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Abstract

An exact dynamic stiffness matrix for a twisted Timoshenko beam is developed in this paper in order to
investigate its free vibration characteristics. First the governing differential equations of motion and the
associated natural boundary conditions of a twisted Timoshenko beam undergoing free natural vibration
are derived using Hamilton’s principle. The inclusion of a given pretwist together with the effects of shear
deformation and rotatory inertia, gives rise in free vibration to four coupled second order partial
differential equations of motion involving bending displacements and bending rotations in two planes. For
harmonic oscillation these four partial differential equations are combined into an eighth order ordinary
differential equation, which is identically satisfied by all components of bending displacements and bending
rotations. This difficult task has become possible only with the help of symbolic computation. Next the
exact solution of the differential equation is obtained in completely general form in terms of eight arbitrary
constants. This is followed by application of boundary conditions for displacements and forces. The
procedure leads to the formation of the dynamics stiffness matrix of the twisted Timoshenko beam relating
harmonically varying forces with harmonically varying displacements at its ends. The resulting dynamic
stiffness matrix is used with particular reference to the Wittrick—Williams algorithm to compute the natural
frequencies and mode shapes of a twisted Timoshenko beam with cantilever end condition. The exact
results from the present theory are compared with numerically simulated results using simpler theories, and
some conclusions are drawn.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

There is a considerable amount of published literature on the free vibration analysis of twisted
beams [1-17]. Recently, the present author has made a contribution to this literature [18] by
investigating the free vibration characteristics of a twisted beam by using the dynamic stiffness
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method for the first time. It is evident from the research reported in the literature that prior to the
emergence of the popular finite element method, there were some outstanding works on the
subject using exact analytical methods which are based on the solution of classical differential
equations of motion. In particular, the works of Troesch et al. [2] and Diprima and Handelman [3]
need special mention. These developments are no-doubt significant and they are as relevant today
as they were at the time, particularly when solving bench mark problems and validating the finite
element and other approximate methods [10,11]. However, a striking shortcoming of these
classical analytical works is that they are essentially based on Bernoulli-Euler assumptions and
therefore, do not account for the effects of shear deformation and rotatory inertia on the free
vibratory motion of the twisted beam.

As the search for refined beam theories has continued over the years the incorporation of the
effects of shear deformation and rotatory inertia has progressively become more and more
difficult. When developing a refined beam theory the inclusion of these terms is undoubtedly an
increased and additional complexity. (Clearly the level of complexity increases as the beam theory
becomes more and more refined.) Since Timoshenko implemented the effects of shear deformation
and rotatory inertia on a simple Bernoulli-Euler beam in the earlier part of last century [19],
research workers have recognized the importance of these effects. These are particularly important
for natural frequencies of non-slender beams where the length-to-depth ratios are generally small,
and also when higher natural frequencies are required [20]. The term *“Timoshenko beam’ (which
represents a beam theory which accounts for shear deformation and rotatory inertia) is now
universally accepted and has featured in literally hundreds of papers, covering amongst others,
bending-torsion coupled (metallic) beams [21] and composite beams [22].

It appears that no one has made a serious analytical approach to investigate the free vibration
characteristics of a twisted Timoshenko beam of the type analyzed here. It would seem that the
expressions needed to derive the governing differential equations for the problem have proved to
be too daunting. The problem is further compounded by the fact that even after the governing
differential equations have been derived considerable difficulties would unavoidably arise in
obtaining an explicit solution in closed analytical form. Clearly, the algebraic expressions for the
solution are expected to be extensive and may possibly assume unmanageable proportions. This
predominantly algebraic problem can now be overcome because a powerful tool has become
available. This is, of course, symbolic computation that has made significant advances in recent
years and these have taken place in different directions. It is now considered to be a break through
in solid mechanics [23] and there are a number of diverse and wide-ranging symbolic computing
packages currently available [24,25].

Against the above background this paper sets out to develop an exact dynamic stiffness matrix
for a twisted Timoshenko beam, and then uses it to investigate its free vibration characteristics. It
will be shown later that the dynamic stiffness formulation for a twisted Timoshenko beam is
considerably more difficult than that of its Bernoulli-Euler counterpart [18]. A secondary object
of this paper is to demonstrate a worthwhile application of symbolic computation in solving
complex dynamical problems.

The structure analyzed in this paper is a twisted beam, in which the effects of transverse shear in
two planes are included. This structure will necessarily undergo torsional deformation as it flexes,
but in this paper this induced torsional deformation is ignored. This is a reasonable assumption
for beams with doubly symmetric cross-section for which the shear centre and centroid are
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coincident and as a result the torsional deformation may be assumed to be uncoupled from
flexure. However, the present method imposes a serious restriction when analyzing many practical
twisted beams such as idealized compressor, turbine and helicopter blades for which the shear
centre and centroid are not coincident. In this respect the twisted beam analyzed in this paper
exists as an academic concept with limited applications, but has no doubt the merit of introducing
structural effects of such complexity that successful analysis is possible only by the use of symbolic
computation. Of course, the inclusion of induced twisting response further increases the
complexity of the analysis very considerably. For the purpose of demonstrating the make-or-
break contribution of the symbolic computation, the simplified twisted beam model that has been
chosen—however unreal—is felt justified. The present investigation is considered to be a major
step towards developing a more refined theory for twisted beams.

The investigation proceeds with the fundamental assumptions of allowable displacements of a
twisted Timoshenko beam in coupled flexural motion. The kinetic and potential energy
expressions are derived to formulate the Lagrangian. Hamilton’s principle is then applied to
derive the governing differential equations in free vibration. The expressions for the shear forces
and bending moments at any cross-section of the beam are recovered from the natural boundary
conditions, which emerge routinely from the Hamiltonian formulation. By assuming harmonic
oscillation the governing partial differential equations are reduced to ordinary differential
equations, and are combined into one ordinary differential equation by making substantial use of
symbolic computation. The final differential equation is of eighth order and solved in closed
analytical form. The boundary conditions for bending displacements, bending rotations, shear
forces and bending moments are imposed on the general solution. This enables the elimination of
the arbitrary constants from the general solution, leading to the formation of the dynamic
stiffness matrix of the twisted Timoshenko beam. Finally using the Wittrick—Williams algorithm
[26] the resulting dynamic stiffness matrix is processed to obtain natural frequencies of some
chosen examples. The results are discussed and some conclusions are drawn.

2. Theory

A twisted beam of length L is shown in Fig. 1 in a right handed Cartesian co-ordinate system.
The global co-ordinate axes XYZ are shown at the left-hand end of the beam whereas the local co-
ordinate axes xyz (in lower cases) which vary along the length, as a result of the twist, are shown
on the right-hand side. The local y and global Y axes are coincident, both passing through the
centroid, and are perpendicular to the beam cross-section, and therefore, represent the axis of

Fig. 1. Axis system and notation used for a twisted Timoshenko beam.
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twist of the beam. The rate of twist k is assumed to be constant along the length. Thus, if the twist is
zero at the left-hand end, and ¢ (in radian) at the right-hand end, then k = ¢ /L. The area of cross-
section of the beam is A and the two principal second moment of areas are I, and I, respectively.

The derivation of the governing (partial) differential equations of motion of a twisted beam (see
Fig. 1) undergoing free natural vibration is of some considerable complexity, particularly when
the effects of shear deformation and rotatory inertia are taken into account. This is achieved by
applying Hamilton’s principle (see Appendix A for details). The resulting differential equations in
free vibration are presented here for the first time as follows:

—pAii + k AGU" — K*k-AGu + kAG(ky + k)W + kyAGY' — kk.AGO = 0, (1)
—p AV + k. AGW' — Kk AGw — kAG(ky + k' — kk AGY — k.AGH =0, )
—pl.0 + EL0" — K*ELO — k.AGO — kk.AGu + k.AGW + k(EI, + EL)' =0, (3)
—pLp + ELY" — K*ELy — kyAGY — kk AGw — kyAGu' — k(EI, + EL)0 = 0, (4)

where u and w are displacements in the x and z directions of a point lying on the centroidal axis
and located at a distance y from the origin, 0 and ¥ are the corresponding bending rotations about
the local x and y axes, p, E and G are respectively the density, Young’s modulus and modulus of
rigidity (shear modulus) of the beam material, pA is the mass per unit length, EI,, EI., k.AG and
k1AG are the bending and shear rigidities in the principal planes with k, and k. being the shear
correction (or shape) factors, and a prime and an over dot represent differentiation with respect to
distance y and time ¢, respectively.
If harmonic variation of u, w, 0, and  with circular (angular) frequency w is assumed then

Uy, 1) = U@
W, 1) = W)

ot (5)
0y, 1) = O(y)e"?
Y, 1) = P(y)e
where U(y), W(y), ©(y) and ¥(y) are the amplitudes of u, w, 0, and y in free vibration.
Substituting Eq. (5) into Eqgs. (1)—(4) gives
e AGU" — (K. AG — pAw®)U + kAG(ky + k) W' — k. AGO + ky AGY' = 0, (6)

—kAG(ky + k)U' + k- AGW" — (KPk AG — pA*)W — k.AGO' — kk AGY = 0, (7)
—kk-AGU + k. AGW' + EI.O" — (K’EL + k.AG — pl,0*)O + k(EI, + EL)¥' =0,  (8)
—kyAGU' — kikxyAGW — k(El + EL)®' + EL.Y" — (K*EI, + k. AG — pL.o*)¥ =0.  (9)

Introducing the non-dimensional variable ¢ (in place of y) where

«Z:ykzy% (10)

Egs. (6)—(9) can be written in the following form:
k(D* — p+ b>s>)U + k(1 + ))DW — u® + DY = 0, (11)
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k(1 + w)DU — k(uD? + b*s* — )W 4+ uDO + ¥ =0, (12)
—ukU + pkDW + (us>D* + b2r2s? — 52 — 1)@ + (us> + s)DV¥ = 0, (13)
kDU + kW + (us> + s)DO — (s*D* 4 b2r’s* — us> — )W = 0, (14)
where
k- ,  pAw? ,  pAw?
= i = — = — 1
W= BT e T Ee (15)
EIK? ELK? L.k? Lik?
=" L= 2= P2 (16)
YU AG 7T ke AG YT A T4
and
d
D=—. 17
az (17)

By carrying out an extensive amount of symbolic computation using REDUCE [24], Egs. (11)«14)
can be combined into one differential equation by eliminating all but one of the variables U, W, @
or ¥ to obtain, after a lot of simplification, the following eighth order differential equation:

(D® + C1D° + C,D* + C3D* + Cy)H =0, (18)
where
H=UW,® or¥ (19)
and
Cy =4+ b2 +52) + bX(r? + 52), (20)
Cy = (6 — b2 — b2) + D212 (1 + B25%) + b*r2(1 + b2s?) + b2 (1 + 57)
X AL+ bi(ry + 5D} + DA+ 53) — (B2rs + bird), (21)

Cs = (44 6b* 4 6b?) — (2 + rH)(bis? + bts?) — 2b*r2 + b2r?
+ 0202 — s+ b22) — DA + s2)(1 — bPrls?

z7z

+ b2(rE — s+ b)) — BEBA(r + s2)(1 — biris?

— DIy = 51 + 5202 = s}, 22)
Cy =1 =) = b2) + B202r2(1 — b2r2s?) + b2(1 — B2rs>)(b2r? 4 b2s* — b2b2s?r?
BB B2 — (L= BB + B2+ B2) — b1 — BY)
+ bRb2(rr? — bisyry — bisisirl). (23)

The differential Eq. (18) is linear with constant coefficients so that the solution for H (and hence
for U, W, ©® and V) can be sought in the form
H = ¢, (24)
Substituting Eq. (24) into Eq. (18) yields the auxiliary (or characteristic) equation
Bl +C+ G2 +C=0. (25)
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The eighth order polynomial in /4 above, can be reduced to a quartic as follows:
P+ Cip? 4+ Cop* + Cip+ C4 =0, (26)
where

p:)b2 or l:i\/ﬁ (27)

The roots of p (and hence of 1) can now be obtained by using standard procedure [27], for
example, by factorizing the quartic of Eq. (26) into two quadratics. Note that the roots of p (or 1)
can be real or complex depending on the coefficients of the quartic.

Thus the solutions for U, W, ® and ¥ can be written as

8
U) =) Pjeh® = Pie"® + Pye™" + P3e™ + Py + Pse™ + Pees* + Pre’™® 4 Pye™™S, (28)
j=1

8
W(é) — Z Q]ei/é — Qle/llf + Q2e)~26 + Q3ei3f + Q4eizlf + Qse/lsf + Q6eﬂﬁé + Q7e).7i + Qgeisé, (29)
J=1

8
O = Reht = Rie" + RyeP* + Rse"* + Rye™* + Rse™* + Ree’s* + Rye”* + Rge™*  (30)
=1

and

8
P(E) =) St = S1ehC + 856" + S3eh + Syett 4 S5t 4 St 4 Seht + Sge™é, (1)
j=1
where 4;(j = 1,2, ..., 8) are the eight roots of the auxiliary Eq. (25) and P;, O;, R;, and S; are four
different sets of constants.
It can be shown by substituting Eqgs. (28)—~(31) into Egs. (11)—(14) that the constants P;, Q;, R,
and S; are related as follows:

O;=oP;, Ry =(¢B;/L)P;, S; = (dy;/L)P;, (32)

where
= —XAj/Bj, B =—A4;/C;, v;=—-D;/(4C) (33)

with

Aj = bIsH (=g, + pg; + 13) + (1 =y +¢5 — 113), (34)
By = B2so(uny — pg; + mai3) + ppy(1 =y + ¢ + 3, (35)
Cj = bIsi(unyry + mor?) — na(x; + 0j + psistpy) — 23k, (36)
Dj = bls2(n, + H’73i~ — &)+ up(u—ny+ &+ ’73'1,%» (37)
n=1- bzrzs%, Ny =W — bgiz 173:usi+s§, ng=u+1, (38)
G = s%i. — ,usw p;=1+ }2, Kj=1-— /2, (39)

1= pblsisi (2 — 1y, 0= bt —1D), g = psik; — s2 (40)
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The expressions for shear force and bending moment in the local axis system (see Appendix A) for
harmonic oscillation of the beam, are given by

Ve = — ELK’[Y" —r¥ — (r + DO’ + b*r*¥]

8 8 8 8
= — ELK*|Y 1S — Y Seht — (r+ 1)) 4Re b2 Y Sjeﬂjé]
j=1 j=1 j=1 j=1
8
= — ELI® Y [y, = r+ b2r2) — (r + DB 1Pe, (41)
j=1
EI,
Vve=— Klre" — 0 + (r+ H¥' + b2 0]
EI 8 8 8 . 8 o
= rxk2 Py AR = R 4 (r+ 1) LSt b > R
Jj=1 J=1 j=1 j=1
_Elys f:[ﬁ (172 — 1+ b)) + (r + D)y, A]Pie"* (42)
g — J\ A z'x Vit
J:

and

M, = —EL.k(O® + V)= —ELk

8 8 8
> LR+ Sjeiff] = —ELK*Y (B + )P,  (43)
j=1 j=1 j

J=1

M, = —ELk(Y' — ©) = —ELk

8 8
D A4S =) Rie”
= =

where a prime now denotes differentiation with respect to ¢ and
_El
- EL

The dynamic stiffness matrix of the twisted beam can now be obtained by applying the boundary
condition for displacements and forces at its ends.

The boundary conditions for the bending displacement and bending rotation are:

At the left-hand end.

8
= —ELK* (77 — B)Pie"*,  (44)
j=1

r

(45)

y=0¢=0:U0U=Uy, W=W,, 606=0,, VY=Y, (46)
At the right-hand end.
y=Ll=¢=kL):U=Un, W=W, 0=0,, ¥=Y, (47)

The boundary conditions for the shear force and bending moment are:
At the left-hand end.

yZO(fZO) Vx: VX17 Vz: VzlaMx:MxlaM":le (48)

At the right-hand end.
Y= O(é = ¢ = kL) Vx = _Vx23 Vz = _Vz2; Mx - _Mx2, Mz = _Mz2 (49)
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Substituting Eqs. (46) and (47) into Egs. (28)—(31) gives

8
U =U@O0)=> P, (50)
=
8
W= W)= ZO(/'P/, (51)
=
8
0. =00)=k> BP;, (52)
=
8
Vo =WO0)=k> 7P (53)
=
and
8
Un = Up) =) _ Pe?, (54)
=
8
Wo= W)= Z o Pe’?, (55)
=
8 "
On=0(p) =k _ BPe"’, (56)
=
8
Vo= V() =k 7P, (57)
=
Egs. (50) and (57) can be written in matrix form as follows:
U Riy Rz Riz Ry Ris Rig Ri7 Rig| | P
W Ryy Ry Rz Ry Ros R Ry R || P
O R3i Ry Rz Ry Ris Ry Ry Rg | | P3
Y| | Ra Re Ruz Ry Ras Rag Rar Rasg | | Pa (58)
Un Rs; Rsp Rs3 Rsy Rss Rsg Rs; Rsg| | Ps
W Rsi Re» Res Res Res Res Re7 Res | | Ps
O Ry Ry Rz Ry Ris Ry Ry Ry | | P
| P2 | | Rsi Rsx Rs3 Rgs Rgs Rse Rs7 Rgg | [ Ps |
or
5 = RP, (59)

where the elements of R (for j = 1,2,3...8) are given by
Rij=1, (60)
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Ry = o,
Ry = kﬁj»
Ryj = ky;,
Ry ="’

R = o;e™?,

Ry = ke,

Rgj = kyjeif‘i’.
Substituting Eqgs. (48)—(49) into Eqgs. (41)—(44), gives

8
Vo = Vil0) = —ELK> Y [y,(4] + b2r2 — 1) — (r + DBA1P;,
j=1

EL 5 :
Va = Va0) == 3 B4 + b2k = 1)+ O+ 1l Py
J=1

8
My = M(0) = —ELK> > (B; + )P},

=
8

M. = MZ(O) = *Elzkz Z(Vj}"j - ﬁj)Pj
=1

and

8
Via = Vl¢) = ELK Y [0} + b2 —r) — (r + D41 Pe?,
j=1

Vo = Vi) = ——k3 Z[ﬁ (P} + B2r% = 1) + (r+ Dy Pe’?,

8
M, = Mx(qs) = E‘ka2 Z(ﬁj)»/ + ')/j)PjG/L’qS,
Jj=1

8
Mo = M(¢) = ELK* (3,41 — B)Pie"?,
Jj=1

387

(61)
(62)
(63)
(64)
(65)
(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)
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Egs. (68)—(75) can be written in matrix form as follows:

Vi On QOn Oi Qu Ois O Q17 Ois||P
Ve, On On 0On Qu 0O Ox @ On||kP
M, 051 On 0On QOu O O Q7 On||bPs
M, Ou Ox Os3 Qu Qas Qs Os7 Osg | | Pa

= (76)
Vi Os1 Os2 Oss QOsa Qss Qs Os1 Oss | | Ps
Vo Ot O2 Qo3 Oss Oos Qoo Qo1 Oos | | Po
M, On On On QOu Qi QO On On||Pr
| M| | Ot O Oss Oss Oss Ose Qg7 Oss | [ Ps |
or
F = QP, (77)
where the elements of Q (for j = 1,2, ...,8) are given by
Qi = —ELK[y(2; + b2rl — r) — (r + DA, (78)
El, ; 2, 2.2
Qo = —FK[B;(rd; + bzry — 1) + (r + Dy, (79)
’
Q3 = —ELK* (B4 + 7)), (80)
Qi = —ELK(yi; — ) (81)
and
Qs; = ELI[y,(%; + b2r2 — r) — (r + DB, 40e"?, (82)
= s 02 022 -1 D271 83
Qo = — ~K1B;(rA; + bry — D+ (r + 1) 45177, (83)
Oy = ELI(B 2 +7)e"?, (84)
QO = ELK (74 — B))e"?. (85)
The constant vector P can now be eliminated from Egs. (59) and (77) to give
F = QR '5 = K3, (86)
where
K=QR! (87)

is the required dynamic stiffness matrix.

When computing the dynamic stiffness matrix K, it should be noted that the roots of p and
hence for 4, see Egs. (25) and (26), can be complex and as a consequence, the elements of matrices
Q and R can be complex. Therefore, the matrix inversion and multiplication steps of Eq. (87)
must be carried out using complex arithmetic. The resulting dynamic stiffness matrix K will, of
course, be symmetric and real, with imaginary parts of each element being zero.
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Thus, the force displacement relationship at the nodes of the harmonically vibrating twisted
Timoshenko beam is given by

REN (K11 K Ki3 K Kis Kie Kiz Kig| [ Ua ]
V., Ky Ky Ky Kys Ky Ky Ky || Wa
M,, Ky; Ki Kis K K7 Ksg | | Oy
M, _ Ky Kys Kig Ky Kag | | P ‘ (88)
Vi Kss Kss Ks7 Ksg | | Un
Va S Y M Keo Ko7 Kes | | W22
M, K77 Kz | | Oy,
| M| | Kss | | V- |

It is now necessary to transform the above relationship to global co-ordinates using an
appropriate transformation. Clearly, the displacements and forces at the left-hand end of the
twisted beam are already in global co-ordinates, whereas the corresponding displacements and
forces at the right-hand end are in local co-ordinates (see Figs. 1 and 2).

Referring to Fig. 2, the shear forces and bending moments at the right hand of the element can
be resolved from global to local co-ordinates as follows. (Note that the lower and upper cases
have been respectively used for the suffices of shear forces and bending moments to indicate
whether they correspond to local or global co-ordinates.)

Vy, = Vx,cos ¢ — Vz, sin ¢, (89)
V., = Vy,sin¢ + Vz cos ¢, (90)
M,, = My, cos ¢ — Mz, sin ¢, 91)
M., = My, sin ¢ + Mz, cos ¢. (92)

Thus, the relationships for the shear force and bending moment between the global and local
co-ordinates at both ends of the beam element can be expressed as

Vi, 10000 0 0 0][Wwy
V. 01000 0 0 0]|7y
M,, 00100 0 0 0]]|My
M., 00010 0 0 0]|My,
= ; (93)
Vi, 0000 ¢ —s 0 0]]Vy
V., 0000 s ¢ 0 0]y
M, 00000 0 ¢ —s||My
M, | {00000 0 s c||My]

where
c=Ccos¢ (94)
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Fig. 2. Shear forces and bending moments at the ends of the twisted Timoshenko beam shown in local and global
co-ordinates.

and
s = sin ¢. (95)

The displacements can be transformed from the global to local co-ordinates exactly in the same
way as the forces by making use of the above transformation matrix T, given by

10000 0 0 0
01000 0 0 0
001000 0 0
00010 0 00

T— (96)
0000 c —s 0 0
0000 s ¢ 00
00000 0 ¢ —s
00000 0 s c|

In this way the stiffness matrix of the twisted beam in global co-ordinates K can now be
formulated as - ,
K = T'KT, 97)

where T’ denotes the transpose of the transformation matrix T.

3. Application of Wittrick—Williams algorithm

The dynamic stiffness matrix of Eq. (88) can now be used to compute the natural frequencies
and mode shapes of twisted Timoshenko beams with various end conditions. A non-uniform
twisted Timoshenko beam can also be analyzed for its free vibration characteristics by idealizing it
as an assemblage of many uniform twisted Timoshenko beams. An accurate and reliable method
of calculating the natural frequencies and mode shapes of a structure using the dynamic stiffness
method is to apply the well-known algorithm of Wittrick and Williams [26] which has featured in
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numerous papers [28,29]. Before applying the algorithm the dynamic stiffness matrices of all
individual elements in a structure are to be assembled to form the overall dynamic stiffness matrix
K, of the final (complete) structure, which may, of course, consist of a single element. The
algorithm monitors the Sturm sequence condition of K in such a way that there is no possibility
of missing a frequency (or mode) of the structure. This is, of course, not possible in the
conventional finite element method. The algorithm (unlike its proof) is very simple to use and
because of its extensive coverage in the literature the procedure is not repeated here, but interested
investigators are recommended to read Refs. [28,29].

4. Scope of the theory and restrictions

The twisted beam considered in this paper is assumed to behave according to the Timoshenko
theory which accounts for the effects of shear deformation and rotatory inertia, but the beam has
a constant rate of twist along its length and is assumed to exhibit coupling between bending
displacements only. These displacements are considered to be uncoupled with torsional and/or
extensional deformations. Also the cross-section of the beam is not allowed to warp. These
assumptions are quite legitimate for many twisted beams with doubly symmetric cross-section,
but they can be severe for many other (practical) twisted beams such as helicopter or turbine
blades for which coupling between bending, torsional and extensional deformations and the
rotational speed can have significant effects. The dynamic stiffness development of such complex
twisted beams involves much more difficulty requiring additional insights.

5. Results and discussion

The dynamic stiffness theory developed above for a twisted Timoshenko beam is applied to a
cantilever blade taken from the literature [13,18]. This example is particularly suitable for
investigating the degenerate case when the effects of shear deformation and rotatory inertia are
ignored so that the results become directly comparable with published results. However, in order
to validate the theory and demonstrate the accuracy of results using the Timoshenko theory, the
well-established computer program BUNVIS-RG [30,31] that evaluates the dynamic stiffness
method for untwisted Timoshenko beam elements is used. When modelling a twisted beam and
preparing data for BUNVIS-RG a large number of untwisted beam elements with an appropriate
orientation of each was utilized. The example blade [13,18] has a length L = 3.048 m with a
substantial angle of twist which is zero at the root and 40° at the tip so that the rate of twist
k = ¢/L = 0.22905 radian/m. The structural and other properties used are: (i) E = 70 x 10° N/m?,
(i) G = 27 x 10° N/m?, (iii) p = 2700 kg/m?, (iv) 4 = 0.0127667 m?, (vi) EI, = 2869.7 Nm?, (vii)
EI. = 57393 Nm?, (vii) k, = 2/3, and (viii) k. = 5/8.

The first five natural frequencies of the blade obtained from the present theory are shown in
Table 1 together with those obtained from the Bernoulli-Euler theory [18]. Shear deformation and
rotatory inertia have had very little effect on the natural frequencies of this particular blade. This
is because the blade is extremely slender and the key parameters ry, 7., s, and s, which principally
affect the natural frequencies when using the Timoshenko theory are very small for the problem.
These are r, = 0.00041, r, = 0.00184, s, = 0.00081, and s, = 0.00362. The slenderness ratios of the
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Table 1
Natural frequencies of a twisted blade [13,18] with cantilever end condition
Frequency number Natural frequency (rad/s)
Bernoulli-Euler theory [18] Present theory
1 3.4717 3.4715
2 13.347 13.340
3 25.171 25.165
4 56.372 56.363
5 103.26 103.20

blade in the two principal planes ((L/+/I./A) and (L/+/I./A)) being, respectively, around 1700
and 380 are thus very large. Of course, the shear deformation and rotatory inertia are not
expected to have any major effect on the natural frequencies of such a very slender blade.
However, the results of Table 1 indicate that when the effects of shear deformation and rotatory
inertia are taken into account, the natural frequencies decrease as expected.

A more appropriate comparison is made with the same illustrative example as above, but with
the bending rigidities EI, and EI. increased by a factor of 5000. This gives the Timoshenko beam
parameters r, = 0.029, r, = 0.130, s, = 0.057, and s, = 0.256. The first three natural frequencies
of the twisted cantilever beam obtained using the present theory are shown in Table 2 alongside
the results obtained using the Bernoulli-Euler theory [18]. The significant difference in results
between the Timoshenko and the Bernoulli-Euler theories is apparent, particularly for the second
and third natural frequencies of the twisted beam. Similar results were obtained using BUNVIS-
RG [30,31] with a large number of untwisted beam elements. It has earlier been established [18,32]
that approximate results of a discretized structure using a number of uniform straight elements
converge almost parabolically to the exact result with increasing number of elements. The first
three natural frequencies for the cantilever obtained from BUNVIS-RG [30,31] using 10 and 20
elements and their parabolic limits are shown in Table 3 using both the Bernoulli-Euler and the
Timoshenko theories. A comparison of results illustrated in Tables 2 and 3 shows good agreement,
and they clearly indicate that the parabolic limit of the approximate natural frequencies agrees to
five-figure accuracy to the exact ones which is in accord with earlier investigations [18,32].

The final set of results using the present theory was obtained to demonstrate the effects of
slenderness ratio on the natural frequencies of a twisted Timoshenko beam. Using a cantilever
twisted Timoshenko beam with the same rate of twist as above, a comparison of natural
frequencies was made between this beam and that of an untwisted beam. For both twisted and
untwisted beams the computed natural frequencies with the inclusion of the effects of shear
deformation and rotatory inertia (w!) are compared with those (w?) obtained when using the
Bernoulli-Euler theory [18]. The percentage difference in the result (wf — wl)/w?) x 100% is
plotted against the slenderness ratio (L/r¢) of the twisted beam, where the radius of gyration rg is
defined as rg = {/(I1./ A?). The plot for the first three natural frequencies (n = 1, 2 and 3) for the
twisted beam is shown in Fig. 3 by solid lines whereas the corresponding results for the untwisted
beam are shown by broken lines. These results demonstrate that the effects of shear deformation
and rotatory inertia on the natural frequencies of a twisted beam are similar to those encountered
in an untwisted beam. However, the effects are seen to be marginally more pronounced in the case
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Table 2
Effects of shear deformation and rotatory inertia on the natural frequencies of a cantilever twisted beam
Frequency Natural frequency (rad/s)
number

Bernoulli-Euler theory Present theory r = 0.029, % difference

[18]ry=r.=s,=s5.=0 r, = 0.130, s, = 0.057,

s. = 0.256

1 245.50 239.09 2.61
2 943.38 769.77 18.40
3 1779.6 1425.5 19.90
Table 3

Natural frequencies of a twisted beam computed by BUNVIS-RG [30,31] using straight untwisted beam elements

Frequency number  Natural frequency (rad/s)

Bernoulli-Euler theory Timoshenko theory

10 elements 20 elements  Parabolic limit 10 elements 20 elements  Parabolic limit

1 245.47 245.49 245.50 239.06 239.08 239.09
2 946.26 944.10 943.38 771.01 770.08 769.77
3 1769.7 1777.1 1779.6 1421.9 1424.6 1425.5

of a twisted beam than that of an untwisted one. As expected the effects are more significant for
higher natural frequencies and smaller slenderness ratios.

6. Conclusions

The governing differential equations of motion of a twisted Timoshenko beam undergoing free
natural vibration are derived applying Hamilton’s principle. These are subsequently used to
develop the dynamic stiffness matrix of the twisted Timoshenko beam. The application of the
dynamic stiffness matrix is demonstrated by numerical results with particular reference to the
Wittrick—Williams algorithm. The exact results from the present theory are validated by
predicting the parabolic limit of approximate results obtained from the idealization of a twisted
Timoshenko beam using a large number of untwisted beam elements. The shear deformation and
rotatory inertia have similar effects on the natural frequencies of a twisted beam as they have on
an untwisted beam. The research presented in this paper can be used as an aid to validate the finite
element and other approximate methods, and is expected to stimulate further research on the
dynamic stiffness development of complex structural elements.

Appendix A. Derivation of the governing differential equations of motion of a twisted Timoshenko
beam

Hamiltonian mechanics is used to derive the governing differential equations of motion of a
freely vibrating twisted Timoshenko beam, which has a uniform rate of twist along its length.
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Fig. 3. The effects of shear deformation and rotatory inertia on the variation of the first three natural frequencies of a
twisted and an untwisted beams as a function of slenderness ratio. twisted beam (¢ = 40°, k = 0.22905 rad/m),
----- untwisted beam (¢ = 0°, k = Orad/m).

A set of allowable displacements and rotations is used as the starting point to form the system of
direct and shearing strains. The expressions for strain energy and kinetic energy are then derived
and subsequently used when applying Hamilton’s principle.

In Fig. 4, O(X, Y, Z) is an inertial frame, with OY along the line of centroids of the undeflected
beam cross-sections. Let G be the centroid at ¥ = y, and Gx and Gz principal axes in bending of
the cross-section. The two-dimensional axis system in the plane of the cross-section represented by
G(x, z) has a right handed rotation ¢ about OY, so that the angle between Gx and OX (and also
between Gz and OZ) is ¢ as shown. This is the angle of twist at y so that the rate of twist & (which
is assumed to be constant) is d¢/0y.

Let the local displacements be u along Gx and w along Gz, and 0 and / be the rotations of the
cross-section about the x- and z-axis, respectively. Now consider an adjacent section at Y =
y+dy, and let G(%, %) be the corresponding axis system, see Fig. 5. Allowing for the relative
rotation d¢p = k dy of the element dy, the axial and shearing strains of a point P on the Gxz-plane
due to bending and shearing actions can be derived by identifying the elastic distortion of an
element of sides dy, dx and dz as follows.

A.1. Expression for shearing strains and strain energy due to shear

Since the displacements at G are u along Gx and w along Gz, the corresponding displacements
at G are u + (0u/0y)dy along Gx and w + (0w/0dy) dy along Gz. Now to examine the shearing
strains y,, and 7., at P (see Fig. 5) it is necessary to determine the change in the right angle formed
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Y

Fig. 4. Displacements and rotations of the centroid G at a distance y from the origin of the twisted Timoshenko beam
shown in local co-ordinates.

Fig. 5. Displacements of the centroids G and G at the left and right-hand ends of an elemental length dy of the twisted
Timoshenko beam shown in local co-ordinates.

by lines drawn through P parallel to Gx and Gy for the evaluation of y,, and lines drawn parallel
to Gz and Gy for the evaluation of y_,. ) )

The displacements u + (0u/0y)dy along Gx and w+ (0w/dy)dy along Gz will have the
following components (see Fig. 5):

<u + @ dy) cos(d¢) + <w + 6_w dy) sin(d¢) along Gx
oy oy

and

—|u+ ou dy )sin(d¢) + [ w + a—wdy cos(d¢) along Gz.
oy dy
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Using the general rules for infinitesimal calculus and neglecting higher order terms so that
cos(de)=~1 and sin(de)=de¢ in the limit, the above components can now be written as

0 0
u —|——§dy + 1v—¢dy, along Gx

0 oy
and
—ugf dy +w+ Z?j dy, along Gz.

Thus, the relative displacements in planes GxZ and Gxz are

0 0 0
<u+ ¢> dy = <u+ kw> dy, along Gx

oy "oy y
and
op ow ow
PP S . s al
( uay + 6y> dy ( ku + ay) dy, along Gz,

where k = (0¢/0y) is the rate of twist.
Therefore, the contributions to the shearing strains y,, and y., as a result of the above
displacements are respectively, given by

ou ow
(5 + kw> and (—ku + 5)

The effect of the right-handed rotation 6 about Gx (or Px) and y about Gz (or Pz) is to modify the
shearing strains, and we have, defining the shear strain as the reduction in a right angle in a
defined plane, the final expressions for the shearing strains y,, and 7., as follows (see Fig. 6)

_— —_ A.l
ho =Wtk (A1)
and
ow
Yoy = —0 + 5 — ku. (A.2)

From these identified shearing strains, the expression for the strain energy #s due to transverse
shear can now be written as

1 L
%SZE / /V / G2y +75.) dv = /0 /A G(kyyy, + k-y3.) d4 dy

1 L
=5 | teGAG P + GG dy

1 L
-5 /0 (e GAW + 1 + kw) + k. GA(—0 + ' — kuy’} dy, (A3)

where a prime denotes differentiation with respect to y.
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dy

Vg =0+ U+

dy

Vy=-0+w-ku

Fig. 6. Shearing strains of an infinitesimal element dy in the xy and yz planes.

A.2. Expression for normal strain and strain enerqy due to normal strain

In order to determine the axial strain ¢, at P in the Gxz plane as a result of bending actions,
consider a line through P, parallel to OY, which meets the section G%Z at Q, say (see Fig. 5), then
PQ for the undeformed beam is of length dy. Now if one finds the relative displacements of Q to P
in the Y direction, the normal strain at P follows at once, as follows.

The co-ordinates of P in the Gxz and GXZ axis systems are, respectively, (x,z) and
(x — kzdy,kxdy + z), see Fig. 5. The bending rotations of the plane Gxz about the axes Gx
and Gz being 0 and y, the corresponding bending rotations of the plane G%Z about G and GZ are
0+ 0" dy and  + /' dy, respectively.
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In section Gxz the displacement of P in the Y direction is —z0 4 xy whereas in section GxZ the
displacement of Q in the Y direction is —Z(0 + 0'dy) + x(f + y/dy).
Thus the axial displacement of Q is

— (z4 kxdy)(0 + 0'dy) + (x — kzdy)(y + ¥'dy)
= 20+ xy + (—kx0 — z0' — kzyy + xy') dy.

Noting that the axial displacement of P is —z0 4 x1/, the normal strain ¢, at P can now be written
as

&y = —kxt) — 20' — kzyy + xy' = x(' — k0) — 2(0' + k). (A4)

Therefore, the strain energy % g due to axial strain resulting from bending actions is given by

_%//V/Eggdu:%/OL/AEgidAdy:%/OL[E/A{X(W—ke)—z(0’+/ap)}2dA dy.

(A.5)

Noting that Gx and Gz are principal axes so that [ [, xzdA = 0, the above expression simplifies
to

L
=5 [ ELO k0 + LG~ K07} . (A6)
0

where I, and I. are the second moment of areas of the cross-section about the principal axes Gx
and Gz, respectively, and defined in the usual notation as follows:

Ix://AszA, IZ://szdA. (A.7)

A.3. Total strain energy due to bending and shearing actions

The total strain energy % can now be obtained by adding the strain energy due to shearing
strain resulting from the shear load and strain energy due to normal strain resulting from bending
actions, given by Egs. (A.3) and (A.6), respectively. Thus,

L
U=yt s =5 /0 HEL(O + k) + ELGW — kO

+ {keAGOWY 4+ U + kw)? + k. AG(—0 + W' — ku)*}]dy (A.8)

A.4. Expression for the kinetic energy

The kinetic energy of the twisted Timoshenko beam can be formulated from the velocity
components of the point P on the Gxz-plane as follows. These velocity components can be
obtained by taking the time derivative of the displacements of P in the Gx, Gy and Gz directions.
Clearly the velocity of the point P along Gx, Gy and Gz are i, —z6 + xij, and w, respectively, with
an over dot representing the time derivative.
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So the kinetic energy _# of the twisted beam can be formulated as

1 : , 1 [t : :
s=5 [ [ [otiszbniyw @rao=3 [ ot oL+ pLittdy (A9)
14 0
where p is the density of the beam material.

A.5. Application of Hamilton’s principle and derivation of the governing differential equations

Using the expressions for potential and kinetic energies # and ¢ of the twisted beam (see
Eqgs. (A.8) and (A.9)) Hamilton’s principle can now be applied to derive the governing differential
equations of motion in free vibration.

Hamilton’s principle states that

15}
5/ Zdt =0, (A.10)
4]

where ¥ = ¢ — % is the Lagrangian, and the integration is taken between arbitrary intervals of
time #; and #, for a dynamic trajectory.

Substituting the expressions for # and # from Egs. (A.8) and (A.9) for the Lagrangian ¥ in
Eq. (A.10) and using the 0 operator, integrating by parts and noting that ou, dw, 66 and oy are
completely arbitrary, the governing differential equations of motion of the twisted Timoshenko
beam are derived. As a by product of the Hamiltonian formulation the associated natural
boundary conditions which give the expressions for shear forces and bending moments are also
obtained. The whole procedure for the present problem is tedious, but merely a mathematical
process. The derivation is routinely carried out by successive integrations, the details of which are
too extensive to report. The final expressions are given as follows.

A.6. Governing differential equations of motion in free vibration

—pAii + kyAGU" — IPk.AGu + kAG(ky + k)W + ky AGY' — kk.AGO = 0, (A.11)
—pAVv + k. AGW' — Pk  AGw — kAG(ky + k) — kkyAGY — k.AGO = 0, (A.12)
—pl.0+ EI.0" — K’ELO — k.AGO — kk.AGu + k. AGW + k(EI, + EL)Y' =0, (A.13)

—pLy + ELY" — KAELay — kyAGY — kkyAGw — kyAGU — k(EIL, + EL)0' = 0, (A.14)

A.7. Natural boundary conditions

Shear force in the x direction:
Vy =~k AGU — kxAGY — kk,AGw. (A.15)
Shear force in the z direction:

V.= —k.AGW + k-AGO + kk.AGu. (A.16)
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Bending moment about the x-axis:

M, = —EIL.0' — kEL ). (A.17)
Bending moment about the z-axis:

M. = —ELY' + kELS. (A.18)

With the help of the governing differential Egs. (A.13) and (A.14), the expressions for the shear
forces V, and V. in Egs. (A.15) and (A.16) can be written in the following alternative forms:

Vy = —ELY" + K*EL + k(EL, + EL)0' + pL), (A.19)

V.= EL0" — kK*EL.0 + k(EL. + EL)' — pI.0. (A.20)
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