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Abstract

In this paper, sufficient and necessary delay-independent stability criteria are given for a class of retarded
dynamical systems with two discrete time delays and parameters. The delay-independent stability problem
of the system is discussed in terms of the stability of the characteristic function, which is determined by
checking the existence of real roots for some polynomials. The criteria are also illustrated by examples.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper the delay-independent stability, i.e., the asymptotic stability independent of delays
[1], is discussed for the linear retarded system

’xðtÞ ¼ A0xðtÞ þ A1xðt � t1Þ þ A2xðt � t2Þ; ð1Þ

where tA½0;þN�9 %Rþ; A0; A1; A2ARn�n; R ¼ ð�N;þNÞ; nX1; t1; t2A %Rþ are time delays; xðtÞ;
xðt � t1Þ; xðt � t2ÞARn�1; rankðA1Þ ¼ rankðA2Þ ¼ 1:

System (1) may result from the linearization of a non-linear system around its equilibrium.
Consider the non-linear control system

’xsðtÞ ¼ f ½xsðtÞ; usðtÞ�;

ysðtÞ ¼ g½xsðtÞ�; ð2Þ

where tA %Rþ; xsðtÞARn�1; usðtÞAR2�1 and ysðtÞARl�1 are the state, control and output vectors,
respectively, lX1; f :Rn�1 � R2�1-Rn�1; g :Rn�1-Rl�1 and are such that solutions to initial
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value problems exist and are continuable. The linearized system around an equilibrium of (2) can
be written as

’xðtÞ ¼ AxðtÞ þ BuðtÞ;

yðtÞ ¼ CxðtÞ;

where AARn�n; BARn�2; CARl�n; xðtÞARn�1; uðtÞAR2�1 and yðtÞARl�1 are the state, control and
output vectors around the equilibrium, respectively. When uðtÞ ¼ ½u1ðtÞ u2ðtÞ�T is governed by the
static delayed output feedback [2] in the form

u1ðtÞ ¼ gT1 yðt � t1Þ;

u2ðtÞ ¼ gT2 yðt � t2Þ;

where gT1 ; g
T
2AR1�l are feedback gain matrices, the linearized system is in form of Eq. (1) with

A0 ¼ A; A1 ¼ b1g
T
1 C; A2 ¼ b2g

T
2 C;

where B ¼ ½b1 b2� and b1; b2ARn�1:
The stability for linear retarded systems has caught the attention of researchers for a

long time [3–6]. Other than being solved with the Liapunov method [5,2], this stability problem
is usually transformed into that of the corresponding characteristic function [4,5,7], for which
two kinds of stability are studied: the delay-dependent stability and the delay-independent
stability [2].

There are numerous literatures on the delay-independent stabilities. Results that are most
closely related to this paper are [1,8–11]. Hale et al. [10] developed a general analytic criterion for
the delay-independent stability of the system (and generalized system (2.1) in [10])

’xðtÞ ¼ A0xðtÞ þ
XN

k¼1

Akxðt � tkÞ; ð3Þ

where xðtÞARn�1; AkARn�n; tkA %Rþ; k ¼ 1; 2;y;N: But to apply this criterion, much work has to
be done even for the case with N ¼ 1; n ¼ 2; for which Chin [8] independently gave a complex
algebraic discrimination method at an earlier time. Chen and Latchman [1] provided the method
of frequency sweeping tests to determine the delay-independent stability of (3) when (1)
t1; t2;y; tN are independent, or (2) tk ¼ kt; k ¼ 1; 2;y;N: For case (2), Niculescu [11] also gave
a discrimination method based on the matrix pencil technology. Generally, the methods in [1,11]
both demand there are no parameters in systems, i.e., each Ak is known. As for the case when
there exist parameters in systems, an approach was contributed by Wang and Hu [9] in studying
the delay-independent stability for systems with the characteristic function

Dðl; t1; t2Þ ¼ P1ðlÞe�lt1 þ P2ðlÞe�lt2 þ P0ðlÞ; ð4Þ

where P1ðlÞ; P2ðlÞ and P0ðlÞ are polynomials, the coefficients of which are all real-valued
functions of the system parameters; the leading coefficient of P0ðlÞ is assumed to be 1; deg½P0ðlÞ� >
maxfdeg½P1ðlÞ�;deg½P2ðlÞ�g: The authors transformed the delay-independent stability problem
into that of the non-existence of the real roots for polynomials, and got the delay-independent
stability region in the space of parameters by the generalized Sturm theory [12,13].
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However, all the literatures [1,8,9,11] do not cover the delay-independent stability of system (1)
with parameters, for which the characteristic function is shown in Section 2 to be

Dðl; t1; t2Þ ¼ P12ðlÞe�lðt1þt2Þ þ P1ðlÞe�lt1 þ P2ðlÞe�lt2 þ P0ðlÞ; ð5Þ

where the symbols and conditions are similar to those in Eq. (4) in addition that P12ðlÞ is a real
coefficient polynomial and deg½P12ðlÞ�ominfdeg½P1ðlÞ�; deg½P2ðlÞ�g:

Based on the pioneering works [1,8–11], this paper studies the delay-independent stability of
Eq. (1) with parameters in cases of two independent delays (t1 and t2 are two independent variables)
and two dependent delays (t1 ¼ h1t; t2 ¼ h2t; where h1 and h2 are positive integers; tX0).

The organization of this paper is as follows. In the next section, the characteristic function is
derived. In Sections 3 and 4, the delay-independent stability criteria are developed for Eq. (1), and
are illustrated with examples including a retarded stirred tank system. The conclusion follows in
the final section.

2. Derivation of the characteristic function

The characteristic function of Eq. (1) is shown to be Eq. (5). Assuming that nX2 in system (1)
(Note that the case for n ¼ 1 is obvious). Because rankðA1Þ ¼ rankðA2Þ ¼ 1; there exists non-zero
matrices b1;b2ARn�1; kT

1 ;k
T
2AR1�n such that A1 ¼ b1k

T
1 ; A2 ¼ b2k

T
2 ; where

b1 ¼ ½b11 b21 ? bn1�T; b2 ¼ ½b12 b22 ? bn2�T;

kT
1 ¼ ½k11 k12 ? k1n�; kT

2 ¼ ½k21 k22 ? k2n�:

Let K ¼ ½k
T
1

kT
2

� ¼ ½K1 K2�; where K1ARðn�2Þ�2 and K2AR2�2 (K1 is omitted when n ¼ 2; the rest may
be deduced by analogy). Let B ¼ ½b1 b2�; and consider two cases:

(1) b1 and b2 are linearly independent. There exists a partition of B; such that B ¼ ½B1

B2
�; where

B1ARðn�2Þ�2; B2AR2�2 and B2 is non-singular (linear transformation to Eq. (1) can be performed
when necessary). Choose two non-singular real matrices BD and P; where (note that IARðn�2Þ�ðn�2Þ

is the unit matrix)

BD ¼ diagfb11; b22g; P ¼
I �B1B�1

2

0 BDB�1
2

" #
;

such that

P½b1 b2� ¼ PB ¼
I �B1B�1

2

0 BDB�1
2

" #
B1

B2

" #
¼ ½bD1 bD2�;

where

bDi ¼ ½ 0 ? 0 bii 0 ? 0
bii is in the ðn�2þiÞ place

�T; i ¼ 1; 2:

Thus

P
X2
i¼1

bik
T
i e

�lti

 !
P�1 ¼

X2
i¼1

bDi
kT

i e
�lti �

I �B1B�1
D

0 B2B�1
D

" #
¼

0

EDBDBK

" #
;
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where

ED ¼ diag½e�lt1 ; e�lt2 �; BK ¼ ½K1ðK1B1 þ K2B2ÞB�1
D �:

So the characteristic function of Eq. (1) is

Dðl; t1; t2Þ ¼ det lI � A0 �
X2
i¼1

bik
T
i e

�lti

 !" #
¼ detðlI � AP � BPÞ

¼P12ðlÞe�lðt1þt2Þ þ P1ðlÞe�lt1 þ P2ðlÞe�lt2 þ P0ðlÞ;

where

AP ¼ PA0P�1; BP ¼ P
X2
i¼1

bik
T
i e

�lti

 !
P�1: ð6Þ

(2) b1 and b2 are linearly dependent. Just as well suppose bn1a0: Then an n � n non-singular
real matrix P can be found such that Pb1 ¼ ½0 0 ? 0 bn1�T and Pb2 ¼ ½0 0 ? 0 bn2�T: So the
characteristic function of Eq. (1) is

Dðl; t1; t2Þ ¼ det lI � A0 �
X2
i¼1

bik
T
i e

�lti

 !" #
¼ det½lI � AP � BP�

¼P1ðlÞe�lt1 þ P2ðlÞe�lt2 þ P0ðlÞ;

where AP;BP are defined the same way as those in Eq. (6).

3. Delay-independent stability analysis

Two stability analyses are carried out: one for two independent delays, and the other for two
dependent delays. Theorems 3.1 and 3.2 are the corresponding two main criteria.

3.1. The case for two independent delays

Consider the case when t1 and t2 are independent.

Lemma 3.1. The linear retarded dynamical system with characteristic function (5) is delay-
independently stable if and only if: (i) The function Dðl; 0; 0Þ ¼ P12ðlÞ þ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is
Hurwitz stable, and (ii) equation Dðl; t1; t2Þ ¼ 0 has no non-zero root l on the imaginary axis for any

given delays t1 and t2:

Proof. This lemma can be proved by applying Theorem 2.4 in Ref. [10] to (1). &

Let

P12ðioÞ ¼ P12RðoÞ þ iP12I ðoÞ; P1ðioÞ ¼ P1RðoÞ þ iP1I ðoÞ; i ¼
ffiffiffiffiffiffiffi
�1

p
;

P2ðioÞ ¼ P2RðoÞ þ iP2I ðoÞ; P0ðioÞ ¼ P0RðoÞ þ iP0I ðoÞ; oAR;
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where P12RðoÞ; P12I ðoÞ; P1RðoÞ; P1I ðoÞ; P2RðoÞ; P2I ðoÞ; P0RðoÞ and P0I ðoÞ are real-coefficient
polynomials. Also let

aðoÞ ¼ P12RðoÞ þ P0RðoÞ; bðoÞ ¼ P12I ðoÞ � P0I ðoÞ; ð7Þ

cðoÞ ¼ P12I ðoÞ þ P0I ðoÞ; dðoÞ ¼ P0RðoÞ � P12RðoÞ; ð8Þ

eðoÞ ¼ P1RðoÞ þ P2RðoÞ; f ðoÞ ¼ P1I ðoÞ � P2I ðoÞ; ð9Þ

gðoÞ ¼ P1I ðoÞ þ P2I ðoÞ; hðoÞ ¼ �P1RðoÞ þ P2RðoÞ: ð10Þ

Theorem 3.1. The linear retarded dynamical systems with characteristic function (5) is delay-
independently stable if and only if: (i) function Dðt; 0; 0Þ ¼ P12ðlÞ þ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is

Hurwitz stable, and (ii) equation ALðoÞ ¼ 0 has no non-zero real root o; where

ALðoÞ ¼ ½hðoÞaðoÞ � f ðoÞcðoÞ�2 þ ½eðoÞcðoÞ � gðoÞaðoÞ�2

þ ½hðoÞbðoÞ � f ðoÞdðoÞ�2 þ ½eðoÞdðoÞ � gðoÞbðoÞ�2

� ½aðoÞdðoÞ � bðoÞcðoÞ�2 � ½eðoÞhðoÞ � f ðoÞgðoÞ�2: ð11Þ

Proof. Note that Dðio; t1; t2Þ ¼ 0 is equivalent to eioðt1þt2Þ=2Dðio; t1; t2Þ ¼ 0: Based on Lemma
3.1, the key is to prove that condition (ii) in Lemma 3.1 is equivalent to (ii) in Theorem 3.1. The
former is true if and only if the equation

pðo; t2Þ qðo; t2Þ

rðo; t2Þ sðo; t2Þ

" #
cos ot1

2

sin ot1
2

" #
¼ 0 ð12Þ

has no non-zero real root o for any given delays t1 and t2: This in turn equals that,
8oAR\f0g¼def Rn; the determinant of the coefficient matrix of Eq. (12) is zero for any given t2
(Note that t1 and t2 are independent.), i.e., the equation

pðo; t2Þsðo; t2Þ � qðo; t2Þrðo; t2Þ ¼ 0 ð13Þ

has no non-zero real root o for any given t2; where

pðo; t2Þ ¼ ½aðoÞ þ eðoÞ� cos
ot2
2

þ ½bðoÞ � f ðoÞ� sin
ot2
2

;

qðo; t2Þ ¼ ½bðoÞ þ f ðoÞ� cos
ot2
2

þ ½eðoÞ � aðoÞ� sin
ot2
2

;

rðo; t2Þ ¼ ½cðoÞ þ gðoÞ� cos
ot2
2

þ ½dðoÞ � hðoÞ� sin
ot2
2

;

sðo; t2Þ ¼ ½dðoÞ þ hðoÞ� cos
ot2
2

þ ½gðoÞ � cðoÞ� sin
ot2
2

:

Note that Eq. (13) can be simplified as

m2ðoÞ þ m0ðoÞ
2

þ
�m2ðoÞ þ m1ðoÞ

2
cosot2 þ

m1ðoÞ
2

sinot2 ¼ 0;
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where

m2ðoÞ ¼ ½bðoÞ � f ðoÞ�½gðoÞ � cðoÞ� � ½dðoÞ � hðoÞ�½eðoÞ � aðoÞ�;

m1ðoÞ ¼ 2½�f ðoÞdðoÞ þ bðoÞhðoÞ � eðoÞcðoÞ þ aðoÞgðoÞ�;

m0ðoÞ ¼ ½aðoÞ þ eðoÞ�½dðoÞ þ hðoÞ� � ½bðoÞ þ f ðoÞ�½cðoÞ þ gðoÞ�:

So condition (ii) in Theorem 3.1 is equivalent to

m2ðoÞ þ m0ðoÞ
2

� 	2
>

�m2ðoÞ þ m1ðoÞ
2

� 	2
þ

m1ðoÞ
2

� 	2
; 8oARn;

i.e., 8oARn; ALðoÞo0; which is equivalent to that the equation ALðoÞ ¼ 0 has no non-zero real
root o because ALðoÞ is a real-coefficient polynomial with leading coefficient being �1 and is even
with respect to o: &

Remark 1. The preposition that the equation ALðoÞ ¼ 0 has no non-zero real root o (i.e.,
8oARn;ALðoÞa0Þ; is equivalent to the statement that either (a) or (b) holds true:

(a) This equation has no real root o;
(b) If this equation has a real root o; it must be zero.

Based on Theorem 3.1 and assuming that P12ðlÞ ¼ 0 in Eq. (5), there exists

Corollary 3.1. The linear retarded dynamical systems with characteristic function (4) is delay-
independently stable if and only if: (i) function Dðl; 0; 0Þ ¼ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is Hurwitz stable,
and (ii) equation RLðoÞ ¼ 0 has no non-zero real root o; where

RLðoÞ ¼ � fP2
0RðoÞ þ P2

0I ðoÞ � P2
1RðoÞ � P2

1I ðoÞ � P2
2RðoÞ � P2

2I ðoÞg
2

þ 4½P2
1RðoÞ þ P2

1I ðoÞ�½P
2
2RðoÞ þ P2

2I ðoÞ�:

Let P1ðlÞ ¼ P2ðlÞ ¼ 0 in Eq. (5) and define ðt1 þ t2Þ as t; there exists

Corollary 3.2. The linear retarded dynamical systems with the characteristic function

Dðl; tÞ ¼ P12ðlÞe�lt þ P0ðlÞ

is delay-independently stable if and only if: (i) function Dðl; 0Þ ¼ P12ðlÞ þ P0ðlÞ is Hurwitz
stable, and (ii) equation SLðoÞ ¼ P2

12RðoÞ þ P2
12I ðoÞ � P2

0RðoÞ � P2
0I ðoÞ ¼ 0 has no non-zero real

root o:

3.2. The case for two dependent delays

Consider the case when t1 ¼ h1t and t2 ¼ h2t:
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Lemma 3.2. The linear retarded dynamical system with characteristic function (5) is delay-

independently stable if and only if: (i) function Dðl; 0Þ ¼ P12ðlÞ þ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is Hurwitz
stable, and (ii) equation Dðio; tÞ ¼ 0 has no non-zero real root o for any given t:

Proof. The proof is similar to Lemma 3.1. &

Theorem 3.2. The linear retarded dynamical systems with characteristic function (5) is delay-
independently stable if and only if: (i) function Dðl; 0Þ ¼ P12ðlÞ þ P1ðlÞ þ P2ðlÞ þ P0ðlÞ is Hurwitz

stable, and (ii) 8oARn; two equations f1ðuÞ ¼ 0 and f2ðuÞ ¼ 0 have no common real root u; where
f1ðuÞ; f2ðuÞ are certain functions whose expressions are determined in the following proof.

Proof. Note that condition (i) in Lemma 3.2 is the same as (i) in Theorem 3.2. Based on Lemma
3.2, the key is to prove that condition (ii) in Lemma 3.2 is equivalent to (ii) in Theorem 3.2 when
the same condition (i) is held true. Note that condition (ii) in Lemma 3.2 is equivalent to that
8oARn; equations CLðo; tÞ ¼ 0 and DLðo; tÞ ¼ 0 have no common root t; where

CLðo; tÞ ¼ pðo; h2tÞ cos
oh1t
2

þ qðo; h2tÞ sin
oh1t
2

;

DLðo; tÞ ¼ rðo; h2tÞ cos
oh1t
2

þ sðo; h2tÞ sin
oh1t
2

ð14Þ

in which

pðo; h2tÞ ¼ ½aðoÞ þ eðoÞ� cos
oh2t
2

þ ½bðoÞ � f ðoÞ� sin
oh2t
2

; ð15Þ

qðo; h2tÞ ¼ ½bðoÞ þ f ðoÞ� cos
oh2t
2

þ ½eðoÞ � aðoÞ� sin
oh2t
2

; ð16Þ

rðo; h2tÞ ¼ ½cðoÞ þ gðoÞ� cos
oh2t
2

þ ½dðoÞ � hðoÞ� sin
oh2t
2

; ð17Þ

sðo; h2tÞ ¼ ½dðoÞ þ hðoÞ� cos
oh2t
2

þ ½gðoÞ � cðoÞ� sin
oh2t
2

; ð18Þ

where aðoÞBhðoÞ are calculated by formulae (7)–(10). Let cosot=2 ¼ x; sinot=2 ¼ y: Then it is
easy to show that

cos
ohit
2

¼
Xhi

j¼0

aijx
hi�jyj; sin

ohit
2

¼
Xhi

j¼0

bijx
hi�jyj; ð19Þ

where i ¼ 1; 2; aij; bij are certain constants (note that ai0a0; bi0 ¼ 0). So formulae (15)–(18) can be
rewritten as

pðo; h2tÞ ¼
Xh2

j¼0

g1jðoÞx
h2�jyj; qðo; h2tÞ ¼

Xh2

j¼0

g2jðoÞx
h2�jyj;

rðo; h2tÞ ¼
Xh2

j¼0

g3jðoÞx
h2�jyj; sðo; h2tÞ ¼

Xh2

j¼0

g4jðoÞx
h2�jyj; ð20Þ
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where gijðoÞ is a certain function (for i ¼ 1; 2; 3; 4; j ¼ 0; 1;y; h2); especially there exists

g10ðoÞ ¼ ½aðoÞ þ eðoÞ�a20; g20ðoÞ ¼ ½bðoÞ þ f ðoÞ�a20;

g30ðoÞ ¼ ½cðoÞ þ gðoÞ�a20; g20ðoÞ ¼ ½dðoÞ þ hðoÞ�a20:

Then Eq. (14) can be transformed into

CLðo; tÞ ¼
Xh1þh2

j¼0

xjðoÞx
h1þh2�jyj;

DLðo; tÞ ¼
Xh1þh2

j¼0

ZjðoÞx
h1þh2�jyj

by using Eqs. (19) and (20), where

x0ðoÞ ¼ ½aðoÞ þ eðoÞ�a20a10; Z0ðoÞ ¼ ½bðoÞ þ f ðoÞ�a20a10:

Note that Dðl; 0Þ is Hurwitz stable, so there exists

x0ðoÞ þ iZ0ðoÞ ¼ Dðio; 0Þa0; 8oARn:

This means 8oARn; x0ðoÞ and Z0ðoÞ do not equal to zero simultaneously. Let x
y
¼ u; then

condition (ii) in Lemma 3.2 is equivalent to 8oARn; equations f1ðuÞ ¼ 0 and f2ðuÞ ¼ 0 have no
common real root u; where

f1ðuÞ ¼
Xh1þh2

j¼0

xjðoÞu
h1þh2�j; f2ðuÞ ¼

Xh1þh2

j¼0

ZjðoÞu
h1þh2�j:

Thus Theorem 3.2 is proved. &

Remark 2. The equivalence of two real-coefficient polynomials s1ðxÞ ¼
Pn

i¼0 aix
n�i and s2ðxÞ ¼Pn

i¼0 bix
n�i (ai; biAR; nX1; a2

0 þ b2
0a0) have no common real root x is either (1) s1ðxÞ and s2ðxÞ

have no common root x; or (2) any common roots of s1ðxÞ and s2ðxÞ are not real. Proposition (1)
can be further simplified as res½s1ðxÞ; s2ðxÞ� ¼ det½Rðs1; s2Þ�a0; where res½s1ðxÞ; s2ðxÞ� is the
resultant of s1ðxÞ and s2ðxÞ; and Rðs1; s2Þ is the corresponding Sylvester resultant matrix [14, pp.
408–426] (with the size 2n � 2n), where

Rðs1; s2Þ ¼

a0 a1 ? ? an 0 ? 0

0 a0 a1 ? ? an & 0

^ & & & & ^

0 ? 0 a0 a1 ? ? an

b0 b1 ? ? bn 0 ? 0

0 b0 b1 ? ? bn & 0

^ & & & & ^

0 ^ 0 b0 b1 ? ? bn

2
666666666666664

3
777777777777775

:
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Proposition (2), generally speaking, cannot be easily simplified. However, for the case h1 ¼ h2 ¼ 1
(accordingly t1 ¼ t2 ¼ t), it can be simplified as det ½Rðs1; s2Þ� ¼ 0 but either s1ðxÞ or s2ðxÞ has no
real root x:

Specifically, let t1 ¼ t2 ¼ t in Eq. (5) and P1þ2ðlÞ ¼ P1ðlÞ þ P2ðlÞ: Based on Theorem 3.2 and
Remark 2, there exists

Corollary 3.3. The linear retarded dynamical systems with the characteristic function

Dðl; tÞ ¼ P12ðlÞe�2lt þ P1þ2ðlÞe�lt þ P0ðlÞ ð21Þ

is delay-independently stable if and only if: (i) function Dðl; 0Þ ¼ P12ðlÞ þ P1þ2ðlÞ þ P0ðlÞ is
Hurwitz stable, and (ii) 8oARn; (1) ELðoÞa0 or (2) ELðoÞ ¼ 0 but either FLðoÞo0 or GLðoÞo0;
where

ELðoÞ ¼ fP1þ2RðoÞ½P0RðoÞ � P12RðoÞ� � P1þ2I ðoÞ½P12I ðoÞ � P0I ðoÞ�g
2

þ fP1þ2RðoÞ½P0I ðoÞ þ P12I ðoÞ� � P1þ2I ðoÞ½P0RðoÞ þ P12RðoÞ�g
2

þ ½P2
0RðoÞ þ P2

0I ðoÞ � P2
12RðoÞ � P2

12I ðoÞ�
2;

FLðoÞ ¼ ½P12RðoÞ þ P0RðoÞ�2 þ ½P12I ðoÞ � P0I ðoÞ�2 � P2
1þ2RðoÞ;

GLðoÞ ¼ ½P12I ðoÞ þ P0I ðoÞ�2 þ ½P0RðoÞ � P12RðoÞ�2 � P2
1þ2I ðoÞ:

Proof. It is obvious that, 8oARn; both f1ðuÞ and f2ðuÞ are polynomials whose degrees are not
more than two since h1 ¼ h2 ¼ 1; where

x0ðoÞ ¼ aðoÞ þ eðoÞ; x1ðoÞ ¼ 2bðoÞ; x2ðoÞ ¼ eðoÞ � aðoÞ;

Z0ðoÞ ¼ cðoÞ þ gðoÞ; Z1ðoÞ ¼ 2dðoÞ; Z2ðoÞ ¼ gðoÞ � cðoÞ;

in which x0ðoÞ and Z0ðoÞ do not equal to zero simultaneously. By Theorem 3.2 and Remark 2,
condition (ii) in Theorem 3.2 is equivalent to that, 8oARn; (1) det½Rðf1; f2Þ�a0; or, (2)
det½Rðf1; f2Þ� ¼ 0 but either f1ðuÞ ¼ 0 or f2ðuÞ ¼ 0 has no real root u: The equivalence of (1) is that
det½Rðf1; f2Þ� ¼ 4HLðoÞa0; where

HLðoÞ ¼ ½eðoÞdðoÞ � gðoÞbðoÞ�2 þ ½eðoÞcðoÞ � gðoÞaðoÞ�2 � ½aðoÞdðoÞ � bðoÞcðoÞ�2 ¼ ELðoÞ:

The equivalence of Eq. (2) is that ELðoÞ ¼ 0 but either discr½f1ðuÞ� ¼ 4½a2ðoÞ þ b2ðoÞ � e2ðoÞ� ¼
4FLðoÞo0 or discr½f2ðuÞ� ¼ 4½c2ðoÞ þ d2ðoÞ � g2ðoÞ� ¼ 4GLðoÞo0; where discr½f1ðuÞ� and
discr½f2ðuÞ� are discriminants of f1ðuÞ ¼ 0 and f2ðuÞ ¼ 0; respectively. Thus Corollary 3.3 is
proved. &

Remark 3. Corollary 3.3 can be further simplified under certain conditions. For example, suppose
8oARn; aðoÞdðoÞ � bðoÞcðoÞ¼def ILðoÞa0; then condition (ii) in Corollary 3.3 is equivalent to
8oARn; ELðoÞa0: This is because sub-condition (2) in (ii) is not held true for any oARn; which is
proved as follows. Suppose for a given yARn; ELðyÞ ¼ 0; i.e.,

ELðyÞ ¼ ½c2ðyÞ þ d2ðyÞ�e2ðyÞ � 2gðyÞ½aðyÞcðyÞ þ bðyÞdðyÞ�eðyÞ

þ g2ðyÞ½a2ðyÞ þ b2ðyÞ� � ½aðyÞdðyÞ � bðyÞcðyÞ�2 ¼ 0: ð22Þ
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This means the discriminant of Eq. (22) (eðyÞ acts as an unknown number) is non-negative, i.e.,

discr½ELðyÞ� ¼ 4I2
LðyÞ½c

2ðyÞ þ d2ðyÞ � g2ðyÞ�X0:

Recall that 8oARn; ILðoÞa0; then c2ðyÞ þ d2ðyÞX0: Similarly, a2ðyÞ þ b2ðyÞX0: Note that y is
arbitrary, so 8oARn; a2ðoÞ þ b2ðoÞX0 and c2ðoÞ þ d2ðoÞX0 when 8oARn; ELðoÞ ¼ 0: This
shows sub-condition (2) is not true for any oARn:

4. Application

In this section several examples are given to illustrate how to get the delay-independent stability
conditions. Two kinds of systems are considered: all-parameter systems or part-parameter ones.
Here ‘all-parameter’ means that each element of A1; A2 and A3 in Eq. (1) is unknown, whereas
‘part-parameter’ means that some elements of A1; A2 and A3 in (1) are unknown.

4.1. All-parameter systems

Before the analyses, a fact should be pointed out that if the system matrix Ai and the state
vectors xðtÞ; xðt � tiÞ ði ¼ 1; 2;y;NÞ in Ref. [1] are considered in complex spaces Cn�n and C

n�1;
respectively, the relevant delay-independent stability results, such as Theorem 2.3 in Ref. [1],
remain right. This fact is also applicable to those in this paper.

Consider the linear retarded system

’xðtÞ ¼ AxðtÞ þ r1Axðt � t1Þ þ r2Axðt � t2Þ; ð23Þ

where AARn�n is a stable matrix; t1 and t2 are independent; r1; r2AR: Suppose the eigenvalue
sequence of A is fmijReðmiÞo0; i ¼ 1; 2;y; ng; then the characteristic function of Eq. (23) is

Dðl; t1; t2Þ ¼ lI � A 1þ
X2
k¼1

rke
�ltk

 !�����
����� ¼

Yn

i¼1

l� 1þ
X2
k¼1

rke
�ltk

 !
mi

" #
:

So system (23) is delay-independent stable if and only if each function Diðl; t1; t2Þ ¼ l� ð1þP2
k¼1 rke

�ltkÞmi is stable, which is equivalent to (i) Re½mið1þ r1 þ r2Þ�o0; and (ii) ðjr1j þ
jr2jÞjmijojReðmiÞj if ImðmiÞa0; ðjr1j þ jr2jÞjmijpjReðmiÞj if ImðmiÞ ¼ 0; i ¼ 1; 2;y; n: The conditions
can be reduced either to (1) �1or1 þ r2pjr1j þ jr2jp1; if each mi satisfies ImðmiÞ ¼ 0; or (2)
�1or1 þ r2pjr1j þ jr2jomin1pipn jReðmiÞj=jmij; if there exist some mi such that ImðmiÞa0: Now
consider a special case: r1 ¼ r; r2 ¼ 0; t1 ¼ t; then conditions (1) and (2) can be reduced to ð10Þ
rAð�1; 1� and ð20Þ rAð�min1pipn jReðmiÞj=jmij; min1pipn jReðmiÞj=jmijÞ; respectively, which are
identical to that in Ref. [1].

Consider the linear retarded system with the characteristic function

Dðl; tÞ ¼ l� a � be�lt1 � ce�lt2 ;

where a; b; cAC; t1 and t2 are independent. By Corollary 3.1, the function is stable if and only if:
(1) Reða þ b þ cÞo0 and jbj þ jcjpjaj; if ImðaÞ ¼ 0; (2) Reða þ b þ cÞo0 and jbj þ jcjojReðaÞj; if
ImðaÞa0: This result provides the delay-independent stability analysis for the systems in [6,15–17].
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4.2. Part-parameter systems

Consider a stirred tank model [18] in the form

’xðtÞ ¼
�

1

2y
0

0 �
1

y

2
64

3
75xðtÞ þ

1 1
c1 � c0

V0

c2 � c0

V0

2
4

3
5uðtÞ; ð24Þ

where xðtÞ ¼ ½x1ðtÞ x2ðtÞ�TAR2�1 is the state vector and uðtÞ ¼ ½u1ðtÞ u2ðtÞ�TAR2�1 is the control
vector; c1 ¼ k1 and c2 ¼ k2 are positive parameters; u1ðtÞ and u2ðtÞ are defined by

u1ðtÞ ¼
X2
j¼1

g1jxjðt � t1Þ;

u2ðtÞ ¼
X2
j¼1

g2jxjðt � t2Þ;

where gijAR are constant feedback gains, t1 and t2 are time delays. For physical meaning of
y;V0; c0; c1; c2 one can refer to [18]. The delay-independent stability of Eq. (24) is analyzed as
follows with the given constants: y ¼ 10; V0 ¼ 1; c0 ¼ 1:25; g11 ¼ �0:01875; g12 ¼ 0:05; g21 ¼
�0:00625; g22 ¼ �0:05 and the limited condition jk2 � k1jo4:

4.2.1. The case of two independent delays
The characteristic function is

Dðl; t1; t2Þ ¼ l2 þ 0:15lþ 0:005þ 0:00125ðk2 � k1Þe�lðt1þt2Þ

þ ½ð0:08125� 0:05k1Þlþ 0:005� 0:0025k1�e�lt1

þ ½ð�0:05625þ 0:05k2Þl� 0:0025þ 0:0025k2�e�lt2 :

System Eq. (24) is delay-independently stable if and only if: (i) function Dðl; 0; 0Þ is Hurwitz
stable, i.e.,

0o0:175� 0:05k1 þ 0:05k2; ð25Þ

0o0:0075� 0:00375k1 þ 0:00375k2; ð26Þ

and (ii) the equation %ALðoÞ ¼ �ALðoÞ ¼ 0 has no non-zero real root o; where

%ALðoÞ ¼ o8 þ b1o6 þ b2o4 þ b3o2 þ b4; ð27Þ

where b1; b2; b3 and b4 are functions of k1 and k2: Here bi can be easily calculated according to
Theorem 3.1. The expressions of bi are omitted because they are too complicated.

For condition (ii), two main problems need to be solved. One is to assure that Eq. (27) has no
real root o; which can be solved by the generalized Sturm theory [12,13,18] or by directly applying
the relevant results in Section 4.3.1 in Ref. [9].

The other is to assure that the only real roots of polynomial (27) are zeros. There are two cases:
(1) b4 ¼ 0 and the equation o6 þ b1o4 þ b2o2 þ b3 ¼ 0 has no real root o; (2) b4 ¼ b3 ¼ 0 and the
equation o4 þ b1o2 þ b2 ¼ 0 has no non-zero real root o: Case (1) can surely be solved by the
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generalized Sturm theory, but it is reduced to the condition b4 ¼ 0; b3 > 0 when the inequality
b3 > 0 contains b1X0; b2X0: Case (2) is equivalent to either b4 ¼ b3 ¼ 0; 4b2 > b2

1 or b4 ¼ b3 ¼ 0;
b2X0; b1X0:

Condition (i) results in the region named R0 : fðk1; k2Þjk1 � k2 � 2:0o0g; whereas condition (ii)
results in the region named R1 which contains two parts: one is determined by plotting the curves
d0 ¼ 0; d1 ¼ 0;y; d6 ¼ 0 and finding the intersected areas according to the sign tables for
polynomial (27), where d0Bd6 are calculated according to formula (48) in Ref. [9] by substituting
bi in Eq. (27). The other consists of four segments: s1 ¼ fk2 ¼ k1 þ 2; 0:143pk1p0:982g;
s2 ¼ fk2 ¼ 2� 3k1; 0:019ok1p2=3g; s3 ¼ fk2 ¼ k1 � 2; 2ok1p3:570g; s4 ¼ fk2 ¼ 3� 3k1;
1:011pk1p2:208g:

The delay-independent stable region, R0-R1; is the shaded part in Fig. 1. 2 This region consists
of the segments s1; s2; s4 (these segments are on the curve C6) and the inner circumscribed by the
curves C0 and C6:

4.2.2. The case of two dependent delays
Only consider the case when t1 ¼ t2 ¼ t: The characteristic function is

Dðl; t1; t2Þ ¼ l2 þ 0:15lþ 0:005þ 0:00125ðk2 � k1Þe�2lt

þ 0:0025½ð10� 20k1 þ 20k2Þlþ 1� k1 þ k2�e�lt:

Note that 8oARn; ILðoÞ ¼ o4 þ 0:0125o2 þ 1:5625� 10�6½16� ðk2 � k1Þ
2� > 0 by recalling the

limited condition jk2 � k1jo4: Based on Corollary 3.3 and Remark 3, the system is delay-
independently stable if and only if: (i) function Dðl; 0Þ is Hurwitz stable, which is the same as
Eqs. (25) and (26), and (ii) 8oARn; ELðoÞa0:
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Fig. 1. The delay-independently stable region of the retarded stirred tank model with t1 and t2 independent and with

y ¼ 10; V0 ¼ 1; c0 ¼ 1:25; g11 ¼ �0:01875; g12 ¼ 0:05; g21 ¼ �0:00625; g22 ¼ �0:05: The curves are given by Ci : di ¼ 0;
i ¼ 0; 1; 6:

2Note in Fig. 1, some curves or their branches are not shown for the clarity of figures; they do not affect the results.
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The region R0 for condition (i) is fðk1; k2Þ j k1 � k2 � 2:0o0g: The region R1 for condition (ii)
contains two parts: one is determined by plotting the curves d0 ¼ 0; d1 ¼ 0;y; d6 ¼ 0 and finding
the intersected areas according to the sign tables of Eq. (27), where d0Bd6 are calculated
according to formula (48) in Ref. [9] with substituting of bi in Eq. (27). The other consists of two
rays: r1 ¼ fk2 ¼ k1 þ 2; k1 > 0g; r2 ¼ fk2 ¼ k1 � 2; k1 > 2g: The delay-independent stable region,
R0-R1; is the shaded part in Fig. 2. 3 This region consists of the ray r1 (r1 coincides with the curve
C6) and the inner circumscribed by C6 and the k1; k2 axes. This region is much larger than that for
independent delays in Fig. 1.

5. Conclusion

This paper develops sufficient and necessary delay-independent stability criteria for a class of
retarded dynamical systems with two discrete time delays. The criteria can be used to analyze the
delay-independent stability of practical linear retarded systems. It is also shown that the stability
criterion for systems with two dependent delays is more complicated than that for the systems
with two independent delays because the former needs to check the non-existence of common real
roots of two polynomials.

In the application of the criteria, several examples are given which either are identical to or
improved upon the corresponding results in the pioneers’ works. And the systems considered are
limited in the linear retarded systems in the form of Eq. (1) with parameters. As for those without
parameters, the criteria in this paper can also work well because the key of the delay-independent
stability problem is that some polynomials with given coefficients have no non-zero roots or no
non-zero common roots, which is still in the solvable field of the generalized Sturm theory when
necessary.
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Fig. 2. The delay-independently stable region of the stirred tank model with t1 ¼ t2 and with y ¼ 10; V0 ¼ 1; c0 ¼ 1:25;
g11 ¼ �0:01875; g12 ¼ 0:05; g21 ¼ �0:00625; g22 ¼ �0:05: The curves are given by Ci:di ¼ 0; i ¼ 0; 2; 3; 4; 5; 6:

3Note in Fig. 2, some curves or their branches are not shown for the clarity of figures; they do not affect the results.
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