forces cause variation of the structure of
the left hand side of Eq. (11) and since it has o2 coefficients, the system’s critical states can be
achieved with increased o; when system (11) left-hand member operator degenerates.

The summands with the multipliers D ’u1; D ’u2; D ’u3 in Eq. (11) characterize the gyroscopic-type
forces. Their total power equals zero, but their presence leads to a change of the values of free
vibration frequencies and splitting their multiple values, as well as to a change of free vibration
modes, excluding the possibility of shell vibrations with steady waves.

The expressions on the right of Eqs. (11) play the role of active forces. Owing to their explicit
dependence on the function sinðot þ x2Þ; they generate harmonic waves propagating (processing)
in the circumferential direction. Eqs. (11) and (12) are not homogeneous, so the states can be
achieved with a change of o and coefficients of the left-hand parts, when the calculated values of
the precession vibration amplitudes begin to enlarge infinitely. The states are known as precession
resonances.

Theoretical simulation of the shell stability loss in the simple rotation is performed on the basis
of relationships (11) simplified with allowance made for the equality o0 ¼ 0 and the fact that the
shell does not vibrate. In so doing, it becomes possible to consider the static deformation of the
shell in the rotating co-ordinate system Oxyz and if so one has instead of Eq. (7)

a1
e ¼ �o2r sin j=

ffiffiffiffiffiffi
a11

p
� o2u1 sin2 j=a11 þ o2u3 sin j cosj=

ffiffiffiffiffiffi
a11

p
;

a2
e ¼ 0; a3

e ¼ o2r cosjþ o2ðu1 sin j=
ffiffiffiffiffiffi
a11

p
� u3 cosjÞ cosj;

a1
c ¼ 0; a2

c ¼ 0; a3
c ¼ 0; a1

r ¼ 0; a2
r ¼ 0; a3

r ¼ 0: ð13Þ

Substituting equalities (13) into (4) and then into Eq. (1) and linearizing them in the vicinity of
the state of simple rotation with the velocity o with allowance made for Eq. (12), one has the
homogeneous system of neutral equilibrium of the shell in some perturbed state:

@DT11=@x1 þ @DT12=@x2 þ ð2G1
11 þ G2

21ÞDT11 þ G1
22DT22 � b1

1DT13

� gh½o2r cos jð@Du3=@x1 þ b1
1Du1Þ=a11 � o2Du1 sin2 j=a11 þ o2Du3 sin j cosj=

ffiffiffiffiffiffi
a11

p
	 ¼ 0;

@DT12=@x1 þ @DT22=@x2 þ ð3G2
12 þ G1

11ÞDT12 � b2
2DT23

� gh½o2r cos jð@Du3=@x2 þ b2
2Du2Þ=a22 � o2Du2=a22	 ¼ 0;

@DT13=@x1 þ @DT23=@x2 þ ðG2
12 þ G1

11ÞDT13 þ b11DT11 þ Db11T11

þ b22DT22 þ Db22T22 � gh½o2r sinjð@Du3=@x1 þ b1
1Du1Þ=

ffiffiffiffiffiffi
a11

p
þ o2Du1 sin j cosj=

ffiffiffiffiffiffi
a11

p
� o2Du3 cos2 j	 ¼ 0: ð14Þ

The o values characterized by non-trivial solutions of homogeneous system (14) are critical and
the appropriate solutions conform to the modes of stability loss. As a rule, the practical interest
represents only the lowest critical value of o:

The coefficients of Eqs. (11) and (14) are determined by the functions aij ; bij; Gk
ij: To calculate

them, it is necessary to preset the equation of the shell midsurface. Inasmuch as the Oz-axis of
the considered ellipsoidal shell is the axis of its symmetry, the equations can be represented in
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the form

x ¼ ðb=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðx1 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 � d2

p
=2bÞ2

q
cos x2;

y ¼ ðb=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðx1 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 � d2

p
=2bÞ2

q
sin x2; z ¼ x1: ð15Þ

Here a; b are the ellipsoid semi-axes and d is the diameter of the clamped contour circle of the
shell.

With the use of Eq. (15) the following functions are determined:

aij ¼
@x

@xi

@x

@xj
þ

@y

@xi

@y

@xj
þ

@z

@xi

@z

@xj
ði; j ¼ 1; 2Þ;

bij ¼
1ffiffiffi

a
p @y

@x1

@z

@x2
�

@z

@x1

@y

@x2

� �
@2x

@xi@xj
þ

@z

@x1

@x

@x2
�

@x

@x1

@z

@x2

� �
@2y

@xi@xj

�

þ
@x

@x1

@y

@x2
�

@y

@x1


@x

@x2

� �
@2z

@xi@xj

�
ði; j;¼ 1; 2Þ;

Gk;ij ¼
1

2

@aik

@xj
þ
@ajk

@xi
�

@aij

@xk

� �
; Gk

ij ¼ aklGl;ij ði; j; k; l ¼ 1; 2Þ: ð16Þ

Underline that the functions T11ðx1;x2Þ; T22ðx1;x2Þ appearing in Eqs. (11) and (14) play a role
of known coefficients. They are found from the preliminary solution of the problem of the shell
stress–strain state in simple rotation with the velocity o:

5. Technique of numerical simulation

For construction of solutions of the non-homogeneous equation system (11) let us proceed
from the point that their right sides contain the functions with the phase co-ordinate ot þ x2

describing the running forces. Owing to this, it is possible to represent the required functions in
the form of harmonic waves running in the circumferential direction. As this takes place, the
functions which are even relative to the co-ordinate ot þ x2 are substituted by the expressions
with the multiplier cosðot þ x2Þ and the uneven functions have the multiplier sinðot þ x2Þ:

Du1ðx1; x2; tÞ ¼ uð1Þðx1Þ sinðot þ x2Þ; Du2ðx1;x2; tÞ ¼ uð2Þðx1Þ cosðot þ x2Þ;

Du3ðx1; x2; tÞ ¼ uð3Þðx1Þ sinðot þ x2Þ; DW1ðx1;x2; tÞ ¼ Wð1Þðx1Þ sinðot þ x2Þ;

De11ðx1;x2; tÞ ¼ eð11Þðx1Þ sinðot þ x2Þ; De12ðx1; x2; tÞ ¼ eð12Þðx1Þ cosðot þ x2Þ;

Dm11ðx
1;x2; tÞ ¼ mð11Þðx

1Þ sinðot þ x2Þ; DT13ðx1;x2; tÞ ¼ T ð13Þðx1Þ sinðot þ x2Þ: ð17Þ

The rest of the required variables in Eq. (11) are expressed through functions (17).
After substitution of Eq. (17) into Eq. (11) and linearized equalities (2), (3) and cancelling by

cosðot þ x2Þ; the phase co-ordinate ot þ x2 and the derivatives with respect to x2; t are excluded
and a non-homogeneous system of ordinary differential equations of the eighth order with respect
to the required functions uð1Þ; uð2Þ; uð3Þ; Wð1Þ; eð11Þ; eð12Þ; mð11Þ; T ð13Þ with the independent function x1

is constructed. Note that this substitution is equivalent to investigation of the dynamics of the
spinning shell in the unspinning (but slewing with the velocity o0) co-ordinate system OXYZ: This
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equation system can be presented in general form as

dy=dx ¼ A1ðxÞyþ fðxÞ: ð18Þ

Here y ¼ yðxÞ is the required eight-dimensional vector function

y ¼ ðuð1Þ; uð3Þ;Wð1Þ; eð11Þ; mð11Þ;T
ð13Þ; uð2Þ; eð12ÞÞ

T; ð19Þ

where x � x1 is the independent variable changing in the segment 0pxpl; A1ðxÞ is the coefficient
matrix of eighth order which is determined by the shell theory equations and correlations
presetting the coefficients of the first and second quadratic forms; and fðxÞ is the preset vector of
the right sides.

The solution of system (18) has to satisfy the boundary conditions

Byð0Þ ¼ 0; DyðlÞ ¼ 0; ð20Þ

where the constant matrices B and D have dimension 4 � 8:
The yðxÞ vector function is constructed through the use of the transfer matrix method in the

form of superposition of the particular solution y0ðxÞ of non-homogeneous system (18) and
general solution Y ðxÞC of the appropriate homogeneous system; the C vector is found from the
condition of satisfying equalities (20). The o values in the coefficients of the matrix A1ðxÞ for
which the matrix resulting from conditions (20) and serving for the C vector determination
degenerates are resonant.

The problem of the shell stability at simple rotation is solved on the basis of Eq. (14) via
determination of the o eigenvalues, for which this system has non-trivial eigensolutions. Among
these solutions, there are the modes possessing cyclic symmetry relative to the Oz-axis and
containing multipliers in the form of harmonics sin nx2; cos nx2 with different values of n: The
least energy-consuming modes for the considered shells turned out to be the modes with the
harmonic number n ¼ 1: For this reason the replacement is used:

Du1ðx1; x2Þ ¼ uð1Þðx1Þ sin x2; Du2ðx1;x2Þ ¼ uð2Þðx1Þ cos x2;

Du3ðx1; x2Þ ¼ uð3Þðx1Þ sin x2; DW1ðx1;x2Þ ¼ Wð1Þðx1Þ sin x2;

De11ðx1; x2Þ ¼ eð11Þðx1Þ sin x2; De12ðx1; x2Þ ¼ eð12Þðx1Þ cos x2;

Dm11ðx
1;x2Þ ¼ mð11Þðx

1Þ sin x2; DT13ðx1;x2Þ ¼ T ð13Þðx1Þ sin x2: ð21Þ

After substitution of Eq. (21) into Eq. (14) and linearized equalities (2), (3) and cancelling
cos x2; the independent variable x2 is excluded and a system of homogeneous ordinary differential
equations of the eighth order relative to the functions uð1Þðx1Þ; uð2Þðx1Þ; uð3Þðx1Þ; DWð1Þðx1Þ; Deð11Þðx1Þ;
Deð12Þðx1Þ; Dmð11Þðx

1Þ; DT ð13Þðx1Þ is constructed. Its non-trivial solutions are found with the help of
the transfer matrix method. The o values for which the determinant of the matrix derived from
conditions (20) takes the zero value are critical.

In order to construct a mode of stability loss, one of the required components of vector C is
preset to be arbitrary and the other seven components are determined from system (20). After this
the mode of buckling is calculated.

The particular solutions of the homogeneous system of ordinary differential equations are
constructed through the use of the Runge–Kutta method with application of the orthogonaliza-
tion procedure.
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6. Testing the investigation techniques

For the purpose of testing the selected approach, the simpler problems of simple and compound
rotations of thin-walled shells were considered. Thus the verification of the technique of
theoretical analysis of thin-wall shell buckling under conditions of simple rotation was performed
with the help of the example of stability analyses of an elongated cylindrical shell and a tube beam
with equivalent parameters of stiffness and inertia characteristics. The radius of the shell external
surface constitutes R1 ¼ 25:5 mm; the radius of its internal surface R2 ¼ 24:5 mm; its thickness
h ¼ 1 mm; the material elasticity modulus E ¼ 2:1 � 1011 Pa; the Poisson ratio n ¼ 0:3; and the
density g ¼ 7:8 � 103 kg=m3: The shell length is chosen to be l ¼ 0:5; 1 and 2 m: Two types of
boundary conditions were considered: for the first one the left end of the cylindrical shell (tubular
beam) was clamped and the right end was free from constraints; for the second type of boundary
conditions both the ends of each elastic system were clamped.

Calculations of the shell critical states were performed on the basis of the technique outlined in
Section 5. The shell midsurface equations are represented in the form

x ¼ R cos x2; y ¼ R sin x2; z ¼ x1:

It was found via use of formulae (16):

a11 ¼ 1; a22 ¼ R2; a12 ¼ a21 ¼ 0; a11 ¼ 1; a22 ¼ R�2;

b11 ¼ 0; b22 ¼ �R; b1
1 ¼ 0; b2

2 ¼ �R�1: ð22Þ

These values were substituted into Eqs. (14), whereupon the problem of static stability loss was
solved for different values of angular velocity o with the step Do ¼ 25 s�1: In the vicinity of the
critical velocity, the increment Do was diminished till 1 s�1: In doing so, the segment 0px1pl was
divided into 3200 integration steps and 80 points of orthogonalization were preset.

As an alternative, the stability of the elongated spinning cylindrical shell was simulated with the
use of a beam theory. It was considered that an equivalent tube beam was rotating around the
OZ-axis with the angular velocity o: Its equilibrium in a perturbed state is described by uncoupled
ordinary differential equations

EId4u=dz4 ¼ qx; EId4v=dz4 ¼ qy; ð23Þ

where u; v are the beam displacements along the axes Ox and Oy; correspondingly, z the
longitudinal co-ordinate, EI the bending stiffness; and qx; qy the intensities of external loads.

For the considered disturbed case, one has

qx ¼ gFo2u; qy ¼ gFo2v; ð24Þ

where g is the beam material density and F its cross-sectional area.
Substituting Eq. (24) into Eq. (23), one gains homogeneous equations of equilibrium stability of

the spinning tube

EId4u=dz4 � gFo2u ¼ 0; EId4v=dz4 � gFo2v ¼ 0: ð25Þ

The values ocr for which Eqs. (25) have non-trivial solutions are critical and the corresponding
non-trivial solutions represent the modes of stability loss. They were found via solving Eqs. (25)
with prescribed boundary conditions using the transfer matrix method. In doing so, the particular
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solutions were constructed by joint application of the Runge–Kutta method and the method of
orthogonalization.

Emphasizing that these equations coincide in form with the characteristic equations of free
vibrations of non-rotating beams and the critical value ocr of the velocity, o is equal to the first
frequency of free vibrations which turns out to be multiple. If the beam spins, its free vibrations in
the two mutually perpendicular planes proved to be coupled through gyroscopic interaction. In
this connection, the equations of free vibrations take the form

EI@4u=@z4 þ gFð�o2u � 2o’v þ @2u=@t2Þ ¼ 0;

EI@4v=@z4 þ gFð�o2v þ 2o ’u þ @2v=@t2Þ ¼ 0: ð26Þ

This system’s solutions testify that the vibration mode of the rotating beam can be precessive
only and, generally, the frequencies of precession vibrations do not coincide with the multiple
frequencies of a non-rotating beam but are the result of its splitting into two different values, one
of which is equal to the angular velocity of precession to the direction of rotation and the other
corresponds to the opposite direction.

The results of calculations of critical velocities for the cylindrical shells and equivalent tubular
beams are listed in Table 1.

Close agreement between the critical velocities of the thin-walled rotating tubes found through
the use of shell theory and beam theory is a testimony of plausibility of the applied approach.

For testing the technique of investigation of the shell precession vibrations in compound
rotation, a gyroscopic moment Mg acting on an inertially equivalent rigid body was also
calculated.

It is an integral measure of a mechanical system dynamical behaviour in compound rotation. Its
display for a rotating axisymmetrical solid body whose axis performs additional compulsory
slewing consists in generation of the body support reactions making a force couple with the
moment

Mg ¼ Izo� o0: ð27Þ

Here Iz is the body inertia moment relative to the rotation axis.
At the same time, the elastic vibrations of a real thin-walled rotor excited by compound

rotation are accompanied by the generation of a system of distributed edge elastic bending
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Table 1

Critical values of angular velocity for cylindrical shell and tubular beams

Types of boundary conditions Length l (m) The first critical angular velocity, ocr ðrad s�1Þ

Cylindric shell Tubular beam

End x ¼ 0 is clamped, 0.5 1287 1290

end x ¼ l is free 1.0 329 323

2.0 82 81

End x ¼ 0 is clamped, 0.5 7943 8292

end x ¼ l is clamped 1.0 1986 2072

2.0 511 518
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moments, torques, longitudinal and shear forces applied to the solid spinning carrier and
producing a total resultant elastic moment Me: It is useful to compare the moments Mg and Me

which should approximately coincide in the preresonant zones of the o value varying.

7. Investigation results

The outlined techniques were used for investigation of critical states of axisymmetrical
ellipsoidal shells in simple and compound rotations. The equations of midsurface geometry of the
shells were prescribed in form (15). Based on these correlations, geometrical parameters (16) were
computed.

The investigations were performed in the limits 0pop2500 s�1; and the o0 value was assumed
to be 1 s�1: The results of investigations are given in Table 2. Recall the designations used. Here a
and b are the ellipsoid semi-axes along the axes Oz and Ox ðOyÞ; respectively, cases a > b and aob
correspond to elongated and flattened ellipsoids, if a ¼ b the ellipsoid is spherical; l is the distance
between the planes of the ellipsoid circular contours; R is the radius of the shell free contour; ocr is
the critical velocity value for the shell buckling in simple rotation; ores is the velocity value of the
shell resonant precession in compound rotation. In all the cases, the diameter of the shell clamping
at the left end equals d ¼ 0:008 m and the shell thickness h ¼ 0:002 m:

It can be seen that the type of the shell critical state set on originally in simple or compound
rotations depends on the ratio between diameter 2R and distance l defining its dimensions. Thus,
the static stability loss of simple rotation precedes the resonant precession for rather elongated
ellipsoids without larger ratios 2R=l (cases 3–9 in Table 2, 2R=lp2:17) and the resonant vibration
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Table 2

Critical and resonant values of angular velocity for ellipsoid shells

Case Type of a b R l 2R=l ocr ores

number shell shape (m) (m) (m) (m) ðrad s�1Þ ðrad s�1Þ

1 Elongated ellipsoids ða > bÞ 0.4 0.2 0.132 0.10 2.64 2533 1147

2 0.4 0.2 0.143 0.12 2.38 1043 925

3 0.4 0.2 0.152 0.14 2.17 666 776

4 0.4 0.2 0.160 0.16 2.00 483 673

5 0.4 0.2 0.167 0.18 1.86 375 596

6 0.4 0.2 0.173 0.20 1.73 303 538

7 0.4 0.2 0.199 0.40 0.995 89 358

8 0.4 0.2 0.173 0.60 0.58 49 —

9 0.4 0.2 0.132 0.70 0.38 40 —

10 Hemisphere ða ¼ bÞ 0.4 0.4 0.4 0.39996 2.00 95 94

11 0.2 0.2 0.2 0.19998 2.00 415 423

12 Flattened ellipsoids ðaobÞ 0.2 0.4 0.265 0.05 10.6 — 627

13 0.2 0.4 0.346 0.10 6.92 — 242

14 0.2 0.4 0.399 0.20 3.99 — 134
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state in compound rotation precedes the critical static state in simple rotation for the elongated
and flattened shells with ratios 2R=lX2:38 (cases 1, 2, 12–14). For the hemispherical shells, the
critical states of spinning and resonant regimes of compound rotation preceed nearly
simultaneously (cases 10 and 11). Note that in cases 8 and 9 the resonant states were not
achieved at all and in cases 12–14 the shells do not buckle statically in the adopted diapason of the
angular velocity o varying. Note, that during calculation, it was difficult to attain convergence of
numerical results. One of the reasons for this feature is connected with the rigidity of the
constituent differential equations caused by availability of large multipliers o2 and small thickness
h in numerators and denominators of their coefficients. The second reason is fast varying of the
functions of physical components of internal forces Tð13Þðx1Þ; Tð11Þðx1Þ in simple spinning, which
are constructed at investigation of simple rotation buckling and, besides, are included into
coefficients of linearized equations (11) and (14). To overcome the numerical difficulties at
application of the Runge–Kutta method for determination of the particular solutions, the number
of segments Dx1; to which the diapason 0px1pl was divided, was assumed to be 64; 000 and the
number of orthogonalization points was selected to equal 80.

Convergence of numerical calculations also depends on the fields of distribution of internal
forces in the shell prestressed by simple rotation. As the fields have zones with high gradients
of these forces, linearized differential equations (14) have coefficients changing rapidly in the x1

co-ordinate. Fig. 2 shows the functions of physical components Tð11Þ; Tð13Þ in the generatrix section
at the precritical state of simple rotation ðo ¼ 1147 rad=sÞ for case 1 in Table 2. They possess
sharp inclinations in boundary segments of the section, which contribute to deterioration of
calculation convergence.

Fig. 3a illustrates the mode of shell buckling at simple spinning (bold lines) in plane yOz of the
rotating co-ordinate system Oxyz for case 9 in Table 2. For the selected orientation of the
reference frame, the buckling shell displaces symmetrically relative to plane yOz; experiencing the
largest deflections in this plane.

The mode of the shell generatrix precession vibrations in compound rotation has a similar
shape, with one difference that it is stationary in the slewing co-ordinate system OXYZ (Fig. 3b
for case 14 in Table 2). The mode shape is symmetrical relative to plane YOZ:

Fig. 4 shows the typical modes of the free boundary circle buckling relative to different
co-ordinate systems. In co-ordinate system Oxyz; spinning together with the shell, the buckled
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Fig. 2. Distribution of shell internal forces Tð11Þ and Tð13Þ at a precritical state of simple rotation.
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boundary circle shows up as an immovable displaced curve (Fig. 4a, the bold line), whereas in the
inertial co-ordinate system OX�Y�Z�; it is seen as a rotating displaced curve (Fig. 4b). The A
label permits one to follow change of the section orientation relative to the chosen reference
frame. Note that in both cases the A label is oriented radially.

The opposite pattern occurs for the mode of preresonant vibrations of the shells in compound
rotation, because it has different manifestations in the spinning ðOxyzÞ and slewing ðOXYZÞ
co-ordinate systems. Fig. 5a illustrates translational motion of the shell edge around the O centre
relative to the Oxyz co-ordinate system. In doing so, every point of the boundary circle describes a
circular path clockwise with angular velocity o similar to the closed curve swept through by the A
label also clockwise, therewith its directions being in parallel (as it is called, the inverse regular
precession). At the same time the Oxyz co-ordinate system spins counterclockwise with respect to
the OXYZ co-ordinate system. So the resultant motion of the boundary line in the OXYZ
reference system is exhibited in the circle displaced by the distance uð3ÞðlÞ along the OY -axis and
rotating around its own centre counterclockwise with the angular velocity o (Fig. 5b). As this
takes place, the A label is directed radially. The dashed circles in Figs. 4 and 5 define the contour
lines of the shells in the undeformed states.
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Fig. 3. Modes of shell stability loss in simple spinning (a) and shell preresonant vibrations in compound rotation (b).
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Fig. 4. Modes of shell buckling in spinning (a) and immovable (b) co-ordinate systems.
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Fig. 6, which is typical for all the considered cases of compound rotation, shows the functions
of moduli of the elastic ðMeÞ and gyroscopic ðMgÞ moments for case 14 in Table 2. For the Me

calculation the formula used was

Me ¼
pd

2
�T�

ð13Þ
d

2
sin a� T�

ð11Þ
d

2
cos aþ M�

ð11Þ

� �
:

Here T�
ð13Þð0Þ; T�

ð11Þð0Þ; M�
ð11Þð0Þ are the amplitude values of physical components of the internal

shear force, longitudinal force and bending moment at x1 ¼ 0; a is the angle between the Oz-axis
and the tangent to the shell generatrix.

As o>o0 in the considered cases, the equality Mg ¼ Izoo0 is valid. The inertia moment Iz of
ellipsoid shells relative to the Oz-axis is determined by

Iz ¼ 2phg
Z 1

0

f 3ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ½ f 0ðzÞ	2 dz

q
:
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Fig. 5. Modes of shell precession vibrations in spinning (a) and slewing (b) co-ordinate systems.
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Fig. 6. Values of elastic ðMeÞ and gyroscopic ðMgÞ moments in the ellipsoid shell.
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Referring to Fig. 6, the moments moduli Me and Mg practically coincide in the preresonant
zone and differ essentially in the neighbourhood of the resonance and in the postresonant zones.

In closing, one can point out one further peculiarity of the dynamical behaviour of the studied
elastic system. It is known [7,9] that rotation of an axisymmetric shell entails splitting its multiple
frequencies and the emergence of frequency flairs in the vicinity of each of them. One out of the
pair relates to the inverse regular precession, and the other is associated with the direct regular
precession. Their values are moving apart with the o enlargement. In the case of compound
rotation, the inertia forces move opposite to the spinning direction generating the inverse regular
precession, so the resonant vibrations, corresponding to the second frequency of the direct
precession, cannot be realized.

The imposed mode of inverse precession in compound rotation also impedes the static stability
loss in cases when the critical angular velocity ocr of simple spinning is lower than the resonant
velocity ores of compound rotation.

8. Conclusions

The results of computer simulation of statics and dynamics of rotating ellipsoid shells make it
possible to draw the following inferences:

1. The simple rotation of ellipsoid shells can be accompanied by their static buckling.
2. The compound rotation of ellipsoid shells is attended with their vibrations in the mode of

inverse regular precession, which can acquire resonant character.
3. The static stability loss of simple rotation precedes the resonant precession for rather elongated

ellipsoid shells and the resonance effect in compound rotation precedes the critical state in
simple rotation for flattened shells.

4. The modes of deformation of the ellipsoid shells at critical states of simple and compound
rotations have some similarities observed in rotating, slewing and immovable reference frames.
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