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Abstract

The method of updating proposed in this paper is based on condensed models and the frequency
responses. A robust approach of condensation with two levels is presented. The first reduction basis
denoted T01 reduces the size of the model to a few hundred of degrees of freedom. The vectors of the basis
are sufficient to make the condensed model reliable and robust with respect to the perturbations of the
model in the observed frequency band. The second reduction basis denoted T12 condenses the model to the
measurement points. It is updated during the updating procedure. The formulation of the updating
problem with residues on the inputs leads to a linear relation of the parameters to be identified. This
method makes it possible to detect strong errors of mass and stiffness if the Ritz basist T01 is reliable. In
practice, the reduced matrices evolve with the modifications of the model. One can update this basis during
updating. A strategy of iterative regularization makes it possible to obtain the variations of the parameters.
This method is validated on an industrial example. In order to test the robustness of this strategy, the
quality of the readjusted model in comparison with the experimental results for various loading
configurations of the structure is evaluated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element modeling is used to predict dynamic behaviour. Reliability is essential. Finite
element (FE) simulations must be compared with direct measurements made on the body under
study. Convergence of the calculated results with the experimental observations is achieved by
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correcting the mass, stiffness and damping matrices. These corrections are calculated with
updating parameters using residues:

* residues on input [1];
* residues on output [2,3];
* residues on complex powers [4];
* residues based on eigensolutions [5];
* behaviour law error [6].

Applying forced responses makes it possible to account for the static contribution of high-
frequency modes. The updated model should be usable in a static problem, but if updating is
achieved solely with eigenmodes, the necessary static applications can be troublesome.

The interesting aspect is to compare structural behaviour at measured points with the
corresponding behaviour at the same points in the condensed model. The degrees of freedom
(d.o.f.) of the condensed model are physical points (sensors) on the structure.

This selection leads to a simple formulation of the updating problem applying residues on input
giving a linear relationship with the parameters to identify. The method used enables updating
strong mass and stiffness errors if the condensed model is reliable. In practice, the condensation
matrices change as the model changes. It can be judicious to recalibrate them at the end of the
updating process.

This leads to a two-level condensation:

* The first condensation T01; reduces the size of the model to a few hundred d.o.f. The number of
basis vectors of the T01 transformation is sufficient. The perturbed model, condensed by an
initial transformation matrix T01; should be reliable, accepting model perturbations in the
frequency domain of the measurements.

* A second transformation, T12; condenses the model obtained from the measured points. The
T12 operation is recalibrated during the updating process. Recalibrating T01 may be necessary
after updating if the distance between the initial model and the structure is considered to be too
great.

2. Definition of the condensation bases

Updating procedures are based on iteration methods. For large-sized structures, large-
dimension models cannot be used at each step due to the excessive calculation time.

One solution is to apply reanalysis techniques by reduced basis approach at each iteration.

2.1. Defining the model parameters

The first step in updating the model is the localization phase. This step defines the macro-
elements of the model which contain the modelization errors. For each macroelement, the
operator chooses the type or types of parameters Pi (Young modulus, volumetric mass, thickness,
etcy) which are to be characterized.
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The mass, damping and stiffness matrices of the macroelement number i are defined from the
elementary matrices by

Mi
macro ¼

Xnelem

e¼1

Melem
e ; ð1Þ

Bi
macro ¼

Xnelem

e¼1

Belem
e ; ð2Þ

Ki
macro ¼

Xnelem

e¼1

Kelem
e : ð3Þ

The impedance Li
macro of macroelement number i is defined by

Li
macro ¼ Ki

macro þ joBi
macro � o2Mi

macro: ð4Þ

In general, the updating parameters ðPiÞ intervene non-linearly in the correction matrices of the
macroelements. The matrices can be factorized as

Li
macroðPiÞ ¼

X
ðPiÞ

aLia
macro: ð5Þ

A variation ðDPiÞ in parameter ðPiÞ; gives a variation in impedance:

DLi
macroðPiÞ ¼ DPi

X
aðPiÞ

a�1Lia
macro: ð6Þ

A dimensional coefficients of variation are used to avoid processing problems when searching
for a parametric solution:

pi ¼
DPi

Pi

; ð7Þ

so

DLi
macroðpiÞ ¼ pi

X
aðPiÞ

aLia
macro: ð8Þ

An impedance correction ðDL0Þ of the model is defined by

DL0 ¼
Xnp

i¼1

DLi
macro: ð9Þ

2.2. Approached reanalysis on a reduced basis

The reduced basis T01 applied to perturbed problems must produce reliable condensed matrices.
Recalibration of the T01 condensation matrices is costly in time and space for large-sized

models. The T01 condensation matrix evolves during the updating process with

* T01: the condensation matrix of the initial model (M0; B0; and K0).
* T01þDT01: the condensation matrix of the perturbed model (M0þDM0; B0þDB0 and K0þDK0).
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The following approximations are made:

ðT01 þ DT01Þ
t�ðM0 þ DM0ÞðT01 þ DT01ÞETt

01�ðM0 þ DM0Þ�T01; ð10Þ

ðT01 þ DT01Þ
t�ðB0 þ DB0ÞðT01 þ DT01ÞETt

01�ðB0 þ DB0Þ�T01; ð11Þ

ðT01 þ DT01Þ
t�ðK0 þ DK0ÞðT01 þ DT01ÞETt

01�ðK0 þ DK0Þ�T01; ð12Þ

and the following terms are neglected:

DTt
01�ðM0 þ DM0Þ�ðT01 þ DT01Þ þ Tt

01�ðM0 þ DM0Þ�DT01E0; ð13Þ

DTt
01�ðB0 þ DB0Þ�ðT01 þ DT01Þ þ Tt

01�ðB0 þ DB0Þ�DT01E0; ð14Þ

DTt
01�ðK0 þ DK0Þ�ðT01 þ DT01Þ þ Tt

01�ðK0 þ DK0Þ�DT01E0: ð15Þ

The expected perturbations of the model induce deformations. The reduced basis T01 must be
able to represent

* the movement of the initial system with impedance L0;
* the movement of the system submitted to the given parametric modifications DL:

The nature and the localization of these modifications are known, but the amplitudes of their
variations are not.

The behaviour of the initial model is represented by

L0�y0 ¼ f0; ð16Þ

and the behaviour of the condensed initial model by

L1�y1 ¼ f1; ð17Þ

with

T10 ¼ Tt
01; ð18Þ

L1 ¼ T10�L0�T01; ð19Þ

y0 ¼ T01�y1; ð20Þ

f1 ¼ T10�f0: ð21Þ

Reanalysis of the modified system at step i of the parameter correction process is achieved on
the reduced modified system:

Li
1 ¼ Li�1

1 þ DLi�1
1 ; ð22Þ

where DLi�1
0 is the impedance correction issuing from the updating step (i � 1) and DLi�1

1 ¼
T10DLi�1

0 T01:
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2.3. Adaptation of the condensation basis to changes

The behaviour of the modified model is represented by

½LðoÞ þ DLðoÞ�yðoÞ ¼ feðoÞ; ð23Þ

or by

LðoÞyðoÞ ¼ feðoÞ � DLðoÞyðoÞ; ð24Þ

this means that the modified model can be considered as an initial model loaded by error forces
DLðoÞyðoÞ:

In the expression of these forces, yðoÞ is not known. It is assumed that the displacement vector
yðoÞ is decomposed on the truncated basis of the eigenmodes Ymd enriched by the static residues
Yrs [7,8].

This gives

DLðoÞyðoÞ ¼ DLðoÞ½YmdYrs�cðoÞ ¼
Xnp

i¼1

DLi
macroðoÞ½YmdYrs�cðoÞ; ð25Þ

and by deduction, the error forces F can be represented together as

F ¼ IDL1
macro½YmdYrs� DL2

macro½YmdYrs� y y DLi
macro½YmdYrs�m; ð26Þ

or as

F ¼ IDK1
macro½YmdYrs� DM1

macro½YmdYrs� y DKi
macro½YmdYrs� DMi

macro½YmdYrs� ym: ð27Þ

This matrix F is decomposed into singular values to extract the independent vectors FfeðFfe ¼
DVSðFÞÞ representing all possible error forces.

The condensation basis T01 is formed by uniting

* a modal sub-basis Ymd ;
* a static residues basis Yrs able to represent the static behaviour of the structure:

Yrs ¼ K�1
0 fe: ð28Þ

* a static residues basis Yfe able to approximate the dynamic behaviour of the structure resulting
from changes in the parameters:

Yfe ¼ YmdK
�1
mdY

t
mdFfe: ð29Þ

This gives

T01 ¼ ½Ymd Yrs Yfe �: ð30Þ

2.4. Multiple reductions to achieve updating

The updating process requires an adaptation of the size of the model to the size of the data
observed on the structure.

Two steps are necessary for large-sized models.
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The first step is condensation reduction to obtain a reduced model with a level 1 impedance L1

with a few hundred d.o.f. on mixed co-ordinates

L1 ¼ T10L0T01: ð31Þ

The level 1 reduction basis T10 can represent the displacements of the corrected mode authorizing
recalibration of the model at this level of reduction. The level 1 model is recalibrated and
reanalyzed at each iteration of the process. The eigenmodes and the static residues obtained are
used to construct the new level 2 reduction basis T12:

The second reduction produces a reduced level 2 model with d.o.f. based on physical
co-ordinates:

L2 ¼ T21L1T12 ¼ T21T10L0T01T12; ð32Þ

the dimension of the condensation basis T12 depends on the number of sensors placed on the
structure. In general, there are fewer sensors than static residues necessary to obtain a robust
condensation basis. This necessitates a recalibration of the reduction basis T12 at each iteration of
the updating process.

3. Updating by condensation

3.1. Presentation

The method consists of updating using residues on input in the following manner:

* the transfer functions measured by ‘‘c’’ sensors placed on the structure are used for updating;
* the finite element model of the structure is condensed on c d.o.f. corresponding to the sensors’

d.o.f.;
* the dampings introduced into the model are modal dampings;
* in the procedure used, condensation is achieved at two levels:

* Level 1: by a condensation matrix T10 bringing the initial model (size of approximately
100 000 d.o.f.) down to a intermediate model (size of approximately 1000 d.o.f.).

* Level 2: by a transformation T21 which brings the intermediate model down to final model
(size approximately 20–100 d.o.f.: this is the number of sensors on the structure).

* During updating, the level 2 condensed model is recalibrated from the level 1 condensed model
considered to be reliable and robust. Here the robustness is defined by

The aptitude of the condensed model to the level 1 to represent parametric modifications of the
initial model not condensed.

* A T10 recalibration may be necessary at the end of the updating process;
* Use of residues on input has a dual interest:

* The problem to be solved is linear in relation to the local stiffness, mass, or damping
perturbations.

* The transfer functions can be used without identifying modes, so errors introduced by the
usual modal extraction procedures can be eliminated. In this application, the measures
used resulted from a set of recordings made over several days which necessarily contained
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eigenfrequency variations between the different measurements. The transfer functions used
were reconstituted from the modal identification.

* The drawback of this updating method is that it is sensitive to measurement errors. This sensitivity
is directly related to the processing of the matrix to invert. This processing depends on the position
of the sensors and the unknown errors, and as such it cannot be predicted from a raw model, so it
may be necessary to replace the sensors after the first attempt at updating. To avoid this problem,
an overly abundant number of sensors are used so that the sensors that produce a good processing
of the matrix to invert can be selected out. The totality of the method is illustrated by Fig. 1.

3.2. Method principle

There is a condensed model with c physical d.o.f.:

Lc�yðmÞ ¼ fðmÞ: ð33Þ

For a given excitation, the movement recorded on the structure can be represented by

ðLc þ DLÞyðsÞ ¼ fðsÞ; ð34Þ

so that if

fðsÞ ¼ fðmÞ; ð35Þ

then

DL�yðsÞ ¼ LcðyðmÞ � yðsÞÞ; ð36Þ

if the modifiable zones are defined beforehand so

DL ¼
X
i¼1

piDLi; ð37Þ
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the problem is linear

S�p ¼ LcðyðmÞ � yðsÞÞ: ð38Þ

To limit amplifying measurement errors in the product LcðyðmÞ � yðsÞÞ; the problem is best
presented as

A�p ¼ yðmÞ � yðsÞ: ð39Þ

3.3. Introduction of damping parameters

Damping is not introduced into the finite element model.
In a body, the principal sources of damping are localized at the joints between components, and

it is difficult to have a linear damping model in the joints.
The simplest solution is to introduce modal dampings into the model using the generalized

damping matrix X diagonal

b ¼ Yt
mBmYm ) Bm ¼ Ytð�1Þ

m bYð�1Þ
m ¼ MmYmbYt

mMm; ð40Þ

where Ym is the truncated modal matrix of the conservative model.
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It contains the eigenmodes present in the frequency band of the measurements. The modes are
normalized in relation to the mass matrix

Yt
mMmYm ¼ In with noc: ð41Þ

The structure’s damping matrix is thus given in the form

Bs ¼
X

i

biMmYmiY
t
miMm; ð42Þ

then condensed by transformations T10 and T21:
The bi are the damping parameters.
For neighbouring frequencies, extradiagonal terms can be introduced into the generalized

damping matrix.

3.4. Development of the optimization problem

Assuming that the forces applied to the structure during the trial are observed correctly, i.e.
such that: fðsÞ ¼ fðmÞ; we have

ðDKc þ joDBc � o2DMcÞysEðK ðmÞ
c þ joBðmÞ

c � o2M ðmÞ
c ÞðyðmÞ � yðsÞÞ; ð43Þ

ARTICLE IN PRESS

Fig. 3. Definition of the zones of the updating parameters on the outer side of the door.

J.L. Raynaud et al. / Journal of Sound and Vibration 270 (2004) 403–416 411



or

DZc�ysDZðmÞ
c ðyðmÞ � yðsÞÞ; ð44Þ

with DZc the global correction matrix at frequency o condensed twice, ZðmÞ
c the dynamic stiffness

matrix at frequency o condensed twice:

DZc ¼
Xqk

i¼1

kiK
ðmÞ
ic þ jo

Xqb

l¼1

blB
ðmÞ
lc � o2

Xqm

j¼1

mjM
ðmÞ
jc ; ð45Þ

with

K
ðmÞ
ic ¼ T21T10K

ðmÞ
i T01T12; ð46Þ

B
ðmÞ
lc ¼ T21T10B

ðmÞ
l T01T12; ð47Þ

M
ðmÞ
jc ¼ T21T10M

ðmÞ
j T01T12: ð48Þ
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Grouping the equations written by all the excitation frequencies o; gives

? K
ðmÞ
ic ðo1Þy

ðsÞ
1 ? �o2

1M
ðmÞ
jc ðo1Þy

ðsÞ
1 ?

^ ^

? K
ðmÞ
ic ðohÞy

ðsÞ
h ? �o2

hM
ðmÞ
jc ðohÞy

ðsÞ
h ?

^ ^

? K
ðmÞ
ic ðoneÞyðsÞne ? �o2

neM
ðmÞ
jc ðoneÞyðsÞne ?

2
666666664

3
777777775

^

ki

^

bl

^

mj

2
6666666664

3
7777777775

E

ZðmÞ
c ðo1Þðy

ðmÞ
1 � y

ðsÞ
1 Þ

^

ZðmÞ
c ðohÞðy

ðmÞ
h � y

ðsÞ
h Þ

^

ZðmÞ
c ðoneÞðyðmÞ

ne � yðsÞne Þ

2
66666664

3
77777775
; ð49Þ

with

y
ðsÞ
h ¼ yðsÞðohÞ; ð50Þ

y
ðmÞ
h ¼ yðmÞðohÞ; ð51Þ

or in a modified and simplified form:

S�DpEb; ð52Þ

where b is the vector constructed by the subvectors ½yðmÞ � yðsÞ�:
An updating iteration is performed due to the approximations introduced by the two successive

condensations.
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4. Results and conclusions

To access the validity of a model updating process, the effect of the process has to be assessed
for different boundary conditions.

To do this, we used the experimental results obtained with a free-free configuration of an
unloaded door was used to identify the zones and values of the parameters to update.

This first experimental phase is presented in Fig. 2.
The following tasks were performed on the finite element model to find the values of the

parameters associated with each zone:

* Definition of the zones and the parameters used for updating.
* Condensation of the initial models of the free–free door without loading. The size of the

intermediate model is 320 d.o.f. and the final model is 80 d.o.f.
* Determination of the variations in the parameters, solely using data coming from the free–free

door without loading.

The second phase consisted in calculations on the finite element model as presented in Figs. 3
and 4.

The updated model was validated as follows
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* The updating parameters found in the complete free–free door model without loading were
introduced and compared with the measured experimentation data obtained under the same
conditions.

* The boundary conditions were changed by loading the anchorage points on the door. The
initial model of the door after loading was compared with the experimental data and with the
updated model using the parameters obtained in the free–free model without loading.

The Mac matrix between the first fifteen modes identified and calculated from the initial finite
elements model for the free–free door without loading is presented in Fig. 5.

The Mac matrix between the first 15 modes identified and calculated from the initial finite
elements model for the free–free door with loading is presented in Fig. 6.

The Mac matrix between the first 15 modes identified and calculated from the complete updated
model for the free–free door without loading is presented in Fig. 7.

The Mac matrix between the first 15 modes identified and calculated from the complete updated
model for the free–free door with loading is presented in Fig. 8. These modes were obtained by
introducing the values of the parameters identified in the free-free configuration without loading
for each zone.

In conclusion, an acceptable model of the door was obtained in the free–free configuration valid
for the first 10 modes without loading and for the first 8 modes with loading. The basis used for
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the reanalysis of the modified structural behaviour may be composed of a variety of displacement
fields, including free interface, blocked or mixed modes of the nominal model. Furthermore, this
approach is particularly valuable in the context of stochastic updating and optimization
procedures where the cost of an exact analysis is prohibitive.
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