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Abstract

It is demonstrated that a state space formulation of the equation of motion of damped structural
elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping
operators are self-adjoint, and that this is typically the case in the absence of gyroscopic forces. The
corresponding theory of complex modal analysis of continuous systems is developed and illustrated in
relation to optimal damping and impulse response of cables and beams with discrete viscous dampers.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The equation of motion of structural elements such as cables, beams, plates, etc. can typically
be expressed in the form

Dxuðx; tÞ þ m .uðx; tÞ ¼ f ðx; tÞ; ð1Þ

where uðx; tÞ is the displacement at the location x at time t: f ðx; tÞ is the force corresponding to the
displacement uðx; tÞ: A prime denotes differentiation with respect to the spatial co-ordinate x; and
a dot differentiation with respect to time t: Dx denotes an even order self-adjoint differential
spatial operator, representing the stiffness of the structural element. Simple examples are a taut
cable with axial force T ; for which Dxu ¼ �ðTu0Þ0; and a beam with bending stiffness EI ; for
which Dxu ¼ ðEIu00Þ00: In addition to the self-adjoint character of the stiffness differential operator
Dx; it will be assumed that there is no energy transfer through the boundaries. The case of
dampers at the boundaries can be treated by an equivalent system with the dampers located just
inside the boundary.
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Vibration properties of the structural element are often studied by assuming the existence of
free vibrations of the form

uðx; tÞ ¼ unðxÞ elnt; ð2Þ

where the parameter l is determined from the eigenvalue problem obtained by substitution of
Eq. (2) into Eq. (1),

ðDx þ l2nmÞunðxÞ ¼ 0: ð3Þ

For a self-adjoint stiffness operator, and boundary conditions without energy transport, the
eigenvalue problem is symmetric with real-valued eigenfunctions unðx; tÞ and eigenvalues l2n: If
Eq. (3) is multiplied by unðxÞ and integrated over the element it follows from positive elastic and
kinetic energy that l2np0; n ¼ 1; 2;y; and thus ln ¼ ion; where onX0 are the real-valued natural
vibration frequencies.
In a linear problem governed by a differential equation it follows from energy considerations,

that damping must be proportional to the time derivative of the displacement function uðx; tÞ: In
the following this dependence will be expressed via the damping operator Cx ’u: The occurrence of
the first time derivative in the equation of motion leads to the occurrence of terms with the linear
factor ln in the eigenvalue problem corresponding to Eq. (3). It turns out that insight into the
structure of the problem as well as efficient means of analysis can be found by recasting the
quadratic eigenvalue problem of damped vibrations into an expanded linear form. For discrete
systems this approach dates back to work by Foss [1], and it is now standard procedure for
numerical solution techniques, see e.g., Ref. [2]. However, the general formulation for continuous
systems is still under development, see e.g., Refs. [3–5] treating special cases of isolated dampers
on beams, and Yang and Wu [6] who developed a general but rather elaborate procedure for non-
symmetric eigenvalue problems.
In the present paper a general formulation is developed, from which it appears, that many

typical damping mechanisms are described by self-adjoint damping operators Cx; whereby the
corresponding damped eigenvalue problem can be cast into an expanded symmetric form. The
expanded system is obtained by introducing an independent representation of the momentum, like
in the Hamiltonian formulation of mechanics. The symmetry of the expanded eigenvalue problem
leads to a fairly straightforward extension of the classical theory of modal analysis of undamped
vibrations, based on an expansion of the solution in mode shapes. The general theory is illustrated
by examples of optimal damping of cables and beams with isolated dampers. Modal loads are
derived for concentrated and uniformly distributed loading, and the effect for impulsive load is
illustrated.

2. State space format

In a system described by a linear differential equation damping must be proportional to the
time derivative ’uðx; tÞ to insure dissipation of energy. The equation of motion can therefore be
written in the form

Dxuðx; tÞ þ Cx ’uðx; tÞ þ m .uðx; tÞ ¼ f ðx; tÞ; ð4Þ
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where Cx is a spatial operator that represents the damping forces, and may include spatial
derivatives, delta functions, etc.
Modal decomposition of the dynamic response depends on orthogonality relations for

the individual terms in the equation of motion. In order to obtain a linear eigenvalue
formulation and the corresponding pair of orthogonality relations for the general damped
problem the momentum m ’uðx; tÞ is represented by an independent variable according to the
definition

mvðx; tÞ ¼ m ’uðx; tÞ: ð5Þ

Clearly this defines the new independent variable as vðx; tÞ ¼ ’uðx; tÞ; but definition (5) is used to
emphasize the background in the independent representation of momentum as in Hamiltonian
mechanics.
When the inertial force in the equation of motion is represented by the momentum variable, the

damped equation of motion and the definition of the momentum variable can be combined into
the state space equation format

Dx 0

0 �m

" #
uðx; tÞ

vðx; tÞ

" #
þ

Cx m

m 0

" #
’uðx; tÞ

’vðx; tÞ

" #
¼

f ðx; tÞ

0

" #
: ð6Þ

In contrast to the original equation of motion, that is of second order in time, the state space
equation is of first order in time, similar in form to that of damped discrete systems. The
symmetry of the state space format is obtained because the second equation is written as a
momentum equation, and because the damping term is retained in its original form Cx ’u; i.e., as a
time derivative of the displacement. Eq. (6) will be self-adjoint with respect to the state space
vector ½uðx; tÞ; vðx; tÞ� provided both the stiffness operator Dx and the damping operator Cx are
self-adjoint.
It is interesting to observe that if the state space equations are written in evolution form, i.e., as

an equation for the time derivative of the state space vector, the symmetry of the system does not
appear explicitly, because the damping term will have to be expressed in terms of vðx; tÞ instead of
’uðx; tÞ: This has sometimes lead to the belief that damping would by itself lead to non-adjoint
system properties.

2.1. Complex modes and eigenvalues

Vibration modes and the corresponding frequencies are found by assuming free vibrations of
the form (2). The exponential form of the time variation leads to the following state vector mode
representation:

un

vn

" #
¼

un

lnun

" #
; ð7Þ

where the relation vn ¼ lnun clearly suggests the redundancy of the formulation, introduced to
make the corresponding eigenvalue problem linear.
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Substitution of relations (2) and (7) into the state space equation (6) leads to the linear
eigenvalue problem

Dx 0

0 �m

" #
þ ln

Cx m

m 0

" # !
unðxÞ

vnðxÞ

" #
¼

0

0

" #
: ð8Þ

When both stiffness and damping operator are self-adjoint, the eigenvalue problem is symmetric,
and thus there is no need to distinguish between left and right eigenvectors, as in the analysis of
Yang and Wu [6]. The common forms of viscous damping leads to self-adjoint damping operator
as illustrated by the examples.
In the present context it will be assumed that there is no transport of energy over the

boundaries, and that springs and dampers at the boundaries are included right inside the
boundaries in the operators Dx and Cx: Multiplication of the eigenvalue equation (8) by
½urðxÞ; vrðxÞ� and use of the symmetry leads to the two orthogonality relationsZ

L

½urðxÞDxunðxÞ � vrðxÞmvnðxÞ� dx ¼ Andrn; ð9Þ

and Z
L

½urðxÞCxunðxÞ þ vrðxÞmunðxÞ þ urðxÞmvnðxÞ� dx ¼ Bndrn; ð10Þ

where An and Bn are normalizing constants. Upon introduction of vn ¼ lnun the following
orthogonality relations for unðxÞ are obtained:Z

L

urðxÞ½Dx � lrlnm�unðxÞ dx ¼ Andrn; ð11Þ

Z
L

urðxÞ½Cx þ ðlr þ lnÞm�unðxÞ dx ¼ Bndrn: ð12Þ

The normalizing constants An and Bn are not independent, and it appears to be advantageous to
replace them with a single constant Mn; generalizing the classic modal mass of undamped modes.
When adding ln times (12) to Eq. (11) for r ¼ n the integrand contains the terms corresponding to
the homogeneous equation of motion (4), and thus An þ lnBn ¼ 0: Both normalizing constants
can therefore be replaced by a generalized modal mass Mn via the substitutions

An ¼ �lnBn ¼ �2l2nMn: ð13Þ

It then follows from Eqs. (11) and (12) that the generalized modal mass is given by either of the
two expressions,

Mn ¼
Z

L

unðxÞ m þ
1

2ln

Cx

� �
unðxÞ dx

¼
1

2

Z
L

unðxÞ m �
1

l2n
Dx

" #
unðxÞ dx: ð14Þ

The first of these expressions clearly shows Mn as an extension of the classic modal mass, while the
second is the average of the classic modal mass and a generalization of the classic modal stiffness.
Furthermore, as the mode shapes appear directly and not in the Hermitean conjugate form, the
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modes unðxÞ can always be normalized to make the corresponding generalized modal mass
Mn real.

2.2. Modal equations of motion

Modal analysis is carried out by representing the solution as an expansion of orthogonal
modes. In the state space formulation this amounts to an expansion of the form

uðx; tÞ

vðx; tÞ

" #
¼
X

n

rnðtÞ
unðxÞ

vnðxÞ

" #
; ð15Þ

where rnðtÞ is a generally complex amplitude function. Substitution of this representation into the
state space equation (6) and use of the orthogonality relations (9) and (10) gives the first order
modal equations of motion

AnrnðtÞ þ Bn ’rnðtÞ ¼ fnðtÞ; ð16Þ

with modal loads defined as

fnðtÞ ¼
Z

L

unðxÞf ðx; tÞ dx: ð17Þ

Introduction of the generalized modal mass from Eq. (13) gives the normalized form of the modal
equations of motion,

’rnðtÞ � lnrnðtÞ ¼
1

2lnMn

fnðtÞ: ð18Þ

This is the first order state space modal equation equivalent of the classic second order modal
equation.
The definition of the modal forces by Eq. (17) implies that they appear as coefficients in the

following formal expansions of the state space force vector ½f ðx; tÞ; 0�:

f ðx; tÞ

0

" #
¼
X

n

fnðtÞ
An

Dx 0

0 �m

" #
unðxÞ

vnðxÞ

" #
¼
X

n

fnðtÞ
Bn

Cx m

m 0

" #
unðxÞ

vnðxÞ

" #
: ð19Þ

The modes and eigenvalues occur in complex conjugate pairs. In the case of zero damping the
contributions to the second component are pure imaginary, and therefore the momentum
equation corresponding to the second component is identically satisfied also for a truncated
system including a finite set of mode pairs. However, this is not guaranteed in the case of general
damping.
The initial conditions of the modal equations are found by using the modal state space

representation (15) at time t ¼ 0;

uðx; 0Þ

vðx; 0Þ

" #
¼
X

n

rnð0Þ
unðxÞ

vnðxÞ

" #
: ð20Þ
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The coefficients rnð0Þ are obtained by use of the A- or B-orthogonality relations (9) or (10),
whereby

rnð0Þ ¼
1

An

Z
L

½unðxÞDxuðx; 0Þ � vnðxÞmvðx; 0Þ� dx

¼
1

Bn

Z
L

½unðxÞCxuðx; 0Þ þ vnðxÞmuðx; 0Þ þ unðxÞmvðx; 0Þ� dx: ð21Þ

These relations are expressed in terms of the mode shape unðxÞ and the generalized modal mass
Mn as

rnð0Þ ¼
�1

2l2nMn

Z
L

unðxÞ½Dxuðx; 0Þ � lnmvðx; 0Þ� dx

¼
1

2lnMn

Z
L

unðxÞ½ðCx þ lnmÞuðx; 0Þ þ mvðx; 0Þ� dx; ð22Þ

where the dependence on initial velocity vðx; 0Þ is the same, while two expressions are available for
the dependence on initial position uðx; 0Þ: In the undamped case information about the initial
position is stored in the real part of rnð0Þ and information about the initial velocity in the
imaginary part. In the case of general damping the effects are mixed.

3. Examples

The following examples illustrate complex mode analysis of simple cable and beam problems
involving concentrated viscous dampers. In these problems the effect of the damper is closely
linked to the complex character of the modes. Optimal damping of a mode is obtained for an
intermediate magnitude of the damping constant that is sufficiently small to permit motion and at
the same time sufficiently large to lead to substantial energy dissipation. The examples illustrate
the similarity of the analytical technique for cables and beams.

3.1. Taut cable with damper

Fig. 1 shows a taut cable of length c fixed by rigid supports and with a concentrated damper
with parameter c at x ¼ a: The objective is to find the complex modes and their damping
properties, and thereby enable selection of optimum damper properties. In addition the analysis
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includes the modal loads for an arbitrarily located impact force. The optimal damping problem
was treated numerically by Pacheco et al. [7] while Krenk [8] and Main and Jones [9] used complex
modes. The more general problem of cables with sag has been treated via complex modes by
Krenk and Nielsen [10], and the nonlinear problem of whirling motion of cables with dampers by
Nielsen and Krenk [11].
The equation of motion of the cable is

Tu00 � m .u þ f ðx; tÞ ¼ c ’udðx � aÞ; ð23Þ

where T is the cable force, and m is the mass per unit length. This is a special case of the general
equation (4) with Dxu ¼ �ðTu0Þ0; while the right side of the equation represents the concentrated
damping force, corresponding to the self-adjoint damping operator

Cx ’uðx; tÞ ¼ c ’uðx; tÞdðx � aÞ: ð24Þ

Thus, the problem belongs to the class of symmetric damped vibration problems treated in
Section 2.

3.1.1. Homogeneous solution
When solving a differential equation with a discontinuity at x ¼ a it is convenient to consider

the homogeneous equation

Tu00 � m .u ¼ 0; xaa; ð25Þ

on both sides of the discontinuity. At the location of the damper the solution satisfies the
discontinuity equation

Tðu0
aþ � u0

a�Þ ¼ c ’u: ð26Þ

The solution for free vibrations is expressed in the form

uðx; tÞ ¼ unðxÞ expðiontÞ; ð27Þ

where on is the generally complex modal frequency. For free vibrations the modal damping ratio
zn is determined from the complex modal frequency on via the representation

on ¼ jonj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
þ izn

� �
: ð28Þ

Substitution of the modal representation (27) into the homogeneous equation (25) leads to the
mode shape

unðxÞ ¼
unðaÞ

sinðbnxÞ
sinðbnaÞ

; 0pxpa;

unðaÞ
sinðbnx0Þ
sinðbna0Þ

; 0px0pa0;

8>><
>>: ð29Þ

where the primed parameters refer to the right part of the cable as shown in Fig. 1. The parameter
bn is the wave number, related to the frequency by

bn ¼ on

ffiffiffiffi
m

T

r
: ð30Þ

The frequency is seen to be proportional to the wave number in this case.
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3.1.2. Complex eigenfrequencies

The wave number is determined from the discontinuity equation (26), describing the action
of the damper. Substitution of the homogeneous solution (28) into the discontinuity condition
(26) gives

cotðbnaÞ þ cotðbna0Þ ¼ �i
cffiffiffiffiffiffiffiffi
mT

p : ð31Þ

The damping parameter c is seen to appear in the equation via the non-dimensional damping
coefficient

Z ¼
cffiffiffiffiffiffiffiffi
mT

p : ð32Þ

It is convenient to rewrite Eq. (32) in a form, where the special case of undamped vibrations
appear as the left side of the equation. By use of the substitution a0 ¼ c� a and rearrangement the
equation is obtained in the form

tanðbcÞ ¼
iZ sin2ðbaÞ

1þ iZ cosðbaÞ sinðbaÞ
: ð33Þ

An iterative solution is obtained from the undamped wave numbers bn;0 ¼ np=c; n ¼ 1; 2;y in a
couple of iterations for small values of a=c: If the damper is close to an anti-node of the undamped
vibration mode different modes of vibration may occur as discussed by Main and Jones [9], and
the simple iterative method (33) may experience convergence problems.
For na{c the equation has a simple asymptotic solution, Krenk [8]. It is obtained by using

single term expansions for all the trigonometric functions in Eq. (33). When using the notation
bn ¼ bn;0 þ Dbn; the asymptotic form of Eq. (33) can be written as

Dbn

bn

C
a

c

iZbna

1þ iZbna
: ð34Þ

As a{c the magnitude of the wave number increment jDbnj is small relative to the original
undamped value bn;0: It is then permissible to use bn;0 instead of bn in relation (34), which becomes
an explicit formula for the wave number increment Dbn:
The damping is small, and the damping ratio can then be extracted from the complex wave

number representation as

zn ¼
Im½on�
jonj

¼
Im½bn�
jbnj

C
Im½Dbn�
bn;0

: ð35Þ

The asymptotic damping ratio then follows from (34) as

zn

a=c
C

Zbn;0a

1þ ðZbn;0aÞ
2
¼

Znpa=c

1þ ðZnpa=cÞ2
: ð36Þ

This relation identifies a universal relation between the normalized modal damping ratio znc=a

and the damping, represented by Znpa=c ¼ Zabn;0: The curve is shown in Fig. 2. It follows from
Eq. (36) that optimal damping corresponds to

Zopt ¼
1

pna=c
; zn;optC

a

2c
: ð37Þ
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Thus, the higher modes require less damping to be optimal. However, the modal damping ratio
represents the damping per oscillation period, and thus the damping per time unit may be more
representative, when comparing the damping level of different modes. If the lowest mode has
optimal damping the higher modes will have a damping ratio znCða=cÞn=ð1þ n2Þ; corresponding
the damping per time increment increasing with mode number as n2=ð1þ n2Þ: Thus, within the
present assumption of a{c=n; the damping of the higher modes increase to double the value of
the first mode with increasing mode number.
The two first complex modes are shown in Fig. 3 for a=c ¼ 0:02 and optimal damping of the

first mode, i.e. Z ¼ ðpa=cÞ�1: This provides a damping ratio of z1 ¼ 0:01 for the first mode,
deemed to be sufficient for cables in cable stayed bridges [12]. The modes are normalized by
selecting unðaÞ ¼ sinðbn;0aÞ; whereby the corresponding undamped mode would have maximum
value equal to one. It is characteristic of all the modes that the real and imaginary part are similar
and with the same number of nodes as in the undamped case. The effect of the damper shows up
as a kink on the imaginary part at x ¼ a: The first mode has optimal damping, and the real and
imaginary part are approximately of the same magnitude apart from a neighborhood around the
damper. For the higher modes the imaginary part becomes larger than the real part.
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Fig. 3. Real and imaginary part of modes u1ðxÞ and u2ðxÞ for a=c ¼ 0:02:
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3.1.3. Response to local impulse

The modal mass M corresponding to the mode unðxÞ given by Eq. (29) is calculated by use of
the first of the integrals in Eq. (14) in order to avoid evaluating Dxun at the point of the damper.
Integration gives

Mn ¼
1

2
munðaÞ

2 a

sin2ðbnaÞ
1�

sinð2bnaÞ
2bna

� �(

þ
a0

sin2ðbna0Þ
1�

sinð2bna0Þ
2bna0

� �
�

i

bn

cffiffiffiffiffiffiffi
Tm

p
)
: ð38Þ

When the second terms in the two brackets are reduced by introducing the product formula for
the sine to the double angle, it follows from Eq. (31) that these terms cancel the last term due to
the damper. Thus, the final form of the modal mass is

Mn ¼
1

2
munðaÞ

2 a

sin2ðbnaÞ
þ

a0

sin2ðbna0Þ

( )
: ð39Þ

For undamped motion of the cable unðaÞ ¼ sinðbn;0aÞ leads to the modal mass Mn ¼ 1
2 mc:

Let a concentrated force of magnitude Fb act at x ¼ b from t ¼ 0: This gives the solution to the
modal amplitude equation (18)

rnðtÞ ¼ �
FbunðbÞ

2l2nMn

ð1� elntÞ: ð40Þ

The total response then follows by summation from Eq. (15). When the modes are grouped in
conjugate pairs, the solution takes the form

uðx; tÞ ¼ �Fb

X
n

Re
unðxÞunðbÞ

l2nMn

ð1� elntÞ

" #
: ð41Þ

When considering the solution it is convenient to represent the time in terms of the time for a wave
to transverse the cable. This time is determined by the wave speed c0 ¼

ffiffiffiffiffiffiffiffiffiffi
T=m

p
and the cable

length c as c=c0: The static deflection is seen from the original equation (23) to be 1
4

lFb=T :
The response is calculated by use of 20 mode shape pairs for a damper at a=c ¼ 0:02 and a

concentrated force Fb applied at the center, b ¼ 1
2
c: The displacement at the center is shown in

Fig. 4 for optimal damping of the first mode, Z ¼ ðpa=cÞ�1: The corresponding undamped
solution is shown as a dashed curve. It is seen that in the case of damping the response at x ¼ b

decreases rather rapidly. The reason is the damping in conjunction with a rounding of the shape as
illustrated in Fig. 5 for the time t ¼ 5l=c0:

3.2. Beam with dampers

A simply supported homogeneous beam of length c with bending stiffness EI and mass per unit
length m is shown in Fig. 6. Damping is provided by rotation dampers at the supports, simulating
flexible support in a structure. This problem was studied by Oliveto et al. [5], who developed a
special iteration technique, and considered the response problem via an impulse formulation. In
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the following the problem is treated as an example of modal decomposition within the class of
damped structural elements considered in Section 2, and optimal damper properties are derived
by a simple generalization of the technique used in the cable example.
The beam in Fig. 6 is symmetric, and it is therefore convenient to introduce the x-co-ordinate

with origin at the center of the beam. The beam is governed by a differential equation of type (4)
with stiffness operator

Dxu ¼ ðEIu00Þ00; ð42Þ
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Fig. 5. Shape of cable at t ¼ 5c=c0:

Fig. 6. Simply supported beam with viscous rotation dampers.
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and damping operator

Cx ’u ¼ �½cdðx þ 1
2
cÞ ’u0�0 � ½cdðx � 1

2
cÞ ’u0�0: ð43Þ

The latter is perhaps best seen by formulating the rate of work by multiplication with a virtual
velocity d ’u: Both of these operators are self-adjoint, and the corresponding eigenvalue problem
therefore symmetric.
The equation of motion of the beam with transverse load intensity f ðx; tÞ is

ðEIu00Þ00 þ m .u ¼ f ðx; tÞ: ð44Þ

When the solution uðx; tÞ is represented in damped harmonic form (27) with complex angular
frequency on; the corresponding homogeneous equation is

ðEIu00
nÞ

00 � mo2
nun ¼ 0: ð45Þ

The end moments of the beam equal the moments provided by the dampers,

M ¼ �EIu00 ¼ c ’u0 for x ¼ 71
2
c: ð46Þ

The characteristic equation of this system permits solutions of the form

unðxÞp e7bnx; e7ibnx; ð47Þ

where the wave number bn is determined by

b4n ¼
mo2

n

EI
: ð48Þ

Thus, the representation of the present damped solution is similar to that of an undamped beam,
when the frequency and thereby the wave number are permitted to take complex values.
A suitable non-dimensional damping parameter is identified from the boundary condition (46)

by substitution of any of solutions (47). When the wave number and the frequency are eliminated
by use of Eq. (48) the damping parameter is found to be

Z ¼
c=cffiffiffiffiffiffiffiffiffiffi
mEI

p : ð49Þ

This definition of the non-dimensional damping is similar in form to Eq. (32) for the cable.

3.2.1. Symmetric modes

When the x-axis is located with origin at the center of the beam, the symmetric modes with
unð7 1

2
cÞ ¼ 0 can be constructed directly from a simple symmetry argument as

unðxÞ ¼ Cn½cosðbnxÞ coshð1
2
bncÞ � coshðbnxÞ cosð1

2
bncÞ�; ð50Þ

where Cn is a normalizing constant. After differentiation, substitution of this mode into the
boundary condition (46) yields the following equation for the wave number bn

cotð1
2
bncÞ ¼ �iZð1

2
bncÞ½1þ tanhð1

2
bncÞ cotð

1
2
bncÞ�: ð51Þ

The undamped modes correspond to the roots bn;0c ¼ np; n ¼ 1; 3; 5;y . This suggests that all
terms containing cotð1

2
bncÞ are collected at the left of the equation, which after division by the
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factor of the cot-function takes the form

cotð1
2
bncÞ ¼

�iZð1
2
bncÞ

1þ iZð1
2
bncÞ tanhð

1
2
bncÞ

; n ¼ 1; 3; 5;y : ð52Þ

This formula is very similar to the wave number equation (33) for the taut string with a
concentrated damper, and can be used directly for iteration, starting with the undamped wave
number bn;0c ¼ np for each of the symmetric modes n ¼ 1; 3; 5;y .
The results are shown in Fig. 7, where the wave number of the first three symmetric modes is

shown in full line. Note that in order to fit the graphs of all the six lowest modes into the same
figures the real part of all the wave numbers are normalized with their corresponding undamped
value, Re½bn�=bn;0; while the imaginary part is normalized by the undamped wave number of the
first mode, Im½bn�=b1;0: It is seen from Fig. 7a that the real part of the wave number increases from
its initial undamped value bn;0 ¼ np=c to a value bn;N; corresponding to clamped end conditions.
The wave numbers bn;N of the clamped beam follows from Eq. (52) as the limit for infinite
damping, Z-N;

cotð1
2
bn;NcÞ ¼ �cothð1

2
bn;NcÞ; n ¼ 1; 3; 5;y : ð53Þ

The increase mainly takes place over the interval of damping 0:3pnZp0:5: The imaginary part of
the wave number increases from zero, reaches a peak for damping in the interval 0:3pnZp0:5;
and then decreases towards zero again.

3.2.2. Anti-symmetric modes
The anti-symmetric modes with uð7 1

2
cÞ ¼ 0 are treated in a similar way. The anti-symmetric

solutions can be written down directly as

unðxÞ ¼ Cn½sinðbnxÞ sinhð1
2
bncÞ � sinhðbnxÞ sinð1

2
bncÞ�; ð54Þ

with normalizing constant Cn: Differentiation and substitution into the boundary condition (46)
leads to the wave number equation for the anti-symmetric modes,

tanð1
2
bncÞ ¼ iZð1

2
bncÞ½1� cothð1

2
bncÞ tanð

1
2
bncÞ�: ð55Þ
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Fig. 7. Wave number bn; (a) as function of damping, (b) in complex plane.
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The wave numbers of the anti-symmetric undamped modes bn;0c ¼ np for n ¼ 2; 4; 6;y are the
roots of tanð12 bncÞ; and the terms containing the tan-function are collected on the left side,
whereby the final equation becomes

tanð1
2
bncÞ ¼

iZð1
2
bncÞ

1þ iZð1
2
bncÞ cothð

1
2
bncÞ

; n ¼ 2; 4; 6;y : ð56Þ

Also this equation is suitable for direct iteration, starting with bn;0c ¼ np for each of the anti-
symmetric modes n ¼ 2; 4; 6;y . The limiting behaviour of infinite damping gives the following
equation for the wave numbers of the anti-symmetric modes of a clamped beam,

tanð1
2
bn;NcÞ ¼ tanhð1

2
bn;NcÞ; n ¼ 2; 4; 6;y : ð57Þ

This equation is identical to Eq. (53) for the symmetric modes, apart from a change of the sign of
the right side of the equation.
The results for the first three anti-symmetric modes are included in Fig. 7 in dashed line. The

results for the anti-symmetric modes fit in between the previous and following symmetric modes.

3.2.3. Optimal damping and tuning
Damping is determined by the complex damped natural frequency on: It follows from relation

(48) that onpb2n; and the frequency curves corresponding to the wave number curves in Fig. 7 are
shown in Fig. 8. It is seen that by scaling the damping of the individual modes as nZ and by scaling
the imaginary part of the frequency as n Im½on=on;0� the curves approach a common curve for the
higher modes. Although the results for the beam show the same structure as those for the cable
they are not quite as simple analytically. This is due to the fact that relation (34) for the increase of
wave number as a consequence of damping contains the small factor a=c: This implies that the
change in wave number is small, and thus the original undamped wave number can be used in the
right hand side of the relation. In the case of beams the similar wave number relations (52) and
(56) do not contain a small factor. Thus, in the case of beams large changes of the wave number
may occur, particularly for the lower modes, and thus use of the undamped wave number on the
right hand side of the relation is not a generally good approximation.
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Fig. 8. Angular frequency on; (a) as function of damping, (b) in complex plane.
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Optimal damping of the individual modes is obtained when the imaginary part of the damped
frequency Im½on� attains its maximum value. Corresponding values of Im½on�max and the damping
parameter Zopt are given for the first six modes in Table 1. As in the case of the cable optimal
damping of the first mode will lead to similar attenuation rate of the higher modes. However, in
the case of beams the damping is much higher and optimal tuning of the dampers may therefore
be less critical.

4. Conclusions

It has been demonstrated that viscous damping and isolated dampers can be included in the
equations of motion in a convenient operator format that permits a general formulation of the
complex-valued damped eigenvalue problem. In the absence of gyroscopic forces a self-adjoint
damping operator leads to a symmetric damped eigenvalue problem in which the complex
vibration modes satisfy two sets of orthogonality relations.
The theory is used to illustrate the role of complex damped modes in vibrations of cables and

beams. It is demonstrated that for concentrated dampers the wave number equations are similar
for cables and beams, and a simple iterative solution method is presented. Properties of the
damped modes are used to identify the maximum obtainable damping and the corresponding
optimal tuning of the damper. Furthermore the role of the damped complex modes in defining the
modal loads is demonstrated in the case of a taut cable with an isolated damper.
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