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1. Introduction

There are several non-linear and time variant effects in a rotor-bearing dynamic system. The
non-linear characteristics of the rolling element bearing, internal damping, unsymmetrical
stiffness of the shaft, cracks on the shaft, and the radial clearance are the typical root causes of
these effects [1]. As rotating speeds increase and rotor weights decrease, these non-linear and time
variant effects could significantly affect the dynamic characteristics of the rotor system [2–8]. If
these non-linear and time variant effects are ignored, the vibration response could lead to
incorrect interpretation of the rotor system. This will significantly affect the performance of the
rotor vibration control schemes, the accuracy of the diagnosis results, and the performance of any
schemes where an accurate rotor model is needed. Therefore, the accurate identification of both
the model structure and parameters of a rotor-bearing system, including the non-linear effects, is
an important engineering problem.

A large body of literature concentrates on this area. Tiwari and Vyas [9] developed a technique
for estimating the non-linear stiffness of rolling element bearings. Imam et al. [10] completed an
on-line rotor crack detection and monitoring system. Krodkiewski and Ding [11] found a method
for on-site estimation of the alignment of multi-bearing rotor systems. Tasker and Chopra [12]
used the rotor stability data to estimate the non-linear damping of the system.

Compared to the parameter estimation, the non-linear model structure identification is quite
difficult. An optimal search scheme is usually needed to find an adequate model among all the
possible ones. Desrochers and Mohseni [13] used a model set that has a multi-layered
combinatorial tree structure. They showed that searching the tree for the optimal n-term model
could be done in n stages. Kanjilal et al. [14] developed a method for fast selection of significant
variables in linear-in-the-parameter models by using modified orthogonal-triangular factorization
(also called QR factorization). The distinctive characteristic of their method is that estimations of
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the parameters are not needed. More recently, Gary et al. [15] applied genetic programming
optimization technique to find the best non-linear model structures. All of the above methods only
work in offline mode. They can be successfully used to determine the non-linear model structures
by off-line computation. However, they are not suitable for on-line applications, such as the real-
time supervisory adaptive control schemes, in which the model parameters and/or the model
structures are determined during operation.

Niu and Fisher [16] presented a method to detect identifiability problems, such as the
non-persistent excitation, over-parameterization, and output feedback within the system, for the
on-line identification of AutoRegressive model with eXogeneous inputs (ARX model) using
the augmented UD factorization. Their method has the potential to be used for the ARX model
structure determination, but it cannot be extended to the identification of a general non-linear
(but linear-in-the-parameter) system. The order downdating algorithm in recursive least squares
identification developed by Apley and Shi [17] opens the possibility of determining both the
structure of a linear-in-the-parameter system and the parameters simultaneously in real time. This
method consists of a time updating portion and an order downdating portion. The parameters
and residual error energies for an entire set of models can be obtained efficiently.

In this paper, an on-line estimation method that can simultaneously estimate the parameters
and determine the significance of the non-linear and time variant effects in the rotor-bearing
dynamic system is presented. This method is based on an order downdating algorithm, which can
deal with all linear-in-the-parameter non-linear and time variant effects, such as the
unsymmetrical shaft, the structural internal damping, and the non-linear elastic restoring force
of the bearing.

The equation of motion of a four-degree-of-freedom (d.o.f) rotor is given in Section 2. This
dynamic model includes one time variant effect (unsymmetrical shaft) and two non-linear effects
(structural internal damping and the non-linear spring restoring force). In Section 3, this dynamic
equation is formulated in a form that is suitable for recursive least squares estimation in both
timely and orderly sense. A numerical study is given in Section 4. The paper is concluded in
Section 5.

2. Modeling of non-linear and time variant effects of rotor system

2.1. Geometric set-up of the rotor

In this research, a four d.o.f rotor as shown in Fig. 1 is considered.
The rotor bearing system is modelled as a rigid disk located at the middle of a massless elastic

shaft, which is supported by two rigid bearings. To describe the motion of the rigid disk, three
co-ordinate systems are needed. OXYZ frame is the inertial frame. The Z-axis coincides with the
rotation axis of the rotor. O is the geometric center of the rotor when it is at rest. Cuvw frame is
the body-fixed frame that has the same motion as the disk. Cxyz frame is an intermediate frame
between OXYZ frame and Cuvw frame. The Cxyz frame is a non-spinning frame. The orientation
of Cxyz is obtained by first rotating OXYZ in the OX direction by yy and then rotating in the new
OY direction by yx: Since yy and yx are small, the sequence of these two rotations is not
important. Cuvw is obtained from Cxyz by rotating in the Cz (also Cw) direction with the spinning
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angle f: The rotating motion of the rigid disk about the shaft is predefined. The translational
motion of the disk along the OZ direction is neglected. Therefore, the system has four d.o.f.

2.2. Equation of motion

There are two vibration modes in the rotor system: the deflection motion as shown in Fig. 1(b)
and the inclination motion as shown in Fig. 1(c). To further simplify the motion, we assume that
the disk is at the center of the shaft. Therefore, these two vibration motions are decoupled. In this
paper, only the inclination motion will be considered because the gyroscopic effect can be
included in the inclination motion. Following the derivation of Genta [18], we can get the
rotational kinetic energy of the rotor,

Trot ¼ 1
2
fItð’y2

x þ ’y2
yÞ þ Ipð ’f2 þ 2 ’fyx

’yyÞ

þ 2 ’ftðIp � ItÞ½’yy cos fþ ’yx sin f�g: ð1Þ

Taking the yx and yy as the generalized co-ordinates, the governing equation for the inclination
motion is

It
.yy þ Ip

’f’yx ¼ðIt � IpÞtð .f cos f� ’f2 sin fÞ þ My;

It
.yx � Ip

’f’yy ¼ðIt � IpÞtð .f sin fþ ’f2 cos fÞ þ Mx: ð2Þ

My and Mx are the applied external moment along Cx and Cy directions. It and Ip are the
diametrical and polar moment inertia of the disk. f; ’f and .f are the rotating angle, the angular
velocity, and the angular acceleration of the rotor, respectively. t is the dynamic unbalance of the
disk. Based on this equation, we can add several linear and non-linear terms as follows:

* The linear damping terms �c’yy and �c’yx: These effects are caused by the aerodynamic and
other viscous effects.

* The linear spring restoring force of an unsymmetrical stiffness shaft. The unsymmetrical
stiffness of the shaft could be due to the crack on the shaft and the unsymmetrical geometry of
the shaft. If we assume that the stiffness of the shaft in Cu direction is ku and in Cv direction is
kv; the elastic restoring force in the rotating frame is just ½�kuyu � kvyv�T: By multiplying the
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Fig. 1. The geometric setup and two vibration modes of the rotor system: (a) initial condition, (b) deflection motion,

(c) inclination motion.
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co-ordinate transformation matrix

cos f sin f

�sin f cos f

" #T

between Cxyz and Cuvw, we can get the restoring force expressed in the non-spinning Cxyz
co-ordinate. Defining

k ¼
ku þ kv

2
; D ¼

ku � kv

2

and noting

yu

yv

" #
¼

cos f sin f

�sin f cos f

" #
yy

yx

" #
;

we can get

Mky ¼ � kyy � Dðyy cos 2fþ yx sin 2fÞ;

Mkx ¼ � kyx � Dðyy sin 2f� yx cos 2fÞ; ð3Þ

where Mky and Mkx are the linear restoring moments along Cx and Cy directions.
* The non-linear elastic restoring moment, represented as a second order polynomial [3],

Ny ¼ � ðk03y
2
y þ 2k12yxyy þ k21y

2
xÞ;

Nx ¼ � ðk30y
2
x þ 2k21yxyy þ k12y

2
yÞ; ð4Þ

where Ny and Nx are the non-linear restoring moments along Cx and Cy directions.
* Internal damping. There are two kinds of internal damping: material damping and structural

damping. For a steel shaft, the structural damping is important. It is caused by dry friction
between the elastic shaft and the inner ring of the rigid disk. It can be simplified as a constant
magnitude moment in the opposite direction of the relative angular velocity. Since this friction
is between the rotating parts, this force can be easily expressed in the rotating frame as f ¼
�h’v=j’vj: v is the relative angular motion between the rotating shaft and rigid disk. h is a
constant coefficient. To put this term in Eq. (2), f must be expressed in the non-spinning frame
Cxyz. If viewing a vector v as a complex number, then the transformation from v expressed in
the body-fixed frame Cuvw to vns expressed in the non-spinning frame Cxyz is vns ¼ veifðtÞ:
Therefore, v ¼ vnse

�ifðtÞ and ’v ¼ ’vnse
�ifðtÞ � ivns

’fðtÞe�ifðtÞ We can get

fns ¼ �h
’vnse

�ifðtÞ � ivns
’fðtÞe�ifðtÞ

j’vnse�ifðtÞ � ivns
’fðtÞe�ifðtÞj

eifðtÞ ¼ �h
’vns � ivns

’fðtÞ

j’vns � ivns
’fðtÞj

: ð5Þ

Noting vns ¼ yy þ iyx and ’vns ¼ ’yy þ i’yx; the structural internal damping terms are

Mdy ¼ � h
ð’yy þ ’fyxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’y2
x þ ’y2

y þ 2 ’fð’yyyx � ’yxyyÞ þ ’f2ðy2
x þ y2

yÞ
q ;

Mdx ¼ � h
ð’yx � ’fyyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’y2
x þ ’y2

y þ 2 ’fð’yyyx � ’yxyyÞ þ ’f2ðy2
x þ y2

yÞ
q ; ð6Þ
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where Mdy and Mdx are the non-linear internal damping moment along the Cx and Cy

directions.

Substituting all these terms into Eq. (2), the overall governing equation can be obtained as

It
.yy þ Ip

’f’yx þ c’yy � Mdy � Ny � Mky ¼ðIt � IpÞtð .f cos f� ’f2 sin fÞ;

It
.yx � Ip

’f’yy þ c’yx � Mdx � Nx � Mkx ¼ðIt � IpÞtð .f sin fþ ’f2 cos fÞ: ð7Þ

The above equation can be changed to a dimensionless form, by defining the dimensionless
variables be t0 ¼ t

ffiffiffiffiffiffiffiffiffi
k=It

p
; ip ¼ Ip=It; c0 ¼ c=

ffiffiffiffiffiffi
kIt

p
; D0 ¼ D=k; k0

ij ¼ kij=k; and h0 ¼ h=k;

.yy þ ip ’f’yx þ c0 ’yy � M 0
dy � N 0

y � M 0
ky ¼ð1 � ipÞtð .f cos f� ’f2 sin fÞ;

.yx � ip ’f’yy þ c0 ’yx � M 0
dx � N 0

x � M 0
kx ¼ð1 � ipÞtð .f sin fþ ’f2 cos fÞ; ð8Þ

where M 0
dy; M 0

dx; N 0
y; N 0

x; M 0
ky; and M 0

kx are obtained by replacing the dimensional variables with
the dimensionless variables in Eqs. (3)–(6).

The model developed in this section includes unsymmetrical stiffness, structural internal
damping, non-linear elastic restoring force, and gyroscopic effects. These effects are all linear in
the parameters. Therefore, these parameters can be estimated by the QR factorization method.
Compared to the ordinary linear regression algorithm, the QR factorization method is more
numerically stable. In addition, the QR method can give the estimation of parameters and the
corresponding residual energies of a set of models simultaneously. Using this information, we can
determine the significance of the non-linear and time variant effects, which are usually not equally
significant in a given rotor system.

3. On-line identification of non-linear and time varying effects using QR factorization

3.1. Linear regression formulation of the rotor dynamic model

A linear-in-the-parameter model can be estimated by linear regression. The two equations in
Eq. (8) are symmetric. For the determination of non-linear and time varying effects, only one
equation is needed. If we gather the known terms ð.yy þ ip ’f’yx þ yyÞ and the rest of the unknown
terms in the first equation of Eq. (8), the dynamic system can be formulated into a linear
regression format. Denoting y ¼ �ð.yy þ ip ’f’yx þ yyÞ; the regressor as

x ¼ ½x1; x2;x3; x4;x5; x6;x7�T; ð9Þ

where x1 ¼ ðip � 1Þ ð .f sin fþ ’f2 cos fÞ; x2 ¼ ðyy cos 2fþ yx sin 2fÞ; x3 ¼ ’yy; x4 ¼ y2
x; x5 ¼

2yxyy; x6 ¼ y2
y;

x7 ¼
ð’yy þ ’fyxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’y2
x þ ’y2

y þ 2 ’fð’yyyx � ’yxyyÞ þ ’f2ðy2
x þ y2

yÞ
q

and the unknown parameters as

j ¼ ½t;D0; c0; k0
21; k

0
12; k

0
03; h

0�T; ð10Þ
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we can obtain

y ¼ xTjþ e: ð11Þ

There are several assumptions in the above linear regression formulation.

1. The rotating angle, speed, and the acceleration of the rotor, i.e., f; ’f; and .f are known. The
rotating speed can be easily obtained from the tachometer. The rotating angle and the rotating
acceleration can be obtained by numerical integration and differential method.

2. The diametrical and the polar moment of inertia are known. These variables can be calculated
from the geometric configuration of the rotor.

3. The full states of the rotor system are measurable. That means that yx, yy, and corresponding
angular velocities and accelerations are known. The inclination angles and angular velocities
can be obtained by non-contact displacement and velocity sensors. The angular acceleration
can be obtained by a numerical differential method.

4. The symmetrical stiffness k is known. If it is unknown, we cannot use the dimensionless
dynamic equations (8). Instead, we have to use Eq. (7) to formulize the linear regression
equation and take k as an unknown parameter. The following method can still be used.

5. The term e is a normally distributed white noise. This noise has several sources, such as
modelling error, measurement error, and numerical round error. Since this noise consists of
several noise sources, we assume that it has normal distribution in this paper.

Many methods can be used to solve this linear regression problem [19]. Among these methods,
the QR factorization method enjoys numerical stability and inherited orderly recursive ability.

3.2. QR factorization method

One form of QR factorization of an m-by-n matrix is given by A ¼ QR; where Q is an m-by-n
orthogonal matrix and R is an n-by-n upper triangular matrix with ones on the diagonal. The QR
factorization is closely related with the least squares estimation. Define Ji as the ith diagonal
element of the diagonal matrix QTQ and

R�1 ¼

1 u2 u3 ? un

1

1

0 &

1

2
6666664

3
7777775
;

where ui is a column vector of length i � 1: It is well known that ui is the negative of the least
squares coefficient vector in projecting the ith column of matrix A onto the space spanned by the
previous i � 1 columns of A: The corresponding sum of squares of residue error (residue energy) is
given by Ji [20]. Mathematically,

ui ¼ � arg min
u

jjai � Ai�1ujj2; qi ¼ ai þ Ai�1ui; and Ji ¼ qT
i qi; ð12Þ
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where ai is the ith column of matrix A and Ai�1 is a sub-matrix consisting of first i � 1 columns of
A; qi is the ith column of Q: Using this property, the linear regression problem can be solved by
QR factorization if we let A ¼ ½xT y�:

The QR factorization can be obtained by using the modified Gram–Schmidt orthogonalization
[21], which is more numerically stable than the classical Gram–Schmidt orthogonalization
procedure. Ling et al. [22] found a timely recursive scheme to conduct the modified Gram–
Schmidt procedure. For an m-by-n matrix At and an ðm þ 1Þ-by-n matrix Atþ1 ¼ ½AT

t bT�T where b
is a new 1-by-n row vector (a new observation in Eq. (11)), the QR factorization of matrix Atþ1

can be recursively obtained from the QR factorization of matrix At: Sakai [23] extended Ling’s
algorithm to the inverse QR factorization method in which R�1 is updated directly. The
parameters of least squares estimation ui can be updated directly. This method can be viewed as a
complete recursive least squares estimation method with orderly recursive capability because we
can also obtain the projection of the intermediate column of A onto the space spanned by the
previous columns.

3.3. Identification of non-linear and time-varying effects in rotor system

To determine the significance of a non-linear or time variant effect, we need to fit a model with
and without that certain effect. For example, to determine the effect of non-linear structural
damping, we need to map the response y onto the space spanned by x (i.e., finding least squares
solution of Eq. (11)) and map the response y onto the space spanned by x0 ¼ ½x1; x2;
x3;x4; x5;x6�T; which represents the system without the non-linear strcutural damping force.
Then, these two models are compared in a statistical sense to determine if this non-linear effect is
significant.

Apley and Shi [17] extended the recursive inverse QR factorization algorithm by adding a
recursive orderly updating part in the original timely updating scheme. Their algorithm can be
summarized as follows. Given the inverse QR factorization of m-by-ðn þ 1Þ matrix ½x1x2yxi y

xiþ1yxn�; where xi ði ¼ 1;y; nÞ and y are m-by-1 column vectors, the inverse QR factorization of
matrix ½x1 x2 yxi�1 y xi xiþ1yxn� can be obtained recursively. Together with the timely updating
part, we can get a fully recursive order downdating least squares estimation algorithm. The
structure of these n models are shown in Fig. 2. The ith model is of order i: The basic steps of this
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algorithm are listed as follows (the details can be found in [17]):

1. Timely update R�1(t), J(t), and the last row of Q(t). The estimated least squares parameters are
in R�1(t). The matrix J(t) is the diagnoal matrix QT(t)Q(t). The elements of J(t) are the residual
error energies of the corresponding model.

2. Perform order downdating. Based on the results of step 1, we can obtain the parameters and
residual error energies of model n to model 1 as shown in Fig. 2.

3. Output the interested parameters and residual error energies.

This algorithm can efficiently calculate the least squares parameters and the corresponding
residual error energies of n models.

In the rotor senerio, the statistical significance of the non-linear and time variant effects can be
determined by statistical model selection rules, such as the partial F -test [19], the AIC criterion, or
FPE test [24] on the residual error energies. These statistic criteria have similar performance. In
this paper, the partial F -test method is adopted.

Suppose that there are two models, Model I and Model II. Model I is a special case of Model II,
i.e.,

Model I: y ¼ b1x1 þ?þ bqxq þ e;

Model II: y ¼ b1x1 þ?þ bqxq þ bqþ1xqþ1 þ?þ bpxp þ e0:

For testing the significance of the contributions of the factors xqþ1;y;xp; or equivalently, for
testing the adequacy of the Model I, the null hypothesis H0 : bqþ1 ¼ ? ¼ bp ¼ 0 should be tested,
which can be done by checking the F-statistic,

ðResidual Error Energy of Model I � Residual Error Energy of Model IIÞ=ðp � qÞ
Residual Error Energy of Model II=ðm � pÞ

; ð13Þ

where m is the sampling size. By calculating the F -statistic, and then computing its p-value, it can
be determined whether the null hypothesis should be rejected. If so, that means Model I is not
adequate, or, in other word, the factors xqþ1;y; xp are significant. On the other hand, if we
cannot reject the null hypothesis, that means the factors xqþ1;y;xp are not significant.

Confined by the on-line real-time calculation, only n successive order increasing models are
available by QR estimation as shown in Fig. 2. Hence, the heuristic searching method, such as the
forward successive model selection or backward successive model selection method used by
Draper and Smith [19], cannot be used with the QR method. To use the F -test based on these n
models, the sequence of factors, x1Bxn; in QR estimation should be carefully selected. This
sequence determines that the F -test is performed on which n models among all 2n � 1 possible
models. The selection of the sequence (hence, the n models) depends on the characteristic of the
physical system and is determined by our interests. In most cases, it is very difficult, if not
impossible, to select these n models purely based on theoretical analysis. Empirical studies are
often needed to determine the sequence of these factors. For example, if we want to use this
method for process monitoring and fault detection, then roughly speaking, the significant factors
under normal working condition of the rotor system should be put in the front part of the
sequence as the core factors. When a fault happens in the system, certain factors may become
significant (e.g., a crack could suddenly happen in the shaft. In this case, the un-symmetric of shaft
will become significant). These factors, based on the probability of happening, should be put after
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the core factors. The factors of the high probability faults should be put in front of the low
probability factors. In this way, the non-linear effect identification actually can be used as a
system fault detection system. The focus of this paper is to show the capability of recursive QR
factorization estimation and the F -test method. Therefore, in this context, we will simply select
the sequence of the factors as shown in Eq. (10).

The procedure for the determination of the significance of the non-linear and time variant
effects and the corresponding parameters is summarized as follows:

* Selecting a sequence of the factors based on the physical characteristics of the system and the
interests.

* Initializing the orderly recursive estimation algorithm. The initial values of the parameters (u in
Eq. (11)) can all be zeros. To avoid being divided by zero, the initial values of the error energies
should be small positive numbers.

* Measuring and calculating y and all the elements of x in Eq. (11).
* Using the order downdating recursive least squares estimation algorithm [17] to calculate the

estimated parameters of a series of models and the corresponding residual error energies.
* Invoking statistical model selection criteria to determine the significance of each non-linear and

time variant effect.

In next section, a numerical study is conducted to show the effectiveness of this method.

4. Numerical study

The objective of this simulation study is to illustrate the procedure developed in Section 3 for
the parameter estimation and the model structure determination of the rotor dynamic system.

The dynamic system Eq. (8) are solved by the Runge–Kutta method to obtain the motion of the
system. A normal distributed noise with variance 10�4 is added to the system output y: The rotor
is at rest at time 0 and accelerates at a constant angular rate of 0.01. The rotating speed of the
rotor is the same as the natural frequency of the rotor system at dimensionless time 100. Other
parameters used in the simulation are listed in Table 1. Since a dimensionless model is adopted to
capture the essential dynamic characteristics of the system, these numbers are dimensionless. One
dimensionless model corresponds to multiple physical models. For example, the dimensionless
parameters used in this numerical study can correspond to a physical system: k ¼ 3:75 �
106 kg m2=s2; it ¼1500 kg m2; ip¼ 450 kg m2; c ¼ 2250 kg m2=s; t ¼ 0:02; h ¼ 3:75 � 104 kg m2=s2;
D ¼ 112 500 kg m2=s2; k03; k12; k30; and k21 are 7:5 � 104; 1:125 � 105; 1.875� 105, and 1:5 �
105 kg m2=s2; respectively. The acceleration of the rotating motion is 1500 r.p.m./s. The critical
speed of the system is 3000 r.p.m.
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Parameters used in the numerical study

i0p c0 t h0 D0 k0
03 k0

12 k0
30 k0

21

0.3 0.03 0.02 0.01 0.03 0.02 0.03 0.05 0.04
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The rationale of considering the acceleration case rather than the constant rotating speed case
lays in the fact that the maximum vibration magnitude usually occurs at the time when the
rotating speed hits the critical speed of the rotor. Therefore, if we try to minimize the maximum
vibration of the rotor by passive or active control scheme, we have to consider the non-stationary
vibration period when the rotor passes its critical speed. An accurate model is important for the
design of an efficient passive or active control scheme. Therefore, in this study, we only consider
the acceleration period. Based on these parameters and initial conditions, the response of rotor is
shown in Fig. 3.

The simulation shows that the vibration magnitude is very small before time step 100 (at time
100, the rotor spins at its natural frequency). The vibration magnitude increases dramatically
between time 100 and 150. This simulation coincides with the phenomena observed in the
experiment that the resonant peaks usually arrive when the rotating speed of the rotor is higher
than the natural frequency during acceleration [25]. After the resonant peak at about 150, the
magnitude of the vibration slowly diminishes. The whole response is very similar to the response
of a mass–spring linear system. This is true because the non-linear and damping terms are very
small compared with the symmetrical linear stiffness (1 in the dimensionless equation) in this
study.

Formulating the linear regression problem and using the order downdating QR estimation
algorithm, we can get the parameter estimation and the corresponding residual error energies. The
initial guess of the parameters are all zeros and the initial Ji’s estimation algorithm are all selected
as 0. 01. The estimation results for the full model that includes all the effects in Eq. (11) are shown
in Fig. 4.
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One significant characteristic of these results is that the parameter estimations do not converge
to the true value before the rotating speed of the rotor hits the natural frequency. There are two
reasons: First, when the rotating speed is below the resonant peak the vibration is so small that the
output signal is dominated by noise. The second fact is that the natural vibration mode is not
excited before the resonant peak occurs. That means this system cannot be distinguished from a
simple first order system in terms of the input and output of the system. Therefore, the estimated
parameter is different from the true parameters before the dimensionless time 150. (In the
simulation, the rotating speed hits the natural freqency at 100. However, the fast accleration
pushes the resonant peak to happen at a higher speed.)

The partial F -test is done based on this recursive orderly downdating QR algorithm. The results
are shown in Fig. 5. The horizontal axis represents dimensionless time. The vertical axis represents
the results of the F -test. The results are given as a binary value: one means the corresponding
factor is significant and zero means the corresponding factor is not significant. The a error is
selected as 0.05 in the F -test. Each figure in Fig. 5 shows the result of partial F -statistics between
two models. For example, the first figure in Fig. 5 shows the results of the partial F -statistics
between model 1 and model 2. The structure of models 1 and 2 are shown in Fig. 2. In more detail,
model 1 is y ¼ xT

1j11 þ e1 and model 2 is y ¼ xT
1j21 þ xT

2j22 þ e2: This test can show the statistical
significance of the effect of asymmetric stiffness of the rotor.

Since the estimation is done recursively at each time step, the F -statistic is calculated at each
time step using Eq. (13). The simulation results have several notable characteristics. First, almost
no dynamic effects are significant before the resonant peak. Clearly, the reason is that the
vibration is so small before the resonant peak that the noise is dominant in the output y: This is
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consistent with the parameter estimation result. Both the parameter estimation and the
significance test are not accurate before the resonant peak happens. Second, there are some
oscillations in the results between 100 and 200 s. These oscillations are due to the transient
response of the estimator. The result after t ¼ 200 should be used in this case. Third, the
significance of linear damping effect c0 cannot be identified correctly even after t ¼ 200: This is
caused by the negative correlation between the linear damping and the non-linear structural
damping. The partial F -test between Models 2 and 3, which only includes the linear damping,
tends to underestimate the significance of the linear damping. However, since our interests are on
the non-linear effects, this underestimation will not affect the application of this method.

A numerical study without the structural damping (letting h0 ¼ 0 in the simulation) has also
been done. Because of the lack of structural damping, the significance of linear damping can be
identified. Similar numerical studies have been done for the significance testing of the model
without asymmetric stiffness (letting D0 ¼ 0) and the model without one of the non-linear spring
restoring forces (letting k0

12 equals 0). These numerical results are shown in Table 2.
The second column of this table shows the true parameters. Since QR method is an on-line

recursive method, we can obtain the parameter estimation, F -statistics for each parameter, and
the parameter significance at each time step. The values in the third to fifth column are just typical
values of these after t ¼ 200: The symbol ‘‘—’’ in the significance column means that the
significance cannot be decided. From these numerical studies, we can see that this method can
efficiently determine the significance of the non-linear and time varying factors in rotor system
after the resonant peak occurs. To use this method, we need to know when the resonant peaks
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occur to avoid unreliable results. This is not difficult because large non-synchronous vibration will
happen at resonant peaks.

Another point that needs to be emphasized is that the significance of the factors is in the
statistical sense. They can be viewed as the energy of the portion in the output that is contributed
by certain factors. This significance does not consider specific application. A statistically
significant factor could be insignificant with respect to a certain application. For example, factor
A could contribute a large portion of the output. Therefore, it is statistically significant. However,
if there is a control scheme that only suppresses the output within a certain frequency range and
the range does not include the output caused by factor A, this factor will be insignificant for this
control system. A practical example is the active balancing system that only controls the
synchronous vibration of the rotor. The whole vibration signal will be filtered by a band-pass filter
before it is fed to the control algorithm. Therefore, all factors that contribute non-synchronous
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Table 2

Results of the numerical study

Case no. True parameters Estimated parameters F -statistics Significance

1 As shown in Table 1 t 0.0201

D0 0.0321 D0 809.73 D0 Yes

c0 0.0292 c0 0.52079 c0 —

k0
21 0.0426 k0

21 129.67 k0
21 Yes

k0
12 0.0297 k0

12 67.693 k0
12 Yes

k0
03 0.0205 k0

03 67.733 k0
03 Yes

h0 0.0098 h0 4709.8 h0 Yes

2 As shown in Table 1 except h0 ¼ 0 t 0.0201

D0 0.0320 D0 723.98 D0 Yes

c0 0.0285 c0 1292.2 c0 Yes

k0
21 0.0421 k0

21 99.92 k0
21 Yes

k0
12 0.0273 k0

12 24.502 k0
12 Yes

k0
03 0.0214 k0

03 93.005 k0
03 Yes

h0 �0.0002 h0 1.7157 h0 No

3 As shown in Table 1 except D0 ¼ 0 t 0.0201

D0 0.0022 D0 1.2566 D0 No

c0 0.0294 c0 2.4175 c0 —

k0
21 0.0430 k0

21 315.6 k0
21 Yes

k0
12 0.0296 k0

12 134.83 k0
12 Yes

k0
03 0.0206 k0

03 182.84 k0
03 Yes

h0 0.0099 h0 5242.6 h0 Yes

4 As shown in Table 1 except k0
12=0 t 0.0199

D0 0.0292 D0 1837.5 D0 Yes

c0 0.0286 c0 10.473 c0 —

k0
21 0.0392 k0

21 301.07 k0
21 Yes

k0
12 �0.0020 k0

12 0.023104 k0
12 No

k0
03 0.0195 k0

03 195.92 k0
03 Yes

h0 0.0098 h0 5319.1 h0 Yes
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vibration, such as the non-linear spring restoring forces, will be insignificant. How to determine
the significance of the factors with respect to specific application will be studied in the future.

5. Conclusion

A rotor is a primary part of many mechanical systems, making rotor vibration control an
important engineering problem. In general, non-linear and time varying effects can affect the
dynamics of the rotor significantly in certain rotor systems. This will cause more difficulties in the
active vibration control for the rotor system because the active vibration scheme usually assumes
that the underlay plant is linear [26,27]. In this paper, the on-line estimation of parameters and the
determination of the significance of several non-linear and time varying linear effects in rotor
dynamic systems are investigated.

After building a dynamic model of the rotor that includes both linear and non-linear time
varying effects, QR factorization method is used to estimate the parameters of these effects. The
study shows that the QR factorization method for the least squares estimation is numerically
stable. This can be shown by the simulation before the resonant peak. At that time, the signal is so
small that the noise dominates the whole output. However, the oscillation of the QR estimation is
small and the estimation converges to the true value right after the resonant peak. By using the
orderly recursive ability of the QR factorization method, n selected models among all possible
2n � 1 models (if there are n factors and one output) can be obtained at each time step. The
statistical significance of various non-linear or time varying factors can be obtained by partial
F-statistic test if these n models are carefully selected using the correlation information between
the factors.

The technique developed in this paper can be used on active vibration control, fault diagnosis,
and condition monitoring for rotating machinery. The application of this method will be reported
in the future.

Appendix A. Nomenclature

Cuvw body-fixed co-ordinate system
Cxyz intermediate non-spinning co-ordinate system between OXYZ and

Cuvw

OXYZ stationary inertial co-ordinate system
h coefficient of the non-linear structural damping
k average of the stiffness of the shaft in two directions
kij coefficient of the non-linear spring restoring force. i; j ¼ 0y3 and

i þ j ¼ 3:
It; Ip diametric and polar moment of inertia of the disk.
yx; yy; ’yx; ’yy; .yx; .yy inclination angle, angular velocity, angular acceleration of the disk
f; ’f; .f spinning angle, velocity, and acceleration of the rotor
t dynamic unbalance
D difference of the stiffness of the shaft in two directions
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