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Abstract

The dynamic behaviour of rotating beams with piezoceramic actuation is studied using bending ðd31Þ and
shear ðd15Þ actuation for application to structures such as helicopter and wind turbine rotor blades. The
governing equations are derived using Hamilton’s principle for a beam undergoing transverse bending,
inplane bending, torsion and axial deformations. The effect of moderate deflections are included by
retaining non-linear terms. The equations are then solved using finite element discretization in the spatial
and time domain. Results are obtained for the cases with only actuation loads, with actuation loads and
added periodic tip loads, and for a pretwisted beam. Numerical results show that the centrifugal stiffening
effect reduces the tip transverse bending deflection and elastic twist obtained from smart actuation as the
rotation speed increases. However, the effect of rotation speed on the tip elastic twist is less pronounced.
The importance of non-linear terms for accurate prediction of torsion, in-plane bending and transverse
bending response is also shown. It is also found that combinations of pretwist and smart actuation can be
used to obtain desirable torsion response over a range of rotation speeds.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The emerging area of smart materials and structures offers novel solutions to vibration
problems. Smart structures is also known as active-materials technology. A smart structure is a
combination of actuators, sensors and microprocessors. Common materials used for such
structures are piezoelectric, electrostrictive, magnetostrictive and shape memory alloys. Among
these materials, piezoelectrics have found increasing use for aerospace structures [1,2].
Piezoelectric materials such as lead zirconate titanate (PZT), have the capability of undergoing

strain on the application of an electric field. This concept is known as converse piezoelectric effect

ARTICLE IN PRESS

*Corresponding author.

E-mail addresses: dipali@aero.iisc.ernet.in (D. Thakkar), ganguli@aero.iisc.ernet.in (R. Ganguli).

0022-460X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00189-5



and is exploited in actuators. It allows the alteration of system characteristics as well as the system
response [3]. The same material (PZT) generates electric charge when subjected to mechanical force
or deformation. This is known as the direct piezoelectric effect and is used in sensors. The
microprocessors analyze the response from the sensors and use distributed parameter control theory
to command the actuators to apply localized stresses to minimize the response of the system.
Considerable work has been done on the modelling of beams with piezoelectric actuators [4–10].

However, this literature addresses modelling of non-rotating beams. Helicopter and wind turbine
blades are rotating beam type structures. Because of the importance of such structures, work has
been done in the dynamic analysis of rotating beams [11–16]. However, only a few studies have been
done in the dynamic analysis of rotating smart beams [17–19]. In Refs. [17,18], authors place
piezoceramic actuators at 745� on the top and bottom of the beam to induce torsion actuation.
However, for slowly rotating structures such as wind turbines, bending actuation may also be useful.
The governing non-linear equations of motion for the elastic bending and torsion of twisted

non-uniform rotor blades made of isotropic material were derived by Hodges and Dowell [20]
using the Hamilton’s principle and have become the underlying basis for comprehensive
aeroelastic analysis developed and used by several researchers [21–24]. Geometrical non-
linearities, which result from moderate blade deflections, play an important role in the aeroelastic
stability analysis of rotor blades. Generally, moderate deflection type theories based on an
ordering scheme are quite adequate for hingeless rotor blades. However, large deflection theories
can be important for the bearingless rotors [25]. In this paper, we extend the analysis in Ref. [20]
to include rotating beams with piezoceramic actuation. The governing equations for rotating
smart beams are derived and numerical results are obtained to analyze the influence of smart
actuation, centrifugal stiffening, non-linear effects and pretwist. The possibility of using the
piezoceramic shear actuation mechanism ðd15 effect) for torsion and the bending actuation ðd31
effect) for bending of rotating beams is explored. The d15 effect is being recently used by some
researchers [26–28]. It should be noted that small amount of deflections can be used to reduce
airloads and evolve an active control strategy for rotating beam type structures.

2. Formulation

In this section, the governing equations of a smart rotating beam are derived, the solution
procedure is discussed and the smart structure terms in the equations are identified.

2.1. Structural modelling

The constitutive equations of an isotropic beam plate [29] can be written as follows:

exx

eZZ
ezz
gxZ

gZz
gxz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

1=E �n=E �n=E 0 0 0

�n=E 1=E �n=E 0 0 0

�n=E �n=E 1=E 0 0 0

0 0 0 1=G 0 0

0 0 0 0 1=G 0

0 0 0 0 0 1=G

2
6666666664

3
7777777775

sxx

sZZ
szz
txZ

tZz
txz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð1Þ

ARTICLE IN PRESS

D. Thakkar, R. Ganguli / Journal of Sound and Vibration 270 (2004) 729–753730



The induced strains [30] for a piezoelectric material poled in (z; 3) direction can be written as
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where L is the induced strain, d31; d15; and d33 are piezoelectric strain coefficients and E1; E2 and
E3 are the electric fields in ðx; 1Þ; ðy; 2Þ and ðz; 3Þ directions, respectively.
The following fundamental assumptions are made for the analysis [20]:

(i) Mid-line of a plate segment does not deform in its own plane, meaning that the in-plane
warping of the cross-section is neglected;

(ii) the normal stress in the contour direction, sZZ is neglected relative to the normal axial stress
sxx and

(iii) rotor blade is a long slender beam and hence the uniaxial stress assumptions can be made;
sZZ ¼ 0; szz ¼ 0 and tZz ¼ 0:

The strain–displacement field (accurate up to second order and accounting for moderate
deflections) is defined as [20]

exx ¼ u0 þ
v0

2
þ

w
02

2
� lTf

00 þ ðZ2 þ z2Þðy00f
0 þ f
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exZ ¼ �ðzþ lT ;ZÞf
0 ¼ �#zf0; ð4Þ

exz ¼ ðZ� lT ;zÞf
0 ¼ #Zf0; ð5Þ

where u; v;w and #f are axial, chord-wise bending, span-wise bending and elastic twist,
respectively, y0 is the blade pitch and Z and z are cross-sectional co-ordinates and lT is the
cross-sectional warping function. Also #f0 ¼ f0 � w0v00 and u ¼ ue � 1

2

R x

0 ðv
02 þ w02Þ dx:

Based on these assumptions and strain-displacement relationships (Eq. (3) to Eq. (5)),
Hamilton’s principle is used to derive the system of equations of motion. For a conservative
system, it states that the true motion of a system, between prescribed initial conditions at time c1

and final conditions at time c2; is that particular motion for which the time integral for the
difference between potential and kinetic energies is a minimum. The generalized Hamilton’s
principle applicable to non-conservative systems is expressed as

dP ¼
Z c2

c1

ðdU � dT � dW Þ dc ¼ 0; ð6Þ

where dU ; dT and dW are virtual variations of strain energy, kinetic energy and virtual work
done by external force, respectively and dP represents the total potential of the system. The strain
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energy of the system can be written as follows:

U ¼
1

2

Z R

0

Z
A

Z
ðsxxexx þ sxZexZ þ sxzexzÞ dZ dz dx ð7Þ

and divided into isotropic and smart components as shown in Table 1. Bending actuation is
obtained using E3 voltage with poling in 3 directions. Torsion actuation is obtained using E2

voltage with poling in 1 direction.
Here the dU terms for both the isotropic [20] and smart structure are obtained by using the

variation of strain in the Hamilton’s principle over the volume integral. The kinetic energy of the
structure is modified due to change in mass and inertia by the addition of the smart layer, but
virtual work done due to applied forces remain unchanged. The kinetic and strain energy terms of
the isotropic beam are defined in Appendix C. The non-linear equations listed in Appendix C have
been derived by Hodges and Dowell in 1974 [20] for elastic bending and torsion of twisted non-
uniform rotor blades. Epps and Chandra [31] have validated the rotating frequencies predicted by
the analysis with experimental data. Also Ganguli et al. [32] have validated the analysis with
vibration data.
Following the above assumptions and the formulation for an isotropic beam [20], equations of

motion for elastic bending and torsion of rotating beams with pretwist and surface bonded
piezoceramic actuators are derived in this paper. Evaluating and deriving the new terms which
arise due to surface bonding of the smart layer, yields

dUsmart

m0O2R3
¼

Z 1

0

½A0ðdu0eÞ þ A1ðy
0
0 þ f0Þdf0

þ ð�A2 cosðy0 þ #fÞ þ A3 sinðy0 þ #fÞÞðdv00 þ w00d #fÞ

þ ð�A2 sinðy0 þ #fÞ � A3 cosðy0 þ #fÞÞðdw00 þ v00d #fÞ

� ðA4d #f0Þ � ðA5d #f00Þ	 dx; ð8Þ

where A0;A1;A2;A3;A4 and A5 are the section properties due to piezoceramic actuation and are
defined in Appendix B. The above derivation is generic for a beam undergoing displacements
(axial, transverse bending, inplane bending and torsion), also it is generalized for axial, bending
and torsional actuation.
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Table 1

Isotropic and smart material contributions to strain energy

Isotropic terms Smart terms

dU1 ¼
R

v
Eexxdexx dv dUS1

¼
R

v
Ed31E3dexx dv

dU2 ¼
R

v
GexZdexZ dv dUS2

¼
R

v
Gd15E2dexZ dv

dU3 ¼
R

v
Gexzdexz dv dUS3

¼ 0

dUiso ¼ dU1 þ dU2 þ dU3 dUsmart ¼ dUS1
þ dUS2

þ dUS3

Total ¼ dUiso þ dUsmart
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2.2. Finite element discretization

A finite element discretization is done to solve the governing equations of motion to obtain the
dynamic response of the system. After the finite element discretization the Hamilton’s principle
can be written as

dP ¼
Z 2p

0

XN

i¼1

ðdUi � dTi � dWiÞ dc ¼ 0: ð9Þ

The beam is discretized into N finite elements and each of these N beam finite elements have 15
degrees of freedom. The finite element discretization of the element used for the analysis is shown
in Fig. 1. The degrees of freedom correspond to cubic variations in axial elastic, transverse
bending and in-plane bending deflections. Elastic torsion has a quadratic variation. Element
connectivity is established by continuity of slope and displacement for transverse and in-plane
bending deflections whereas for elastic twist and axial deflection it is established by continuity of
displacements. Such an element ensures linear variations of bending and torsion moments and
quadratic variations of axial force within the elements. Substituting u ¼ Hq (H and q are given in
Appendix D) in the Hamilton’s principle we obtainZ 2p

0

dqTðM.qðcÞ þ C’qðcÞ þ KqðcÞ � Fðq; ’q;cÞÞ dc ¼ 0: ð10Þ

The nodal displacements q are functions of time and all the non-linear terms are moved to the
force vector. The spatial functionality has been removed by using finite element discretization and
partial differential equations have been converted to ordinary differential equations. The finite
element equations representing each rotor blade are transformed to normal mode space for
efficient solution of blade response using the modal expansion. The displacements are expressed in
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Fig. 1. The 15-DOF finite element model used for spatial discretization of the beam.
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terms of normal modes as

q ¼ Up; ð11Þ

where U is a matrix of the dimensions of blade degrees of freedom by number of modes selected
for representation of blade response. Substitution of Eq. (11) in Eq. (10) leads to the normal mode
equations of the formZ 2p

0

dpTð %M.pðcÞ þ %C’pðcÞ þ %KpðcÞ � %Fðp; ’p;cÞ dc ¼ 0; ð12Þ

where the normal mode mass, stiffness, damping matrix and force vector are defined as
%M ¼ UTMU; %C ¼ UTCU; %K ¼ UTKU and %F ¼ UTF; respectively. Eq. (12) are non-linear
ODEs but their dimensions are much reduced compared to the full finite element equations in
Eq. (10). This is because only a few modes (typically 6–10) are needed to capture the dynamics of
the problem. The mode shapes or eigen vectors can be obtained from undamped rotating
frequency analysis of the blade, which is defined as %KsU ¼ o2MsU: Integrating Eq. (12) by parts
we obtain Z 2p

0

dp

d’p

( )
%F� %C’p� %Kp
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Since the rotating beam is a periodic system with a time period of one revolution, we have
’pð0Þ ¼ ’pð2pÞ: Imposing periodic boundary conditions on Eq. (13) results in the right hand side
becoming zero and yields the following system of first order differential equations:Z 2p

0

dyTQ dc ¼ 0;

where

y ¼
p

’p

( )
and Q ¼

%F� %C’p� %Kp

%M’p

( )
: ð14Þ

The above equation is non-linear because %F contains non-linear terms. The non-linear, periodic,
ordinary differential equations are then solved for blade steady response using the finite element in
time by Newton–Raphson method. Discretizing Eq. (14) over Nt time elements around the
circumference, (where c1 ¼ 0; cNtþ1 ¼ 2p) and taking a first order Taylor’s series expansion about
the steady state value y0 ¼ ½pT0 ’p

T
0 	

T yields algebraic equations.

XNt

i¼1

Z ciþ1

ci

dyTi Qiðy0 þ DyÞ dc ¼
XNt

i¼1

Z ciþ1

ci

dyTi ½Qiðy0 þ Ktiðy0ÞDy	 dc ¼ 0; ð15Þ

Kti ¼
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@p � %K @ %F
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0 %M

" #
i

: ð16Þ
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Here Kti is the tangential stiffness matrix for time element i andQi is the load vector. For the ith
element, the time span is ciþ1 � ci and there is continuity of the displacements between the time
elements, also the modal displacement vector can be written as follows:

piðcÞ ¼ HðsÞri; ð17Þ

where HðsÞ are the shape functions in time which are fifth order Lagrange polynomials (as defined
in Appendix E) used for approximating the normal mode co-ordinate p within the elements and r

is the temporal nodal co-ordinates vector. Eq. (17) expresses the time variation of the modal
displacement vector. Substitution of Eq. (17) and its derivative in Eq. (15) results into the time
discretized blade response.

QG þ KG
t Dr

G ¼ 0;

where

QG ¼
XNt

i¼1

Z ciþ1

ci

HTQi dc;

KG
t ¼

XNt

i¼1
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HT

@ %F

@p
� %K

@ %F

@’p
� %C

0 %M

2
64

3
75

i

dc;

DrG ¼
XNt

i¼1

Dri: ð18Þ

Here KG
t is the global tangential stiffness matrix and QG is the global load vector. Solving the

above equations iteratively yields the blade steady response. The effect of the smart terms come in
the stiffness matrix %K and the load vector %F: The mass and damping are affected only by the
material property(density) of the piezoceramic, and not by the actuation effect. All non-linear
terms are moved to the load vector andM, C and K are linear. Other details regarding the solution
procedure can be found in a recent paper by Ganguli [33].

2.3. Identification of smart structure terms

The governing equations derived in Eq. (8) (derived in the current study) and shown in
Appendix C (derived by Hodges and Dowell [20]) contain a very large number of terms and are
complicated to understand as they are derived for a generic cross-section beam with pretwist. For
easy understanding of equations, few assumptions are made in the generic set of equations derived
through variational principle (as shown in Eq. (8) and Appendix C). For the section shown in
Fig. 2 (symmetric section) if y0 ¼ 0 and bp ¼ 0 then the following element stiffness, damping and
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mass matrices are obtained. The linear and non-linear element force vectors are also shown for the
same case.
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FNL ¼
1
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Here FAðxÞ ¼
R x

1 mx dx is the centrifugal axial force due to the rotation. We observe that smart
actuation terms cause inplane bending–transverse bending coupling and inplane–bending–torsion
coupling through the stiffness terms. The mass matrix does not contain any specific smart
structure terms. The damping matrix shows the presence of the antisymmetric Coriolis effect, but
no influence of smart terms. The linear force vector shows the influence of smart actuation on the
axial, transverse bending and torsion directions. Non-linear smart terms are present in the force
vector for inplane bending and torsion forces. The above equations of motion can be used to
identify terms that can be tailored by designing a beam cross-section to maximize the smart
actuation effect and minimize the centrifugal stiffening effect.
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3. Results and discussion

The model used for numerical results is a cantilevered aluminum beam with surface-mounted
piezoceramic actuators as shown in Fig. 2. This model is similar to an experimental beam devised
by Park et al. [34], allowing validation of the results with closed form solutions for a non-rotating
bending beam. The cross-section of the beam is shown in Fig. 2(a). The cross-section can undergo
twisting motion by an angle of y0 þ #f; where y0 is the applied control pitch and #f is elastic twist.
Thus it can move from the undeformed zy axes to the deformed Zz axes about the axial co-
ordinate x or x: The beam has a height of 1:28 mm; breadth of 50:8 mm; actuator thickness of
0:245 mm and adhesive thickness of 0:10 mm: The length of the beam is 406:4 mm: The adhesive
layer has been considered here to incorporate the shear lag effects. The material properties
considered for the results are given in Table 2. The results are obtained for a potential of 400 V in
case of bending actuation and for 200 V in case of torsion actuation.

3.1. Bending actuation

For obtaining the bending actuation equal but opposite potentials are given to the top and the
bottom piezo layers (bending motor concept)[35], which results into the expansion of one surface
and contraction of other. As can be seen from Fig. 3, the poling direction is parallel to the
direction of the potential. To bend the beam, a voltage of equal magnitude but opposite sign is
applied to the top and bottom of actuators. Thus the beam bends to produce transverse bending
deflection. For the non-rotating condition, a tip bending deflection of about 14 mm is obtained.
This is slightly more than 3 percent of the beam length. Thus bending deflection obtained here
matches with the closed form solution at the non-rotating level. Response for a rotating beam
over a wide range of rotational speeds (0–100 Hz) is investigated. The transverse tip bending
deflection and its variation with rotation speed is shown in Fig. 4. There is no other load on the
beam except a bending moment due to bending actuation and the centrifugal loading due to
rotation. It can be observed from Fig. 4 that there is a rapid fall in the bending deflection with
increase in rotating speed. On studying the terms in Eqs. (19)–(23), it is noticed that the
centrifugal stiffening effect ð

R 1

0 FAH 0TH 0 ds in the stiffness matrix K) counters the piezoceramic
actuation force (

R 1

0 A3H
00T ds in the linear force vector FL) and decreases the deflection which

reduces to almost zero at higher rotation speeds. It therefore appears that bending actuation is
useful for slowly rotating structures.
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Table 2

Mechanical properties considered for simulation

PZT-5H Adhesive Aluminum Units

E ¼ 62
 103 E ¼ 3:068
 103 E ¼ 68:94
 103 MPa

n ¼ 0:3 n ¼ 0:3485 n ¼ 0:3 —

r ¼ 7500 r ¼ 1000 r ¼ 2700 kg=m3

d31 ¼ 274
 10�09 — — mm/V

d15 ¼ 740
 10�09 — — mm/V
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3.2. Torsional actuation

Torsional actuation is obtained by exploiting the parallel shear motor concept [35]. Poling
direction in the case of torsional or shear actuation is perpendicular to the application of potential
as shown in Fig. 5. This differs from the extension and bending actuators where the poling
direction is always parallel to the application of the potential, neglecting the inherent shear effects.
Hence, the piezoelectric constant d15 is not highlighted. Recently a few d15 based torsional
actuators [26–28] have been proposed. These have been suggested for obtaining large torque and
angular displacement. The main reasons [18] for using the shear actuator mechanism are: (1) d15
based torsional actuators produce large angular displacement and torque; (2) the performance of
shear actuators is less dependent on structure’s stiffness; (3) less problems of actuator debonding
at its extremities; (4) d15 has a higher value than d31 and d33:
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The principal torsional actuation term is
R 1

0 A4H
0T
#f
ds in the linear load vector. The stiffening

terms are
R 1

0 GJH 0T
#f

H 0
#f
ds coming from the structural stiffness and

R 1

0 mO2ðk2
m2 � k2

m1ÞH
T
#f
H #f ds

coming from the rotational effect. According to the requirements of the problem, the term A4 and
GJ involved in torsion actuation and structural stiffening respectively, can be tailored so as to
yield maximum torsion actuation.
In Fig. 6, torsional response is plotted with increasing rotation speed. There is no other load on

the beam except the smart couple (shear actuation) and the propeller moment caused by
centrifugal force. This is compared with the zero loading situation. In the case of torsion a twist of
2:66� is obtained for the non-rotating case, which decreases as the rotation speed increases. At
rotation speed as high as 100 Hz; a twist of around 0:35� is obtained. However, the decrease in
twist with rotation speed is much less when compared to the decrease in bending (observed in
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previous section). This is because the centrifugal stiffening of the torsion mode is less compared to
that of the transverse bending mode. It can be seen from Eq. (22) that the term leading to the
centrifugal stiffening in the torsion direction is

R 1

0 mO2ðk2
m2 � k2

m1ÞH
T
#f
H #f ds whereas in the bending

direction is
R 1

0 FAH 0T
u H 0

u ds: The latter term is larger in value. Thus it can be said that in case of
torsion response, there remains enough twist to enable active control of vibration reduction even
at high rotation speeds. Whereas in case of transverse bending, the centrifugal stiffening effect
almost nullifies the effect of piezoceramic actuation at high rotation speeds. Shear based
piezoceramic actuation using the d15 term appears useful for torsion actuation of rotating beams.

3.3. Torsion actuation with sinusoidal loads

The above results were obtained with the only loads acting on the beam being those due to
rotation and actuation. Also the deflections were only due to smart actuation and were too small
to activate the non-linear terms, which are motion dependent. To examine the effects of the non-
linear terms and time varying loading, a sinusoidal tip load is given to a beam rotating at 100 Hz:
Torsional response (torsion actuation) considering non-linear and linear effects is shown in Fig. 7.
The linear effects are obtained by suppressing the non-linear terms in the computer program used
for getting the results. Results for the linear and non-linear cases are obtained for (1) no smart
actuation and (2) with smart actuation. There is considerable change in the response pattern for
linear and non-linear case. The smart loading also follows the same pattern, giving it a shift by
some magnitude, showing that with a smart loading a valuable amount of change in response can
be obtained.
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The non-linear effect in the case of inplane and transverse bending response (torsion actuation)
can be seen in Figs. 8 and 9, respectively. Here the magnitude of difference between the non-linear
and the linear cases is smaller when compared to torsion. The importance of including non-linear
terms in the analysis is clear, especially for accurate prediction of torsion response.

3.4. Bending actuation with sinusoidal loads

A similar case as described above is then examined with the smart couple in the form of a
bending actuation and the beam rotating at 10 Hz: The non-linear and smart effect in the case of
transverse bending, inplane and torsion response are shown in Figs. 10, 11 and 12, respectively. In
the case of inplane and transverse bending (bending actuation), the effect of non-linear terms is
smaller than for torsion.
It can be noted from the figures that the d15 type actuation (Fig. 7) has a greater impact on the

torsion response of the rotating beam than the d31 type actuation (Fig. 12). Notable difference can
be seen between baseline and smart case for both linear and non-linear analysis. Thus it can be
said that the utility of d15 based piezoceramic actuators can be exploited for applications in which
torsion mode of response is of importance.

3.5. Torsion actuation with pretwist

Rotating systems create accelerations arising from the elastic structural deformations, Coriolis
and centripetal forces. The complexity increases further when initial pretwist is also included in a
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beam as additional couplings are introduced due to the pretwist which can affect the beam
response to static and dynamic loads [36–38]. In this paper, an example has been taken of a beam
which is pretwisted by (a) 2� and (b) �2�: Linear pretwist is considered for these cases. A torsional
smart moment is then applied on such a beam through the shear mode as discussed in Section 3.2.
It can be noted from Fig. 13 that at a pretwist of 72�; the torsional deflection varies
approximately from 0� to 2:29� at a rotation speed of 0–100 Hz: But when a smart torsional
moment is applied the trend followed by the torsional deflection changes. There is a difference in
the tip torsional response of about 2:69� at O ¼ 0; which reduces to about 0:17� at O ¼ 100 Hz:
The effect of the piezoceramic actuation is to increase the torsion deflection of the beam. The

increase is maximum in the non-rotating condition and becomes less as rotation speed increases. It
can be observed from this example of 72� pretwist that combinations of smart actuation and
pretwist can be worked out to obtain a desired torsion deflection over a range of rotation speeds.
Similar attempts were made on applying bending actuation to a pretwisted beam but the results
obtained showed very little change and hence have not been presented here. Thus it can be said
that torsion actuation proves to be a better alternative in this case.

4. Conclusions

Governing equations for a beam with piezoceramic actuation and undergoing transverse
bending, inplane bending, axial and torsion displacements are derived. Non-linear terms
accounting for moderate deflections are retained in the analysis. The blade equations are
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discretized and solved in the spatial and time domain using the finite element method. Numerical
results are obtained over a range of rotation speeds for (1) smart actuation only, (2) smart
actuation and sinusoidal tip load and (3) smart actuation with pretwist. The following conclusions
are drawn from this study:

(1) Results show that rotation greatly reduces the transverse bending caused by piezoceramic
actuation due to centrifugal stiffening of the blade. However, the reduction in torsion
response is much less and there remains enough twist actuation for active control of vibration
reduction and other applications even at rotation speeds as high as 100 Hz: Bending actuation
may be feasible for slowly rotating structures such as wind turbine rotors.

(2) The bending actuation mechanism (d31 effect) produces a bending couple which controls the
transverse bending response of the structure and the shear actuation mechanism (d15 effect)
produces the torsional couple which can control the torsion response of the structure. Shear
based piezoceramic actuation using the d15 term appears to be useful for torsional actuation
of rotating beams.

(3) The equations of motion derived in this study can be used to identify terms that can be
tailored by designing a cross-section to maximize the smart actuation effect and minimize the
centrifugal stiffening effect.

(4) It is possible to combine smart actuation and pretwist to get a desired torsional deflection over
a range of rotation speeds.

(5) The non-linear effects are important for accurate torsional response prediction for a smart
rotating beam.

Appendix A. Nomenclature

C finite element damping matrix
eg chordwise offset of blade center-of-mass ahead of elastic axis
E Young’s modulus
EIy transverse bending stiffness
EIz in-plane bending stiffness
F finite element force vector
FL finite element linear force vector
FNL finite element non-linear force vector
G shear modulus
GJ torsion stiffness
kA radius of gyration of the blade cross-section
km1 blade cross-sectional mass radius of gyration in the transverse direction
km2 blade cross-sectional mass radius of gyration in the in-plane direction
K finite element stiffness matrix
%Ks global structural stiffness matrix
li length of the ith beam element
m0 mass per unit length of blade
M finite element mass matrix
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%Ms global structural mass matrix
N number of spatial finite elements
Nt number of time elements for one rotor revolution
p modal displacement vector
P poling direction
q global displacement vector
Q generalized load vector for response analysis
r temporal nodal displacement vector for time element
R rotor radius
T kinetic energy
u axial deflection of blade
ue elastic axial deflection
U strain energy
US smart structure contribution to strain energy
v in-plane bending deflection of blade
w transverse bending deflection of blade
W virtual work
x longitudinal direction
y lateral direction
z vertical direction
bp blade precone
g shear strain
d variation
exx; eZZ; ezz normal strains
exZ; eZz; exz shear strains
z; Z; x rotating deformed blade coordinate system
y0 rigid pitch angle due to control pitch and pretwist
lT warping function
n Poisson ratio
rs density
sxx; sZZ; szz normal stresses
txZ; tZz; txz shear stresses
#f elastic twist
c azimuth angle, time
O rotation speed, scalar quantity

Appendix B. Section properties

A0 ¼
Z
Z

Z
z

EP dZ dz;

A1 ¼
Z
Z

Z
z

EPðZ2 þ z2Þ dZ dz;
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A2 ¼
Z
Z

Z
z
ðEPZÞ dZ dz;

A3 ¼
Z
Z

Z
z
ðEPzÞ dZ dz;

A4 ¼
Z
Z

Z
z
ð2GpiezoP1zÞ dZ dz;

A5 ¼
Z
Z

Z
z
ðEPZzÞ dZ dz;

EIy ¼
Z
Z

Z
z

Ez2 dZ dz;

EIz ¼
Z
Z

Z
z

EZ2 dZ dz;

EA ¼
Z
Z

Z
z

E dZ dz;

GJ ¼
Z
Z

Z
z

Gð#Z2 þ #z2Þ dZ dz;

EB1 ¼
Z
Z

Z
z

EðZ2 þ z2Þ dZ dz;

EC1 ¼
Z
Z

Z
z

El2T dZ dz;

EAeA ¼
Z
Z

Z
z

EZ dZ dz;

EAk2
A ¼

Z
Z

Z
z

EðZ2 þ z2Þ dZ dz;

EB2 ¼
Z
Z

Z
z

EZðZ2 þ z2Þ dZ dz;

EC2 ¼
Z
Z

Z
z

EzlT dZ dz;

where P and P1 depend on piezoelectric properties and are given as P ¼ d31E3 and P1 ¼ d15E2:
However, A0; A1; A2; A3; A4; A5 depend on piezoelectric and section properties.

Appendix C. Kinetic and strain energy terms

dUiso

m0O2R3
¼

Z 1

0

ðUu0e
du0

e þ Uv0dv0 þ Uw0dw0 þ Uv00dv00

þ Uw00dw00 þ U #fd
#fþ U #f0d #f0 þ U #f00d #f00Þ dx
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where

Uu0e
¼EA u0e þ k2

Ay
0
0ð #f

0 þ w0v00Þ þ k2
A

#f
02

2

" #
� EAeA½v00ðcos y0 � #f sin y0Þ

þ w00ðsin y0 þ #f cos y0Þ	;

Uv00 ¼ v00ðEIz cos
2 y0 þ EIy sin

2 y0Þ þ w00ðEIz � EIyÞcos y0 sin y0

� EAeAu0
eðcos y0 � #f sin y0Þ � #f0EB2y

0
0 cos y0 þ w00 #fðEIz � EIyÞcos 2y0

� v00 #fðEIz � EIyÞsin 2y0 þ ðGJ þ EB1y
02
0 Þ #f

0w0 þ EAk2
Ay

0
0w

0u0
e;

Uw0 ¼ ðGJ þ EB1y
02
0 Þ #f

0v00 þ EAk2
Ay

0
0v

00u0e;

Uw00 ¼w00ðEIy cos
2 y0 þ EIz sin

2 y0Þ þ v00ðEIz � EIyÞ cos y0 sin y0

� EAeAu0
eðsin y0 þ #f cos y0Þ � #f0EB2y

0
0 sin y0 þ w00 #fðEIz � EIyÞsin 2y0

þ v00 #fðEIz � EIyÞcos 2y0;

U #f ¼w002ðEIz � EIyÞsin y0 cos y0 þ v00w00ðEIz � EIyÞcos 2y0

� v002ðEIz � EIyÞsin y0 cos y0;

U #f0 ¼GJð #f0 þ w0v00Þ þ EB1y
02
0
#f0 þ EAk2

Aðy
0
0 þ #f0Þu0

e

� EB2y
0
0ðv

00 cos y0 þ w00 sin y0Þ;

U #f00 ¼ EC1
#f00 þ EC2ðw00 cos y0 � v00 sin y0Þ;

dT

m0O2R3
¼

Z 1

0

mðTue
due þ Tvdv þ Twdw þ Tv0dv0 þ Tw0dw0 þ Tfdfþ TF Þ dx;

where

Tue
¼ x þ ue þ 2’v � .ue;

Tv ¼ egðcos y0 þ .y0 sin y0Þ þ v � #feg sin y0 þ 2 ’wbp þ 2’v0eg cos y0 þ 2 ’w0eg sin y0

� .v þ #.feg sin y0 � 2 ’ue þ 2

Z x

0

ðv0 ’v0 þ w0 ’w0Þ dx;

Tv0 ¼ �egðx cos y0 � #fx sin y0 þ 2’v cos y0Þ;

Tw ¼ �xbp � .y0eg cos y0 � 2’vbp � .w � #.feg cos y0;

Tw0 ¼ �egðx sin y0 þ #fx cos y0 þ 2’v sin y0Þ;

T #f ¼ � k2
m
#.f� ðk2

m2 � k2
m1Þcos y0 sin y0 � xbpeg cos y0 � veg sin y0 þ v0xeg sin y0

� w0xeg cos y0 þ .veg sin y0 � #fðk2
m2 � k2

m1Þcos 2y0 � .weg cos y0 � k2
m
.y0;

TF ¼ �ðx þ 2’vÞ
Z x

0

ðv0dv0 þ w0dw0Þ dx:
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The radial shortening term TF can be written as

�
Z 1

0

mTF dx ¼
Z 1

0

mðx þ 2’vÞ
Z x

0

ðv0dv0 þ w0dw0Þ dx
� �

dx:

Integrating by parts leads to a more convenient form

�
Z 1

0

mTF dx ¼
Z 1

0

FAðv0dv0 þ w0dw0Þ dx þ
Z 1

0

ðv0dv0 þ w0dw0Þ
Z 1

x

2m’v dx
� �

dx;

where the centrifugal force FA is defined as

FAðxÞ ¼
Z x

1

mx dx

which gives the ‘‘centrifugal stiffening’’ effect on the transverse bending and in-plane bending
equations. In this case the blade sectional integral are defined as

m ¼
Z Z

A

rs dZ dz;

meg ¼
Z Z

A

rsZ dZ dz;

mk2
m1 ¼

Z Z
A

rsz
2 dZ dz;

mk2
m2 ¼

Z Z
A

rsZ
2 dZ dz;

mk2
m ¼ mk2

m1 þ mk2
m2:

Appendix D. Shape functions for space

uðsÞ ¼

uðsÞ

vðsÞ

wðsÞ
#fðsÞ

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Hu 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H #f

2
66664

3
77775qi;

HT
u ¼

Hu1

Hu2

Hu3

Hu4

8>>><
>>>:

9>>>=
>>>;

¼

�4:5s3 þ 9s2 � 5:5s þ 1

13:5s3 � 22:5s2 þ 9s

�13:5s3 þ 18s2 � 4:5s

4:5s3 � 4:5s2 þ s

8>>><
>>>:

9>>>=
>>>;
;
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HT ¼

H1

H2

H3

H4

8>>><
>>>:

9>>>=
>>>;

¼

2s3 � 3s2 þ 1

liðs3 � 2s2 þ sÞ

�2s3 þ 3s2

liðs3 � s2Þ

8>>><
>>>:

9>>>=
>>>;
;

HT
#f
¼

H #f1

H #f2

H #f3

8>><
>>:

9>>=
>>; ¼

2s2 � 3s þ 1

�4s2 þ 4s

2s2 � s

8><
>:

9>=
>;;

where qTi ¼ ½u1; u2; u3; u4; v1; v01; v2; v
0
2;w1;w0

1;w2;w0
2;
#f1; #f2; #f3	 and s ¼ xi

li
:

Appendix E. Shape functions for time

Ht1ðsÞ

Ht2ðsÞ

Ht3ðsÞ

Ht4ðsÞ

Ht5ðsÞ

Ht6ðsÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

1
24
ð�625s5 þ 1875s4 � 2125s3 þ 1125s2 � 274s þ 24Þ

1
24
ð3125s5 � 8750s4 þ 8875s3 � 3850s2 þ 600sÞ

1
12ð�3125s5 þ 8125s4 � 7375s3 þ 2675s2 � 300sÞ
1
12
ð3125s5 � 7500s4 þ 6125s3 � 1950s2 þ 200sÞ

1
24
ð�3125s5 þ 6875s4 � 5125s3 þ 1525s2 � 150sÞ

1
24
ð625s5 � 1250s4 þ 875s3 � 250s2 þ 24sÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
:
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