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Abstract

In this paper the analog equation method (AEM), a BEM-based method, is employed to the non-linear
dynamic analysis of a Bernoulli–Euler beam with variable stiffness undergoing large deflections, under
general boundary conditions which maybe non-linear. As the cross-sectional properties of the beam vary
along its axis, the coefficients of the differential equations governing the dynamic equilibrium of the beam
are variable. The formulation is in terms of the displacements. The governing equations are derived in both
deformed and undeformed configuration and the deviations of the two approaches are studied. Using the
concept of the analog equation, the two coupled non-linear hyperbolic differential equations with variable
coefficients are replaced by two uncoupled linear ones pertaining to the axial and transverse deformation of
a substitute beam with unit axial and bending stiffness, respectively, under fictitious time-dependent load
distributions. A significant advantage of this method is that the time history of the displacements as well as
the stress resultants are computed at any cross-section of the beam using the respective integral
representations as mathematical formulae. Beams with constant and varying stiffness are analyzed under
various boundary conditions and loadings to illustrate the merits of the method as well as its applicability,
efficiency and accuracy.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years a need has been raised in engineering practice to predict accurately the
non-linear response of beams subjected to dynamic loads, especially when the properties of their
cross-section are variable. The non-linearity results from retaining the square of the slope in the
strain–displacement relations (intermediate non-linear theory). In this case the transverse
deflection influences the axial force and the resulting equations, governing the dynamic response
of the beam, are coupled non-linear with variable coefficients. Moreover, the pertinent boundary
conditions of the problem are in general non-linear.
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Many researchers have been involved in the solution of the problem using various techniques.
In all cases only axially immovable supports have been considered. Approximate analytical
solutions are restricted only to large-amplitude free vibration of uniform beams [1–4] using elliptic
integrals, perturbation or Ritz–Galerkin methods. The Galerkin method has also been used by
Raju et al. [5] to analyze the large-amplitude free vibrations of tapered beams, while Sato [6]
investigated the non-linear free vibrations of stepped height beams using the transfer matrix
method. Numerical methods have been developed for the solution of the problem like the finite
difference method [7]. The finite element method was used for free non-linear vibrations of
uniform beams [8,9] and of tapered beams [10] as well as for forced non-linear vibrations of
uniform beams [11–14].
The complexity of the problem compelled many of the above researchers to make gross

simplifications in addition to considering the equilibrium in the undeformed configuration. In the
case of non-linear free vibrations [1–6,8–10] either the time function or the space function is
assumed and a characteristic non-linear frequency is computed. Although this is correct in the
linear vibration theory, the non-linear free vibration problem does not admit this separation since
the mode shape varies also with time. The FEM has been successfully employed to the solution of
forced non-linear vibrations of beams with constant cross-section [11–14]. However, beams with
non-uniform cross-section are often approximated by a large number of small uniform elements
replacing the continuous variation with a step law. In this way it is always possible to obtain
acceptable results and the error can be reduced as much as desired by refining the mesh, at the
expense of computational cost.
In this paper, an accurate direct solution to the governing coupled non-linear differential

equations of hyperbolic type is presented, which permits the treatment also of non-linear
boundary conditions. The governing equations are derived in both deformed and undeformed
configuration. The solution method is based on the concept of the analog equation [15].
According to this, the two coupled non-linear differential equations are replaced by two
equivalent uncoupled linear ones pertaining to the axial and transverse deformation of a
substitute beam with unit axial and bending stiffness subjected to fictitious time-dependent load
distributions under the same boundary conditions. Several beams are analyzed under various
boundary conditions and load distributions, which illustrate the method and demonstrate its
efficiency and accuracy. Moreover, useful conclusions are drawn from the comparison of the two
sets of equations referred to deformed and undeformed configuration. The latter one is usually
adopted in the literature to reduce the non-linearity of the problem.

2. Governing equations

Consider an initially straight beam of length l having variable axial EA and bending stiffness
EI ; which may result from variable cross-section, A ¼ AðxÞ; and/or from inhomogeneous linearly
elastic material, E ¼ EðxÞ; I ¼ IðxÞ is the moment of inertia of the cross-section. The x-axis
coincides with the neutral axis of the beam, which is bent in its plane of symmetry xz under the
combined action of the distributed loads px ¼ pxðxÞ and pz ¼ pzðx; tÞ in the x and z direction
respectively. The large deflection theory result from the non-linear kinematic relation, which
retains the square of the slope of the deflection, while the strain component remains still small
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compared with the unity. Therefore

exðx; zÞ ¼ u;x þ 1
2

w2;x þ zk; ð1Þ

where u ¼ uðx; tÞ and w ¼ wðx; tÞ are displacements along the x- and z-axis, respectively, and k is
the curvature of the deflected axis.
Referring to the equilibrium of the deformed element (see Fig. 1) the following relations are

derived:

p�x ¼ px dx=ds; p�z ¼ pz dx=ds; ð2; 3Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u;xÞ

2 þ w2;x

q
dx; ð4Þ

cos y ¼
1þ u;xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u;xÞ
2 þ w2;x

q ; sin y ¼
w;xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u;xÞ
2 þ w2;x

q ; ð5; 6Þ

which for the case of moderate large deflections ðu;x;w2;x{1Þ become

p�x ¼ px; p�z ¼ pz; ð7; 8Þ

ds ¼ dx; ð9Þ

cos yC1; sin yCw;xCy: ð10; 11Þ

Moreover, the strain e0 ¼ exðx; 0Þ at the x-axis and the curvature k ¼ kðxÞ are given as

e0 ¼ u;x þ 1
2

w2;x; ð12Þ

k ¼
dy
ds
Cy;xCw;xx: ð13Þ

Therefore, the stress resultants, that is the axial force and the bending moment are given as

N ¼ EAðu;x þ 1
2

w2;xÞ; ð14Þ

M ¼ �EIw;xx: ð15Þ
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Fig. 1. Forces and moments acting on the deformed element.
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From Fig. 1,

Nx ¼ N cos y� Q sin yCN � Qw;x; ð16Þ

Nz ¼ N sin yþ Q cos yCNw;x þ Q: ð17Þ

The equations of motion are derived by considering the equilibrium of the deformed element.
Thus, referring to Fig. 1 one obtains

�r .u þ Nx;x ¼ �px; ð18Þ

�r .w þ Nz;x ¼ �pz; ð19Þ

M;x ¼ Q; ð20Þ

where r ¼ rðxÞ is the mass density per unit length.
Substituting Eqs. (16) and (17) into Eqs. (18) and (19) and using Eq. (20) to eliminate Q;

gives

�r .u þ N;x � ðM;xw;xÞ;x ¼ �px; ð21Þ

�r .w þ M;xx þ ðNw;xÞ;x ¼ �pz; ð22Þ

which by virtue of Eqs. (14) and (15) become

�r .u þ ½EAðu;x þ 1
2

w2;xÞ�;x þ ðEIw;xxxw;xÞ;x ¼ �px; ð23Þ

�r .w � ðEIw;xxÞ;xx þ ½EAðu;x þ 1
2

w2;xÞw;x�;x ¼ �pz: ð24Þ

The pertinent boundary conditions are

a1uð0; tÞ þ a2Nxð0; tÞ ¼ a3 and %a1uðl; tÞ þ %a2Nxðl; tÞ ¼ %a3; ð25; 26Þ

b1wð0; tÞ þ b2Nzð0; tÞ ¼ b3 and %b1wðl; tÞ þ %b2Nzðl; tÞ ¼ %b3; ð27; 28Þ

g1w;xð0; tÞ þ g2Mð0; tÞ ¼ g3 and %g1w;xðl; tÞ þ %g2Mðl; tÞ ¼ %g3; ð29; 30Þ

and the initial conditions are

uðx; 0Þ ¼ *uðxÞ; ’uðx; 0Þ ¼ ’*uðxÞ; ð31; 32Þ

wðx; 0Þ ¼ *wðxÞ; ’wðx; 0Þ ¼ ’*wðxÞ; ð33; 34Þ

where ak; %ak; bk; %bk; gk; %gk ðk ¼ 1; 2; 3Þ are given constants and *uðxÞ; ’*uðxÞ; *wðxÞ; ’*wðxÞ are prescribed
functions. For example at an end restrained elastically in the x direction, say at x ¼ 0; the
boundary condition (25) becomes, kxuð0; tÞ þ Nxð0; tÞ ¼ Px; that is a1 ¼ kx; a2 ¼ 1 and a3 ¼ Px; kx

is the stiffness of the spring and Px the external applied force. The boundary conditions (29) and
(30) are linear. However, on the basis of Eqs. (16) and (17) the boundary conditions (25)–(28) are,
in general, non-linear.
The term Qw;x ¼ EIw;xxxw;x; which appears in Eq. (23), expresses the influence of the shear

force Q on Nx: The presence of this term increases highly the difficulty of the solution. The
existing solutions circumvent this difficulty by neglecting this non-linear term. This assumption
yields NxCN and it is true if the equilibrium is considered in the undeformed configuration. Thus
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the governing equations are simplified as

�r .u þ ½EAðu;x þ 1
2

w2;xÞ�;x ¼ �px; ð35Þ

�r .w � ðEIw;xxÞ;xx þ ½EAðu;x þ 1
2

w2;xÞw;x�;x ¼ �pz; ð36Þ

while the boundary conditions become

a1uð0; tÞ þ a2Nð0; tÞ ¼ a3 and %a1uðl; tÞ þ %a2Nðl; tÞ ¼ %a3; ð37; 38Þ

b1wð0; tÞ þ b2Nzð0; tÞ ¼ b3 and %b1wðl; tÞ þ %b2Nzðl; tÞ ¼ %b3; ð39; 40Þ

g1w;xð0; tÞ þ g2Mð0; tÞ ¼ g3 and %g1w;xðl; tÞ þ %g2Mðl; tÞ ¼ %g3: ð41; 42Þ

The validity of this simplifying assumption is investigated by solving both sets of governing
equations and useful conclusions are drawn.

3. The AEM solution

Eqs. (23) and (24) are solved using the AEM, which for the problem at hand is applied as
follows. Let u ¼ uðx; tÞ and w ¼ wðx; tÞ be the sought solutions, which are two and four times
differentiable, respectively, in ð0; lÞ: Noting that Eqs. (23) and (24) are of the second order with
respect to u; of fourth order with respect to w; one obtains by differentiating

u;xx ¼ b1ðx; tÞ; ð43Þ

w;xxxx ¼ b2ðx; tÞ; ð44Þ

where b1; b2 are fictitious loads depending also on time. Eqs. (43) and (44) indicate that the
solution of Eqs. (23) and (24) can be established by solving Eqs. (43) and (44) under the boundary
conditions (25)–(30), provided that the fictitious load distributions b1; b2 are first determined.
Note that Eqs. (23) and (24) are quasi-static, that is the time is considered as a parameter.
The fictitious loads are established by developing a procedure based on the boundary integral

equation method for one-dimensional problems. Thus, the integral representations of the
solutions of Eqs. (43) and (44) are written as

uðx; tÞ ¼ c1x þ c2 þ
Z l

0

G1ðx; xÞb1ðx; tÞ dx; ð45Þ

wðx; tÞ ¼ c3x
3 þ c4x

2 þ c5x þ c6 þ
Z l

0

G2ðx; xÞb2ðx; tÞ dx; ð46Þ

where ci ¼ ciðtÞ ði ¼ 1; 2;y; 6Þ are arbitrary time-dependent integration functions to be
determined from the boundary conditions and Giðx; xÞ ði ¼ 1; 2Þ are the fundamental solutions
of Eqs. (43) and (44), that is a particular singular solution of the following equations:

G1;xx ¼ dðx � xÞ; ð47Þ

G2;xxxx ¼ dðx � xÞ; ð48Þ

with dðx � xÞ being the Dirac function.
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Integration of Eqs. (47) and (48) yields

G1 ¼ 1
2
jx � xj; ð49Þ

G2 ¼ 1
12 jx � xjðx � xÞ2: ð50Þ

The derivatives of u and w are obtained by direct differentiation of Eqs. (45) and (46). Thus,

u;xðx; tÞ ¼ c1 þ
Z l

0

G1;xðx; xÞb1ðx; tÞ dx; ð51Þ

u;xxðx; tÞ ¼ b1ðx; tÞ; ð52Þ

w;xðx; tÞ ¼ 3c3x
2 þ 2c4x þ c5 þ

Z l

0

G2;xðx; xÞb2ðx; tÞ dx; ð53Þ

w;xxðx; tÞ ¼ 6c3x þ 2c4 þ
Z l

0

G2;xxðx; xÞb2ðx; tÞ dx; ð54Þ

w;xxxðx; tÞ ¼ 6c3 þ
Z l

0

G2;xxxðx; xÞb2ðx; tÞ dx; ð55Þ

w;xxxxðx; tÞ ¼ b2ðx; tÞ: ð56Þ

Substituting the derivatives in Eqs. (23) and (24) yields the equations, from which the fictitious
sources b1 and b2 can be determined. This can be implemented only numerically as follows.
The interval ð0; lÞ is divided into N equal elements, having length l=N: Thus, the integral

equations (45) and (46) are written as

uðx; tÞ ¼ c1x þ c2 þ
XN

j¼1

Z
j

G1ðx; xÞb1ðx; tÞ dx; ð57Þ

wðx; tÞ ¼ c3x
3 þ c4x

2 þ c5x þ c6 þ
XN

j¼1

Z
j

G2ðx; xÞb2ðx; tÞ dx; ð58Þ

where the symbol
R

j
indicates the integral on the j-element. Subsequently, the fictitious sources are

approximated on each integration interval using constant, linear or quadratic variation. In this
investigation, the constant element is employed. That is, the fictitious source is assumed constant
on the element and its nodal value is placed at the midpoint of the element as illustrated in Fig. 2.
The integration of the kernels is performed analytically.
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Using this discretization and applying equations (51)–(58) to the N nodal points,
one obtains

u ¼ c1x1 þ c2x0 þ G1b1; ð59Þ

u;x ¼ c1x0 þ G1;xb1; ð60Þ

u;xx ¼ b1; ð61Þ

w ¼ c3x3 þ c4x2 þ c5x1 þ c6x0 þ G2b2; ð62Þ

w;x ¼ 3c3x2 þ 2c4x1 þ c5x0 þ G2;xb2; ð63Þ

w;xx ¼ 6c3x1 þ 2c4x0 þ G2;xxb2; ð64Þ

w;xxx ¼ 6c3x0 þ G2;xxxb2; ð65Þ

w;xxxx ¼ b2; ð66Þ

where G1;G1;x;y;G2;xxx are ðN 	 NÞ known matrices, originating from the integration of the
kernels G1ðx; xÞ; G2ðx; xÞ and their derivatives on the elements; u; u;x;y;w;xxxx are ðN 	 1Þ vectors
including the values of u; w and their derivatives at the nodal points; b1; b2 are also ðN 	 1Þ vectors
containing the values of the fictitious loads at the nodal points and xk ¼ fxk

1 ;x
k
2 ;y;xk

Ng
T are

vectors containing the kth power of the abscissas of the nodal points.
Finally, collocating Eqs. (23) and (24) at the N nodal points and substituting the derivatives

from Eqs. (59)–(66) yields the following system of equations:

M11.c1 þ M12
.b1 � K1ðb1; b2; c1; c2Þ ¼ px; ð67Þ

M21.c2 þ M22
.b2 � K2ðb1; b2; c1; c2Þ ¼ pz; ð68Þ

where Mij are known generalized mass matrices; Kiðb1; b2; c1; c2Þ generalized stiffness vectors and
c1 ¼ fc1; c2g

T; c2 ¼ fc3; c4; c5; c6g
T: Eqs. (67) and (68) constitute a system of 2N equations of

motion with 2N þ 6 unknowns. The required six additional equations result from the boundary
conditions. Thus, after substituting the relevant derivatives into Eqs. (25)–(30), one obtains

fðb1; b2; c1; c2Þ ¼ 0; i ¼ 1; 2;y; 6: ð69Þ

Eqs. (69) play the role of six constraints, in general non-linear, for the 2N þ 6 generalized
co-ordinates b1; b2; c1; c2: They can be used to eliminate c1; c2 from Eqs. (67) and (68). The
elimination procedure is highly simplified if the inertia force r .u is neglected. In this case the terms
M11.c1 and M12

.b1 are dropped from Eqs. (67) and the boundary conditions (69) become linear
with respect to c1; c2: This leads to the following equations of motion:

K1ðb1; b2; cÞ ¼ px; ð70Þ

M.b2 � K2ðb1; b2; cÞ ¼ pzðtÞ; ð71Þ

where M is the known ðN 	 NÞ generalized mass matrix; Kiðb1; b2; cÞ generalized stiffness vectors
and c ¼ fc1; c2;y; c6g

T: The boundary conditions (69) are now written as

fðb1; b2; cÞ ¼ 0: ð72Þ
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Eq. (71) is the semi-discretized equation of motion of the beam. The associated initial
conditions result from Eq. (62) when combined with Eqs. (33) and (34). This gives

b2ð0Þ ¼ G�1
2 ð *w0 � c3x3 � c4x2 � c5x1 � c6x0Þ; ð73Þ

’b2ð0Þ ¼ G�1
2

’*w0: ð74Þ

The time step integration method for non-linear equations of motion can be employed
to solve Eq. (71). In each iteration for b2 within a time step, the current value of b2 is
utilized to update the vectors b1 and c on the basis of Eqs. (70) and (72). This demands the
solution of a non-linear system of algebraic equations, which is performed using the modified
Newton–Raphson method. In this paper, the average acceleration time step integration
method was employed to solve Eq. (71) and the results were cross-checked by a time step
integration method based on the analog equation method [16]. Once the vectors b1; b2; c are
computed the displacement vectors u; w and their derivatives at any instant t are evaluated from
Eqs. (59)–(66).

3.1. Treatment of discontinuities

a. If the loading is discontinuous at a nodal point, the mean value can be employed to
restore the continuity. The results are highly improved by adjusting the smoothing curve e.g.
(see Fig. 3a)

pðxÞ ¼
p1 þ p2

2
þ

p2 � p1

2
sin

pðx � x0Þ
2e

; x0 � epxpeþ x0: ð75Þ

b. The concentrated force P at a point x ¼ x0 can be represented by a bell-shaped continuous
function extended on a small region of length 2e e.g. (see Fig. 3b)

pðxÞ ¼
P

2e
1þ cos

pðx � x0Þ
2e

� �
; x0 � epxpeþ x0; ð76Þ

where

Z x0þe

x0�e
pðxÞ dx ¼ P: ð77Þ
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4. Numerical examples

On the base of the procedure described in previous section a FORTRAN program has been
written for the non-linear dynamic analysis of beams with arbitrarily varying stiffness. In all
examples the results have been obtained on a Pentium III PC and a few milliseconds were required
for each time step to get accurate results using only N ¼ 21 nodal points along the beam.

4.1. Uniform cross-section. Free vibrations

For the comparison of the results with those available from the literature, the free vibrations of
a beam with uniform rectangular cross-section b 	 h and length l ¼ 1:0 m have been studied. The
employed data are E ¼ 2:1	 108 kN=m2; b ¼ 0:01 m; h ¼ 0:03 m and r ¼ 2355 kg=m: Three
types of boundary conditions are considered (i) hinged–hinged, (ii) fixed–hinged and (iii) fixed–
fixed. The employed initial conditions are *wðxÞ ¼ 16w0ðx

4 � 2x3 þ xÞ=5; *wðxÞ ¼ 4w0ð2x
4 � 5x3 þ

3x2Þ; *wðxÞ ¼ 16w0ðx
4 � 2x3 þ x2Þ; respectively; x ¼ x=l and w0 is the central deflection of the

beam. In all three cases it is assumed ’*wðxÞ ¼ 0: In Table 1 results for the frequency ratios o0=o at
various amplitude ratios w0=z are presented compared with existing solutions; o0 is the respective
frequency of the linear vibration and z ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration.

4.2. Uniform cross-section. Concentrated load

A fixed–fixed beam with uniform rectangular cross-section b 	 h and length l ¼ 0:508 m has
been analyzed under a suddenly applied concentrated force of P ¼ 2:844 kN ðtX0Þ acting at the
midspan of the beam with zero initial conditions. The employed data are: E ¼ 2:07	 108 kN=m2;
b ¼ 0:0254 m; h ¼ 0:003175 m and r ¼ 0:2186 kg=m: Many investigators have studied this
problem. McNamara [11] used five beam bending elements based on a central-difference operator,
Mondkar and Powell [12] used five eight-node plane stress elements to model one-half of the
beam, Yang and Saigal [13] used six beam elements and Leung and Mao [14] used six beam
elements for the one-half of the beam. The time history of the central deflection is shown in Fig. 4.
In Table 2 the maximum deflection and the period of the first cycle are presented as compared
with the solutions given in the above references. The obtained results are closer to those given in
Refs. [12] and [13], which according to our opinion are the most accurate.
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Table 1

Frequency ratios o0=o at various amplitude ratios w0=z in Example 4.1

w0=z Hinged–hinged Fixed–hinged Fixed–fixed

AEM Ref. [9] Ref. [14] AEM Ref. [9] Ref. [14] AEM Ref. [9] Ref. [14]

0.2 1.003 1.004 1.004 1.003 1.002 1.002 1.002 1.001 1.001

0.6 1.032 1.033 1.036 1.019 1.017 1.021 1.008 1.008 1.011

1.0 1.089 1.089 1.070 1.052 1.047 1.057 1.021 1.022 1.030

3.0 1.623 1.626 1.673 1.364 1.362 1.416 1.179 1.183 1.322

5.0 2.347 2.350 2.350 1.815 1.829 1.916 1.429 1.447 1.556
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4.3. Uniform cross-section. Distributed load

The forced vibrations of a steel I-section beam with length l ¼ 10:0 m have been studied using
both theories referred to as deformed and undeformed configuration. The cross-section is
constructed from a pair of identical flange plates b ¼ 300 mm wide by tf ¼ 30 mm thick and a
web plate tw ¼ 12 mm thick with height hw ¼ 500mm (see Fig. 5a). The other data are: E ¼
2:1	 108 kN=m2; r ¼ 188:40 kg=m: The applied dynamic load is the so-called ‘‘static’’ load
pzðtÞ ¼ pz0t=t1 if 0ptpt1 and pzðtÞ ¼ pz0 if t1pt ðt1 ¼ 0:02 sÞ with zero initial conditions (see
Fig. 5b). The examined boundary conditions are depicted in Fig. 6. The load pz0 ¼ 3000 kN=m
was used except from the last case where it was taken pz0 ¼ 300 kN=m: The time histories of the
displacements u and w are shown in Figs. 7–13 at the cross-section x0 ¼ 6:9048 m: From these
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Fig. 4. Time history of the central deflection of Example 4.2.

Table 2

Maximum deflection wmax (m) and period T ðmsÞ of the first cycle in Example 4.2

AEM Ref. [11] Ref. [12] Ref. [13] Ref. [14]

wmax (m) 0.01960 0.02286 0.01956 0.01956 0.01946

T ðmsÞ 2275 2884 2300 2300 2151

Fig. 5. (a) Cross-section of the steel I-section beam, (b) load history of the ‘‘static’’ load.
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figures one can conclude that for axially immovable ends the deviation between the two sets of
governing equations is negligible (see Figs. 7–9). However, for axially movable ends the deviation
may be appreciable (see Figs. 10–13). The same conclusion can be drawn from the time history of
the ratio Qw;x=N: That is, the ratio Qw;x=N for fixed–fixed ends is small (see Fig. 14), while for
pinned-roller ends this ratio approaches the value of 1 as it was anticipated (see Fig. 15).
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Fig. 6. Boundary conditions in Example 4.3.
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Fig. 7. Time history of the displacements in Example 4.3. Boundary conditions: Case (a) ——, deformed configuration;

—3—, undeformed configuration.
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Fig. 8. Time history of the displacements in Example 4.3. Boundary conditions: Case (b). ——, deformed

configuration; —3—, undeformed configuration.
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Fig. 9. Time history of the displacements in Example 4.3. Boundary conditions: Case (c). ——, deformed

configuration; —3—, undeformed configuration.
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Fig. 10. Time history of the displacements in Example 4.3. Boundary conditions: Case (d). ——, deformed

configuration; —3—, undeformed configuration.
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Fig. 11. Time history of the displacements in Example 4.3. Boundary conditions: Case (e). ——, deformed

configuration; —3—, undeformed configuration.
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Fig. 12. Time history of the displacements in Example 4.3. Boundary conditions: Case (f). ——, deformed

configuration; —3—, undeformed configuration.
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Fig. 13. Time history of the displacements in Example 4.3. Boundary conditions: Case (g). ——, deformed

configuration; —3—, undeformed configuration.
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4.4. Variable cross-section. Free and forced vibrations

The free and forced vibrations of the steel I-section beam of Example 4.3 have been studied
under varying web height hwðxÞ: Two cases are considered: (a) constant web height, hw ¼ hwð0Þ
and (b) linearly varying web height, hw ¼ hwð0Þð0:5þ x=lÞ: In both cases the volume of the
material, i.e., V ¼ ½twhwð0Þ þ 2tf b�l; was kept constant. The mass density per unit length is r ¼
7850AðxÞ kg=m:
Three types of boundary conditions are considered (i) hinged–hinged, (ii) fixed–hinged and (iii)

fixed–fixed. In Figs. 16 and 17 results for the natural vibrations are presented for cases (a) and (b),
respectively. The employed initial conditions were those of Example 4.1 ðw0 ¼ 1:0 mÞ: In Fig. 18,
the dependence of the period T (T0 is the period of the linear vibration) on the maximum
amplitude is shown for both cases. Finally, the forced vibrations have been studied under the
‘‘static’’ load (pz0 ¼ 3000 kN=m; t1 ¼ 0:02 s) with zero initial conditions. The time histories of the
central deflection for cases (a) and (b) are shown in Figs. 19 and 20 respectively.
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Fig. 14. Time history of the ratio Qw;x=N in Example 4.3. Boundary conditions: Case (a).
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Fig. 15. Time history of the ratio Qw;x=N in Example 4.3. Boundary conditions: Case (d).
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5. Conclusions

In this paper a direct solution to dynamic problem of beams with variable stiffness undergoing
large deflections has been presented. The governing equations have been derived considering the
dynamic equilibrium in the deformed configuration. The presented solution is based on the
concept of the analog equation, which converts the two coupled non-linear equations of motion
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Fig. 17. Free vibrations in Example 4.4. Time history of the central deflection: Case (b). ——, BCs hinged–hinged;

—�—, BCs fixed–hinged; —\—, BCs fixed–fixed.
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Fig. 18. Period versus maximum amplitude in Example 4.4. —�—, case (a); —3—, case (b).

0 0.01 0.02 0.03 0.04

t (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

W
(l/

2,
t)

 (
m

)

Fig. 16. Free vibrations in Example 4.4. Time history of the central deflection: Case (a). ——, BCs hinged–hinged;

—�—, BCs fixed–hinged; —\—, BCs fixed–fixed.
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into two quasi-static uncoupled linear equations with fictitious loads. These equations are
subsequently solved using the one-dimensional integral equation method. From the presented
analysis and the numerical examples the following main conclusions can be drawn.

(a) Only simple fundamental solutions pertaining to the static problem are employed to derive the
integral representation of the solution.

(b) The displacements and the stress resultants are computed at any point using the respective
integral representation as a mathematical formula.

(c) Accurate numerical results for the displacements and the stress resultants are obtained.
(d) The solution of the static problem can be obtained using the same computer program if the

inertia forces are neglected.
(e) The influence of the shear force on the axial force may be appreciable in the case of

axially movable ends. Therefore inaccuracies may result, if the response of the system is
obtained using the simplified equations resulting from the equilibrium of the undeformed
element.

(f) Beam structures can be also analyzed using the beam as substructure avoiding, thus, fine
FEM discretizations within each beam. A requirement that is more pronounced for beams
with variable stiffness.
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Fig. 20. Forced vibrations in Example 4.4. Time history of the central deflection: Case (b). ——, BCs hinged–hinged;

—�—, BCs fixed–hinged; —\—, BCs fixed–fixed.
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Fig. 19. Forced vibrations in Example 4.4. Time history of the central deflection: Case (a). ——, BCs hinged–hinged;

—�—, BCs fixed–hinged; —\—, BCs fixed–fixed.
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