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Abstract

The dynamics of a non-linear electrostatic transducer with two outputs is studied. The amplitudes and
stability conditions of oscillations for the Triple Resonant States are obtained and discussed. It is found
that chaos can appear in the system. A retroactive control strategy is therefore applied to tune these chaotic
oscillations to regular target orbits. The stability analysis of the feedback controller is also investigated, and
an estimation of the feedback strength under which no efficient control is possible is derived. The analytic
study is confirmed by numerical simulations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Research in the area of coupled non-linear oscillators has received a great deal of attention in
recent years. This is due to the fact that coupled oscillators provide fundamental models for the
dynamics of various physical, electrical, mechanical and biological systems (see Refs. [1–5] and
references therein).

In the field of electromechanical systems, recent studies have highlighted that even though they
are undesirable and harmful most of the time [6], non-linear phenomena could find valuable
applications in some particular cases [7]. It is in this spirit that a non-linear electrostatic
transducer with two outputs is studied in this paper. This electromechanical system can serve as a
multi-frequency industrial or domestic shaker. Its principal advantages are a conceptual
simplicity, an easy implementation and a remarkable robustness. The analysis of this system
will show that owing to non-linearity, a common uniperiodic electric excitation (for example the
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voltage of the mains) can provide several sets of amplitudes and frequencies for the two
mechanical outputs.

Depending on the numerical values of the non-linearity and coupling parameters, the
electrostatic transducer can display a chaotic behaviour, which may be a positive or a negative
tool depending on the precise utilization [8,9]. The consequent aim is to design a feedback
controller able to tune the chaotic trajectories to suitable target orbits if necessary. The stability of
the control process, which is currently an opened question, will be particularly investigated as well
as the determination of the critical control parameters leading to a satisfying control.

The paper is organized as follows. In Section 2, the electromechanical system and its equations
of motion are presented. The equilibrium points are exhaustively identified, and their stability
analysis is performed. Using the Multiple Time Scales Method the three triple resonant states
(TRS) of the model are analyzed in Section 3. A direct numerical simulation of the evolution
equation shows an excellent agreement with the analytical amplitudes of these TRS. The stability
analysis of these resonant states is also discussed. Section 4 deals with the chaotic behaviour of the
transducer and the control of the system from chaos to regular target orbits. Various
considerations about the suitable characteristics of the controller will be particularly investigated.
Conclusions are given in Section 5. The numerical simulation of all ordinary differential equations
will be carried out with the fourth order Runge–Kutta algorithm, while all the non-linear
algebraic equations will be solved through the Newton–Raphson algorithm.

2. The electromechanical system

2.1. Equations of motion

The electrostatic transducer with two outputs is schematically represented in Fig. 1. It consists
of a resistive part (R0;R1 and R2), an inductive component (L0), and a capacitive part (C0;C1 and
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Fig. 1. Schematic representation of the non-linear electrostatic transducer with two outputs.
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C2) which is polarized by a high-voltage accumulator E0: C1 and C2 are plane capacitors with a
fixed and a mobile plate each, while C0 is a non-linear capacitor (of a semiconductor type) with a
Duffing-like charge–voltage characteristic. The system is excited by a sinusoidal external voltage
eðtÞ which thereby induces the vibration of the mobile plates of C1 and C2: The masses of these
mobile plates are respectively equal to m1 and m2:

The Lagrangian and the dissipation function corresponding to the electromechanical system
can respectively be expressed as

L ¼ 1
2

m1 ’x
2 þ 1

2
m2 ’y

2 þ 1
2

L0 ’q
2

� �
� 1

2
k1ðd1 þ xÞ2 þ 1

2
k2ðd2 þ yÞ2 þ

ðQ0 þ qÞ2

2Ceqðx; yÞ
þ

1

4
wq4

� �
þ ðQ0 þ qÞðE0 þ e0 cosðOtÞÞ ð1aÞ

and

D ¼ 1
2
Z1 ’x

2 þ 1
2
Z2 ’y

2 þ 1
2
ðR0 þ R1 þ R2Þ ’q2; ð1bÞ

where

Ceqðx; yÞ ¼
1

C0
þ
ð1 � x=d1Þ

C1
þ

ð1 � y=d2Þ
C2

� ��1

ð2Þ

is the instantaneous equivalent capacitance of the electrical circuit. Here, x and y are the
displacements of the mobile plates of C1 and C2; while q is the instantaneous electric charge in
the electrical loop. Z1 and Z2 are the mechanical dissipative coefficients, d1 and d2 represent the
distance between the plates of the two plane capacitors, and w is the Duffing coefficient.
Ceqð0; 0Þ ¼ Ceq ¼ ð1=C0 þ 1=C1 þ 1=C2Þ

�1 is the equivalent capacitor of the circuit at the trivial
equilibrium, and Q0 ¼ CeqE0 is the polarization static electric charge.

Taking into account the polarization conditions, the equations of motion can be expressed as

m1 .x þ Z1 ’x þ k1x �
Q0

C1d1
q �

1

2C1d1
q2 ¼ 0;

m2 .y þ Z2 ’y þ k2y �
Q0

C2d2
q �

1

2C2d2
q2 ¼ 0;

L0 .q þ ðR0 þ R1 þ R2Þ ’q þ
q

Ceq

þ wq3 �
1

C1d1
x þ

1

C2d2
y

� �
ðQ0 þ qÞ ¼ e0 cosðOtÞ: ð3Þ

After a suitable normalization, the equations of motion (3) can be rewritten as

.x þ l10 ’x þ o2
1 x � a10 q þ 1

2
q2

� �� �
¼ 0;

.y þ l20 ’y þ o2
2 y � a20 q þ 1

2
q2

� �� �
¼ 0;

.q þ le0 ’q þ q þ g0q3 � ðm10x þ m20yÞð1 þ qÞ ¼ Um0 cos ot: ð4Þ

In Eq. (4), x and y have been expressed relatively to d ¼
ffiffiffiffiffiffiffiffiffi
d1d2

p
; q relatively to Q0

and t relatively to O�1
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
L0Ceq

p
: The new dimensionless parameters are related to the
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true ones by

ln0 ¼
Zn

mnOe

; on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn=mn

1=L0Ceq

s
; an0 ¼

Q2
0=2Cn

knd2
n=2

d

dn

; mn0 ¼
Ceq

Cn

d

dn

with n ¼ 1 or 2;

le0 ¼
ðR0 þ R1 þ R2Þ

L0Oe

; g0 ¼
wQ2

0

L0O2
e

; o ¼
O
Oe

; Um0 ¼
e0

L0Q0O2
e

: ð5Þ

The transducer is now described by several dimensionless parameters. le0; l10 and l20 are damping
coefficients, while o1 and o2 are kinematic coefficients proportional to the natural frequencies of
the mobile plates. The coupling of the mechanical parts to the electrical one is ensured by the
energetic coefficients a10 and a20; which define the ratio between equilibrium electrostatic and
mechanical energies. The variable q is in its turn non-linearly coupled to x and y through the
geometrical coefficients m10 and m20 which depend on the shape and dimensions of the transducer.
At last, the Duffing non-linearity is recovered through the coefficient g0: The utilization of a
Duffing-like non-linear capacitor has been considered to enable the hysteresis phenomenon to
appear. Effectively, it is known that this critical phenomenon can serve for the switching between
the two different amplitudes corresponding to the higher and lower nearby frequencies situated
just around the jumping frequency. In that case, slight deviations of the external forcing frequency
would be sufficient to command different functioning modes of the transducer’s dynamics with a
reduced energy consumption.

2.2. Equilibrium states and their stability

Eqs. (4) can be rewritten under the vectorial form

’u ¼ FðuÞ þ EðtÞ; ð6aÞ

where u ¼ ðx; ’x; y; ’y; q; ’qÞ is the six-dimensional state vector. The non-linear flow F represents the
motion equations of the non-excited transducer and E the external excitation. The equilibrium
states ueq are solutions of the set of non-linear algebraic equations FðueqÞ ¼ 0: Since xeq and yeq are
univocally bound to qeq; the equilibrium states can be exhaustively determined through the
resolution of the following polynomial equation:

qeq g0 �
1
2
b12

� �
q2

eq þ � 3
2
b12

� �
qeq þ ð1 � b12Þ

h i
¼ 0 ð6bÞ

with b12 ¼ m10a10 þ m20a20: It straightforwardly appears that the trivial centre point is always an
equilibrium state of the system ðqeq ¼ 0Þ: Depending on the different parameters of the transducer,
a variable number of asymmetric equilibrium states can also coexist. More precisely, if the critical
value is defined as

g0;cr ¼
b2

12 þ 8b12

16ð1 � b12Þ
ð6cÞ
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it can be demonstrated that there is one asymmetric fixed point when g0Afðb12=2Þ; g0;crg or
b12 ¼ 1; two when g0og0;cr; but none for g0 ¼ b12=2 ¼ 1=2 or g0 > g0;cr:

The local stability analysis of these equilibrium states can be determined by investigating the
linearized system

d’u ¼
@F

@u


 �
� du at u ¼ ueq: ð6dÞ

The perturbation du asymptotically decays to zero if the sixth order Jacobian matrix [@F=@u	 has
strictly negative eigenvalues. The Routh–Hurwitz criterion and the physical constraints inherent
to the electromechanical system guarantee that it is the case provided that

g0 �
1
2

� �
q2

eq � b12qeq þ 1
3
ð1 � b12Þ > 0: ð6eÞ

Therefore, a given equilibrium state can be stable if and only if it fulfills the stability constraint
(6e). It can be consequently deduced that for example, the trivial centre point is asymptotically
stable when b12o1:

3. The triple resonant states

3.1. The multiple time scales method

Amongst all the analytic approaches for the non-linear oscillations, the multiple time scales
method (MTSM) has been chosen because it is the most adapted to the study of dynamical
systems around resonance frequencies [1,4,5,8,9]. In this paper, the damping, the coupling, the
external excitation and the non-linearity are considered as global first order perturbations.
Therefore write Um0 ¼ eU0; le0 ¼ ele; g0 ¼ eg; and lk0 ¼ elk; ak0 ¼ eak;mk0 ¼ emk ðk ¼ 1; 2), e
being a scale factor.

One is therefore led to seek a first order asymptotic expansion in the form

x ¼ x0ðT0;T1Þ þ ex1ðT0;T1Þ þ Oðe2Þ;

y ¼ y0ðT0;T1Þ þ ey1ðT0;T1Þ þ Oðe2Þ;

q ¼ q0ðT0;T1Þ þ eq1ðT0;T1Þ þ Oðe2Þ: ð7Þ

The independent time scales T0 ¼ t and T1 ¼ et are respectively the fast scale (associated to
the unperturbed system) and the slow scale (associated to the amplitude and phase modula-
tions induced by the global first order perturbation). Substituting Eqs. (7) into Eqs. (4) and
equating coefficients of like powers of e; one obtains the following set of ordinary differential
equations:

Order e0

D2
0x0 þ o2

1x0 ¼ 0;

D2
0y0 þ o2

2y0 ¼ 0;

D2
0q0 þ q0 ¼ 0: ð8Þ
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Order e1

D2
0x1 þ o2

1x1 ¼ a1o2
1 q0 þ 1

2
q2

0

� �
� 2D0D1x0 � l1D0x0;

D2
0y1 þ o2

2y1 ¼ a2o2
2 q0 þ 1

2
q2

0

� �
� 2D0D1y0 � l2D0y0;

D2
0q1 þ q1 ¼ ðm1x0 þ m2y0Þð1 þ q0Þ � 2D0D1q0 � leD0q0 � gq3

0 þ U0 cos ot ð9Þ

with Dn ¼ @=@Tn; n ¼ 0; 1: The general solution of Eqs. (8) can be expressed as

x0 ¼ AðT1Þ expð jo1T0Þ þ %AðT1Þ expð�jo1T0Þ;

y0 ¼ BðT1Þ expð jo2T0Þ þ %BðT1Þ expð�jo2T0Þ;

q0 ¼ CðT1Þ expð jT0Þ þ %CðT1Þ expð�jT0Þ; ð10Þ

where the overbar represents the complex conjugate and j2 ¼ �1: One should notice that A;B and
C are undetermined functions at this point, but will be determined by imposing solvability
conditions in the next approximation equations. Therefore, substituting x0; y0 and q0 into Eqs. (9)
yields

D2
0x1 þ o2

1x1 ¼ 1
2
a1o2

1C %C þ 1
2
a1o2

1C2 expð2jT0Þ þ a1o2
1C expð jT0Þ

� jo1ð2A0 þ l1AÞ expð jo1T0Þ þ Comp: Conj:;

D2
0y1 þ o2

2y1 ¼ 1
2
a2o2

2C %C þ 1
2
a2o2

2C2 expð2jT0Þ þ a2o2
2C expð jT0Þ

� jo2ð2B0 þ l2BÞ expð jo2T0Þ þ Comp: Conj:;

D2
0q1 þ q1 ¼ þ m1ðA expð jo1T0Þ þ AC expð jðo1 þ 1ÞT0Þ þ A %C expð jðo1 � 1ÞT0ÞÞ

þ m2ðB expð jo2T0Þ þ BC expð jðo2 þ 1ÞT0Þ þ B %C expð jðo2 � 1ÞT0ÞÞ

� ð2jC0 þ jleC þ 3gC2 %CÞ expð jT0Þ � gC3 expð3jT0Þ

þ 1
2

U0 expð joT0Þ þ Comp:Conj: ð11Þ

The prime here (over A;B and C) and throughout all the paper indicates the differentiation with
respect to T1; and ‘‘Comp. Conj.’’ will stand for the complex conjugate of all the preceding terms.

As was observed earlier, the unknown amplitudes A;B and C may now be determined by
eliminating secular terms in Eqs. (11). However, because of the high dimensionality of the system,
it is impossible to obtain unambiguously a set of secular equations valid for all frequencies. One is
therefore compelled to distinguish different cases of harmonic resonance (according to the
different values of the frequencies o1; o2 and o relatively to the electric natural frequency oe ¼ 1)
which are leading to different sets of secular equations. Various types of resonant states can be
found from Eqs. (11). But in this paper, the emphasis is placed on TRS. In fact, the other resonant
states are not particularly interesting since they lead to the states of no motion for one or two of
the three oscillators. Along the same line, sub- and super-harmonic resonances have not been
considered here firstly because some of them cannot be straightforwardly deduced from the
MTSM, and secondly because they do not generally induce noticeable amplitudes. Owing to the
structural symmetry of the two mechanical oscillators equations of motion, this multitude of TRS
can mathematically be reduced to three, that is o1 ¼ o2 ¼ o ¼ oe (first TRS), o1 ¼ o2 ¼ 2o ¼
2oe (second TRS), and at last 2o1 ¼ o2 ¼ 2o ¼ 2oe (third TRS). The study of these TRS
obviously includes those of double resonant states and simple resonant states. Hence, one can
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consider that all the possible resonances of the non-linear transducer are here exhaustively
explored.

3.2. Amplitude of non-linear oscillations in the TRS

For the illustration of the analytic procedure, consider the first TRS where the external
excitation frequency is approximately equal to the natural frequencies of the electric and
mechanical oscillators. Then set

o ¼ 1 þ ex; o1 ¼ 1 þ ex1; o2 ¼ 1 þ ex2; ð12Þ

where x1; x2 and x are detuning parameters expressing the quantitative nearness of the resonance
frequencies o1; o2 and o with the fixed electric natural frequency oe ¼ 1: Hence, inserting
Eqs. (12) into Eq. (11) leads to the following solvability conditions:

a1o2
1C expð�jx1T1Þ � jo1ð2A0 þ l1AÞ ¼ 0;

a2o2
2C expð�jx2T1Þ � jo2ð2B0 þ l2BÞ ¼ 0;

m1A expð jx1T1Þ þ m2B expð jx2T1Þ � ð2jC0 þ jleC þ 3gC2 %CÞ þ 1
2

U0 expð jxT1Þ ¼ 0: ð13Þ

Expressing AðT1Þ;BðT1Þ;CðT1Þ in the polar form yields

AðT1Þ ¼ 1
2

a1ðT1Þ expð jb1ðT1ÞÞ;

BðT1Þ ¼ 1
2

a2ðT1Þ expð jb2ðT1ÞÞ;

CðT1Þ ¼ 1
2

a3ðT1Þ expð jb3ðT1ÞÞ; ð14Þ

where ak and bk are respectively the amplitudes and the phases of the oscillators. After separating
the real and imaginary parts in Eqs. (13), one obtains the following set of first order ordinary
differential equations:

1
2
a1o1a3 cos c1 þ a1b01 ¼ 0;

1
2
a1o1a3 sin c1 þ a0

1 þ
1
2
l1a1

� �
¼ 0;

1
2 a2o2a3 cos c2 þ a2b02 ¼ 0;
1
2
a2o2a3 sin c2 þ a0

2 þ
1
2
l2a2

� �
¼ 0;

a3b0
3 �

3
8
ga3

3 þ
1
2

U0 cos c3 þ
1
2
m1a1 cos c1 þ

1
2
m2a2 cos c2 ¼ 0;

a0
3 þ

1
2
lea3 � 1

2
U0 sin c3 �

1
2
m1a1 sin c1 �

1
2
m2a2 sin c2 ¼ 0; ð15Þ

where c1 ¼ x1T1 þ b1 � b3; c2 ¼ x2T1 þ b2 � b3 and c3 ¼ xT1 � b3: Since one is particularly
interested in studying the steady state responses, first impose ða01 ¼ 0; a02 ¼ 0; a03 ¼ 0Þ and secondly
ðc0

1 ¼ 0;c0
2 ¼ 0;c0

3 ¼ 0Þ; which implies ðb0
1 ¼ x� x1; b0

2 ¼ x� x2; b
0
3 ¼ xÞ: Thus eliminating

c1;c2 and c3 from Eqs. (15), one can obtain the following resonance equation:

9
64
g2a6

3 þ
3
4
gðM11 þ M21 � xÞa4

3 þ ðM11 þ M21 � xÞ2 þ 1
2
le þ N11 þ N21

� �2
h i

a2
3 �

1
4

U2
0 ¼ 0 ð16Þ

and the following coupling relations:

a1 ¼ 1
2
a1o1G11a3;

a2 ¼ 1
2
a2o2G21a3 ð17Þ
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with

Gik ¼ ðxi � kxÞ2 þ 1
4
l2

i

� 
�1=2
;

Mik ¼ 1
4
miaioiðkx� xiÞG

2
ik; i and k ¼ 1; 2:

Nik ¼ 1
8
miaioiliG

2
ik; ð18Þ

The mechanical amplitudes are here directly proportional to a3:
For the second TRS, the natural frequencies of the two mechanical oscillators are nearly double

those of the electrical and external frequencies, so that

o ¼ 1 þ ex; o1 ¼ 2 þ ex1; o2 ¼ 2 þ ex2: ð19Þ

Using the same procedure as above for the first TRS, one obtains the following resonance
equation

1
64
½ð3gþ M12 þ M22Þ

2 þ ðN12 þ N22Þ
2	a6

3 þ
1
8
½leðN12 þ N22Þ � 2xð3gþ M12 þ M22Þ	a4

3

þ x2 þ 1
4
l2

e

� �
a2

3 �
1
4

U2
0 ¼ 0 ð20Þ

with

a1 ¼ 1
8
a1o1G12a2

3;

a2 ¼ 1
8
a2o2G22a2

3: ð21Þ

Here, the amplitudes of a1 and a2 are proportional to the square of a3 rather than a3 itself like in
the first TRS.

The third and last TRS corresponds to the situation where

o ¼ 1 þ ex; o1 ¼ 1 þ ex1; o2 ¼ 2 þ ex2: ð22Þ

The vibration frequency of the second mechanical oscillator is twice that of the first one. The
resonance equation is therefore

1
64
½ð3gþ M22Þ

2 þ N2
22	a

6
3 þ

1
4
ð3gþ M22ÞðM11 � xÞ þ N22

1
2
le þ N11

� �� 

a4

3

þ ðM11 � xÞ2 þ 1
2
le þ N11

� �2
h i

a2
3 �

1
4

U2
0 ¼ 0 ð23Þ

with

a1 ¼ 1
2
a1o1G11a3;

a2 ¼ 1
8
a2o2G22a2

3: ð24Þ

In this latter case, one mechanical amplitude is proportional to a3 while the other is
proportional to the square of a3:

Using the Newton–Raphson algorithm, the amplitudes a1; a2 and a3 are plotted as functions of
the detuning parameter x (x1 ¼ x2 ¼ 0 will be consider throughout all the paper). As x is
increased, the hysteresis phenomenon appears and some observations can be made. For instance,
since the initial condition is the trivial centre point, one can notice in Figs. 2–4 that for each
amplitude, the results of the direct numerical simulation of Eqs. (4) only agree with the lowest
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Fig. 2. First TRS, with a1 ¼ 0:8; a2 ¼ 0:1; m1 ¼ 0:9; m2 ¼ 0:1; l1 ¼ 0:8; l2 ¼ 0:1; le ¼ 0:1; g ¼ 0:8; U0 ¼ 0:5 and

e ¼ 0:1: (a) Frequency–response curve for a1; with analytical results in thin or thick lines, and numerical results in
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squares; (b) idem for a2; (c) idem for a3:
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branch. Hence, the transition from the single valued to the multivalued areas enables the
jump phenomenon to appear. This has yet been observed during the analogue simulation of
the regular dynamics of coupled non-linear oscillators [10]. It is also interesting to notice on
these figures the accuracy of the analytic treatment which has been performed. It confirms that
the transducer should preferably work at resonance amplitudes because of the highest mecha-
nical amplitudes.

3.3. Stability of oscillations in the TRS

The problem of dynamic stability is bound with the inherent non-linearity of the system. To
determine the stability of the oscillatory states which have yet to be obtained, they are perturbed
and the asymptotic behaviour of the related perturbations dak and dck are studied as the time
tends to infinity. It is found that the perturbation for each TRS case is governed by a linear sixth-
dimensional flow, so that the stability of an oscillatory state is thereby reduced to the stability of
the related perturbation flow. Consequently, for each TRS and for a given oscillatory state
(dak; dck), the steady state motion will be stable if all the eigenvalues of the perturbation matrix
have negative real parts. Because of the high dimensionality of this matrix, the analytic
determination of these eigenvalues leads to quite large analytical expressions. That is why a
numerical algorithm has been used to compute these eigenvalues, and the results are also in Figs.
2, 3 and 4 where the stable points constitute a thin line, and unstable points a thick line. One can
hence observe that for the chosen system parameters, instability only appears for the second
branch of the hysteresis area, and never in the single-valued area as it can be the case for other
three-degree-of-freedom systems [5].

4. Chaotic behaviour and canonical feedback control

Depending on the set of chosen parameters, the system can display chaotic dynamics, as can be
seen in the bifurcation diagram of Fig. 5. On the one hand, it has appeared in recent years that
chaos can be converted to a positive tool due particularly to the flexibility of systems motion in
chaotic states, and to the infinite number of trajectories embedded in a chaotic attractor. For
instance, chaos in an electrostatic transducer can be used to encrypt or secure audio-messages in
communication engineering [11]. On the other hand, chaos can induce undesirable consequences
such as early fatigue failures in electromechanical systems [7,9,12–14].

One therefore needs to tune the electromechanical transducer to a regular target orbit for the
performance requirements to be fulfilled. The next subsections will particularly investigate the
conditions under which a convenient control can be achieved.

4.1. Target orbits and stability of the control

The aim of this section is to use the canonical feedback control scheme to tune the chaotic state
vector u to the target state %u; so that

lim
t-þN

jjuðtÞ � %uðtÞjjoh; ð25Þ
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where h is the precision of the control. The conventional feedback theory approach leads to the
following control equation

’u ¼ fFðuÞ þ EðtÞg � ½K	ðu � %uÞ ¼ FðcÞðu; %u; tÞ; ð26Þ

where ½K	 is ð6 
 6Þ feedback gain matrix, and FðcÞðu; %u; tÞ a new six-dimensional vector-flow. In
view of practical applications, set Kij � 0 except K65 � K ; i.e., the control is ensured with only one
coefficient over 36. Physically, this control scheme corresponds to the connection of a control
current-source in parallel with the capacitive component of the electrical circuit. Therefore, K
controls q to %q; so that x and y are automatically tuned to their related %x and %y target values
according to Eqs. (4). Note that one can also relate the controller directly to the mechanical
oscillators.

It can be demonstrated that chaos control is optimized when the target orbit is the nearest
possible to an unstable periodic orbit (UPO) embedded within the chaotic attractor [15].
Moreover, we have noticed during the numerical simulations that even though the lowest and the
highest branches of the hysteresis area are both theoretically stable (Figs. 2–4), the lowest branch
is always more easily reached than the highest, whatever the initial conditions are. Since the
highest amplitudes are preferably required for the optimal functioning regime of an
electromechanical system, consider as target orbit the upper branch of the hysteresis curve.
Consequently, take as the target orbit

%qðtÞ ¼ %q0 cos ot ð27Þ
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Fig. 5. Bifurcation diagram (U0; qÞ showing the transitions to chaos, with a1 ¼ 0:8; a2 ¼ 0:9; m1 ¼ 2:0; m2 ¼ 1:5;
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with %q0 ¼ a3 as defined by the multiple time scales method. The related %x ¼ %z1 and %y ¼ %z2 target
variables are therefore

%zi ¼
eai %q

2
0

4
þ
X2

k¼1

eaio2
i ð %q0=kÞkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
i � ðkoÞ2Þ2 þ ðkelioÞ

2
q cos kot � arctan

kelio

o2
i � ðkoÞ2

 !" #

¼
X2

k¼0

Aik cosðkot � fikÞ: ð28Þ

The second equality explicitly defines the Aik and fik coefficients.
The stability of the feedback controller depends on the value of the scalar feedback parameter

K : It is very important to stress that stability corresponds to the boundedness condition

lim
t-þN

jjuðtÞ � %uðtÞjjoþN ð29Þ

which is quite different from the control condition (25). Therefore, the stability of the feedback
controller does not necessarily correspond to the achievement of a satisfying control.

A common approach to check for the stability of the controller is the determination of the
instantaneous eigenvalues of the associated Jacobian on the target orbit, that is

JðcÞ ¼
@FðcÞ

i

@uj

" #
u¼%u

: ð30Þ

The controlled transducer will be considered as stable if all these eigenvalues are uniformly
negative. Applying the Routh–Hurwitz criterion on the resulting characteristic sixth order
polynomial yields the following stability condition:

K > �1 � 3g0 %q
2 þ ðm1 %x þ m2 %yÞ þ b12ð1 þ %qÞ2: ð31Þ

In fact, the stability of the control process rigorously depends on the asymptotic behaviour of
the deviation variable

pðtÞ ¼ qðtÞ � %qðtÞ ð32Þ

which is the measure of the relative nearness between the controlled and the target orbits. At a
linear approximation, p obeys to

.p þ ele ’p þ %QðtÞp ¼ %RðtÞ; ð33Þ

where the residue function %RðtÞ can approximately be expressed as

%RðtÞ ¼
X2

k¼1

emk Ak0 þ 1
2

Ak1 %q0

� �
þ Ak2 þ 1

2
Ak1 %q0

� �
cos 2ot

� 


þ � 1
4
eg %q3

0 þ
X2

k¼1

1
2
emkAk2 %q0

" #
cos 3ot

¼
X3

k¼0

%Rk cosðkotÞ ð34Þ
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while the multiperiodic function %QðtÞ reads

%QðtÞ ¼ 1 þ K þ 3
2
eg %q2

0ð1 þ cos 2otÞ �
X2

i¼1

X2

k¼0

emiAik cosðkotÞ

¼
X2

k¼0

%Qk cosðkotÞ: ð35Þ

As for Eq. (28), the second equalities in Eqs. (34) and (35) define the %Rk and %Qk coefficients. The
phase shifts have been discarded to exacerbate resonance and lead to the most constraining
stability requirements. It should be noticed that %R1 � 0 because the target orbit which has been
chosen is supposed to be the best uniperiodic approximation of the UPOs of the chaotic attractor.
On the other hand, the variation of the feedback control parameter K will exclusively influence the
coefficient %Q0:

The stability problem is now associated to Eq. (33) which is a damped Floquet equation
with multi-frequency external and parametric excitation. The analytic treatment of such equa-
tions is quite complicated, but however, depending to the various parameters (and mainly K as
far as it is of concern), the parametric resonance induced by %QðtÞ can provoke an unbounded
growth to infinity for p; i.e., for the electric charge q [1,15,16]. When the competition between the
different frequencies of %QðtÞ is weak, the analytic determination of the stability boundaries
can be performed [15]. The corresponding stability pattern is in the most general case consti-
tuted of a finite alternate sequence of instability and stability intervals for K : More precisely,
the first of them is a semi-infinite unstable interval of the kind 	 �N;Ka½; while the last of
them is a semi-infinite stable interval of the kind 	Kb;þN½; Ka and Kb being boundary
values. Between Ka and Kb; compact stable and unstable intervals are intermingled. It should
be noticed that the straightforward eigenvalue approach cannot enable to recover this complex
stability pattern, since the controller stability condition (31) is only equivalent to the con-
straint %QðtÞ > 0; i.e., to the trivial requirement of a uniformly positive time-dependent stiffness
function for p:

4.2. Threshold feedback control value

The unstable intervals are obviously dangerous for the electromechanical system, and should be
avoided in priority. In practice, K is preferably chosen within the last and semi-infinite stable
interval. Nevertheless, for a given required precision h; there is a critical value Kcr in that interval
under which a convenient control is impossible. An estimation of this threshold feedback control
value is of extreme importance since it would enable one to achieve the process with
approximately the minimum input energy.

If the tolerated control error hq ¼ maxðjpðtÞjÞ is small enough, the convenient K values are so
high that both %Q1 and %Q2 become negligible relatively to %Q0: Therefore, pðtÞ will be a multiperiodic
oscillation of maximal amplitude

pmax ¼ %R0 þ
X3

k¼1

j %Rkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð %Q0 � ðkoÞ2Þ2 þ ðkeleoÞ

2
q : ð36Þ
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Note that the phase shifts are still discarded. The threshold feedback control parameter is
precisely obtained by setting pmax ¼ hq; so that Kcr may explicitly be expressed in first
approximation as

Kcr ¼ �1 � 3
2
eg %q2

0 þ
X2

k¼1

emkAk0 þ 1
2
F 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

4C
F2

r" #
; ð37Þ

where

F ¼ 13o2 þ
j %R2j þ j %R3j

hq � %R0

;

C ¼ 36o4 þ
9j %R2j þ 4j %R3j

hq � %R0

o2: ð38Þ

Hence, the control is supposed to succeed for K > Kcr; and to fail otherwise. It is important to
stress that the analytic expression of Kcr in Eq. (37) can only be considered as an interesting
quantitative estimation and an order of magnitude indicator, since the %Rk and %Qk coefficients have
been approximated. However, Eq. (37) indicates that Kcr is greater when the amplitude of the
target orbit is high and the control error small. In Fig. 6, the numerical simulation of the
controlled equations of motion has enabled the determination of Kcr for a given range of hq

values. One can notice the monotonous decrease of Kcr as hq is increased. When the control
condition K > Kcr is fulfilled, the chaotic oscillations are progressively tuned to the desired
optimal orbit, as it can be seen in Fig. 7.

ARTICLE IN PRESS

K
cr

 

hq

20

40

60

80

100

120

140

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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5. Conclusion

In this paper, we have studied the dynamics of a non-linear electrostatic transducer with two
outputs has been studied, both in the regular and chaotic regimes. The equilibrium states have
been determined, and their related stability has been studied. The investigations have led to the
analysis of the TRS corresponding to the states of maximal exchange energy. The frequency
response amplitudes and their stability have been analyzed. The conventional engineering
approach of automatic control has been used to tune the chaotic oscillations to optimized regular
target orbits. The stability analysis of the feedback controller has been performed, and critical
values for the feedback control parameter have been derived.

Extensions for such a study are numerous. To name just a few, the analysis of the non-linear
transducer under multi-frequency or stochastic external excitation, the study of other types of
electromechanical systems and electroacoustic transducers, or the synchronization of several such
devices would certainly be of great practical and theoretical interest.
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