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Abstract

In this paper, the influence of anisotropy of the solid skeleton on the propagation characteristic of
Rayleigh waves in orthotropic fluid-saturated porous media is studied from a more general sense based on
Biot’s theory. Firstly, the governing equations for orthotropic fluid-saturated porous media are derived.
Then the three-dimensional complex characteristic equations for Rayleigh waves are deduced and their
existence conditions are given. Based on the characteristic equations, the Rayleigh wave speeds along
arbitrary directions and particle traces in arbitrary sagittal planes are numerically calculated. The effects of
anisotropy of the solid skeleton on the propagation characteristic of Rayleigh waves are analyzed in detail.
The results show that the Rayleigh waves display different characteristic in orthotropic fluid-saturated
porous media from that they have exhibited in isotropic or transversely isotropic fluid-saturated porous
media.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In pure solid half-space, the discovery of Rayleigh waves is tightly connected with the
earthquake spectrum analysis [1]. Owing to the slower attenuation of the energy than that of the
body waves and the characteristic that it propagates along the surface, Rayleigh waves cause
destructive vibration to the structures. Since most of the geological material can be treated as
some kind of fluid-saturated porous media and the actual media shows anisotropy, clarification of
the characteristic of Rayleigh waves in anisotropic fluid-saturated porous media has significant
practical meaning in many fields such as earthquake engineering, soil dynamics, geophysics and
hydrology.
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However, due to the non-linearity, it is difficult to get exact solutions of the characteristic
equations of Rayleigh waves in anisotropic media. Especially for fluid-saturated porous media,
the existence of the fluid phase in governing equations increases the order of the characteristic
equations and makes the problem more complicated. As a result, though much research [2,3] has
been carried out on the propagation of Rayleigh waves in anisotropic solids, less has been done on
the Rayleigh waves in anisotropic fluid-saturated porous media. Deresiewicz [4] first researched
the Rayleigh waves in porous media based on Biot’s theory. Johns [5] studied the Rayleigh waves
in isotropic saturated soil, but only one kind of longitudinal waves was considered in his
characteristic equations and thus the equations obtained by him are not complete. Tajuddin [6]
considered two kinds of the longitudinal waves and got the characteristic equations for isotropic
fluid-saturated porous media. Hirai [7] analyzed the Rayleigh waves in isotropic layered fluid-
saturated porous media by finite element methods, and the effects of the dynamic permeability on
the propagation characteristic of Rayleigh waves are discussed. Sharma and Gogna [8] studied the
Rayleigh waves in transversely isotropic porous media but the dissipation is ignored. Liu and
de Boer [9] studied the Rayleigh waves in isotropic fluid-saturated porous media using mixture
theory. Kumar [10] analyzed the influence of the heterogeneous base on the propagation of
Rayleigh waves in isotropic fluid-saturated porous layer. Liu and Liu [11,12] discussed the fluid
viscous effects on the propagation characteristic of Rayleigh waves in transversely isotropic fluid-
saturated porous media. From the discussion above we can see that the researches about Rayleigh
waves in fluid-saturated porous media are mainly focused on the isotropic and transversely
isotropic ones. However, according to the research results of mutli-scale analysis, geological
materials with random cracks/joints distribution, such as rocks, can be classified as some kinds of
transversely isotropic or orthotropic materials after statistical treatment [13]. By now, as per the
knowledge of authors, the works about the Rayleigh waves in the orthotropic fluid-saturated
porous media have not been available in the literatures. Obviously, orthotropy of the solid
skeleton has what effects on the propagation of Rayleigh waves is an important problem that
should be clarified. Here we try to discuss the effect of anisotropy of the solid skeleton on the
propagation characteristic of Rayleigh waves and show more features of Rayleigh waves in
anisotropic fluid-saturated porous media.

In the present paper, the characteristic analysis of Rayleigh waves in orthotropic fluid-saturated
porous media is carried out in the next two sections. The governing equations in orthotropic fluid-
saturated porous media are obtained based on Biot’s theory [14] (Section 2). The three-
dimensional complex characteristic equations of Rayleigh waves are derived and their existence
conditions are given (Section 3). In Section 4, the Rayleigh wave speeds along arbitrary directions
and the particle traces in arbitrary sagittal planes are numerically calculated. The effects of
anisotropy of the solid skeleton on the propagation characteristic of Rayleigh waves are discussed
in the final section and the conclusion is given.

2. Characteristic analysis

Following Biot [14], ignoring the dispersion caused by the fluid, the equations of motion for
anisotropic fluid-saturated porous media can be written in terms of Cartesian co-ordinates as

Tijj = Pl + ppi, (1a)
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_py
—pi = pyil; + X{W"’ (1b)

where 7; are the stress components of the solid skeleton, p the pore pressure in the fluid, w; =
¢(U; — u;) the displacement components of the fluid relative to the solid skeleton in which u; and
U; are the displacement components of the solid skeleton and the saturated pore fluid,
respectively, ¢ the porosity, p = (1 — ¢)p, + ¢p, the composite density in which p; and p, are the
densities of the solid skeleton and the pore fluid. Here i, j = 1, 2, 3 are corresponding to Xx, y, z.

The constitutive equations for anisotropic fluid-saturated porous media may be stated as [14]

T = Ajxier + Mg,

P = Mje; + Mg,

ejj = 5(uij + i),

= —Wii (2)
where ¢;; are the strain components of the solid skeleton, ¢ the volumetric strain of the fluid. 4y
(Ajx1 = Ajiki = Apiyj, the number of independent variables is 21), M;; (M; = Mj;, the number of
independent variables is 6) and M are parameters for the anisotropic solid skeleton and pore

fluids, the independent variables are 28. For orthotropic fluid-saturated porous media, the stress—
strain relationship can be expressed as

Txx [ A A A 0 0 0 M| (e

T Ap An Ax 0 0 0 My||e,

Tz Az Ay Az 0 0 0 My e:

b= 0 0 0 244 0 0 0 |{e. 3)
Tox 0 0 0 0 2As5 0 0 €sx

Txy 0 0 0 0 0 2466 0O exy

P | M1 My Ms; 0 0 0 M |\ ¢

where A1y, A2, A13, A2z, Ar3, A3z, Aaa, Ass, Ags, M1, My, M33, and M are 13 independent elastic
parameters.
Substituting Eq. (3) into Eq. (1), the governing equations for orthotropic fluid-saturated porous
media can be expressed in the following form:
0?u, u 0%u,
62+A6682+A5562
Fw,  Pw o*w.
— My =+ —2+
ox 6x6y 0x0z

A]] +(A12+A66

> = piix + psivy, (4a)
8214 62u 0*u o*u
p -i-Azza 5 +A4482

aZWX F*wy,  Ow.
_ A o m
2 <6x6y + 0y? + 8y62> pily & Py, (4b)

(A1x + A66) + Ase——
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u o*u *u o*u. *u.
A A ~ (4 Ay)y—2+ A4 "+ A4 =+ A -
(i3 + Ass)z -+ (dos + “Woar tAsso 7+ Au i +Ans
Pw,  Pw,  Pw
M X y 2\ — ii o 4
3 <6xaz + 0yoz * 0z% ) pltz = PV (4c)
&u u u, Pwy  Pw,  Pw,
M= + Mpy—2>+ My—— — sl Y :
a2t *5x0y T M ( Fro 0x0y * 8xaz)
.. Pr ..
= —pyily — wa, (4d)
*u *u u, Pwy  Pw,  w,
M=+ My——5 + Myy— — M| — - -
oy T Mg T Masgs, <8x6y+ )2 +6y62>
.. Pr ..
—pyily — éwy (4e)
Pu u u. Pwy  Pw,  Pw,
M X 'y M z X ¥ z
Woxez T M558, T MBI 5R (axaz t et e )
. Pr ..
= i~ L. (4n)

According to Simon and Paul [15], the material coefficients are related to the elastic parameters
of the solid skeleton Cjy;, the bulk modulus of solid grains K, and the bulk modulus of fluids
Kf by

Ay =Ci+uM, Ap=Cp+oumM, A= C;i+uunM,
Ay = Cpn+uM, Ay = Cyu+omusM, Ay = Cy+o3M,
Agg = Caq, Ass = Css,  Age = Co,

My =Mooy, My =—-—Mo, Ms;=—Mas,
M — £+1—¢_C11+C22+C33+2C12+2C13+2Cz3 -
- \Kr K, 9 K2 ’
Cii+Cpn+Cp Cio+ Cyn+ Cy Ciz+ Cxn+Cs3
061:1— 5 062:1— , 063:1— .
3K, 3K 3K,

It is clear that when Cj; = Cyp, Ci;3 = Cy, C4 = Css and Cg = (Cpp — Clz)/z, Eq. (4)
degenerates to the governing equations for the transversely isotropic fluid-saturated porous media
[11]. When Cyj = Cy = Cs3, Cip = Ci3 = Ca3, Ca4 = Css = Cge and Cyy = (C11 = C12)/2, Eq. (4)
becomes the governing equations for isotropic situation. Thus, the characteristic equations for
Rayleigh waves in isotropic and transversely isotropic fluid-saturated porous media can be
obtained through appropriate degeneration of the equations for orthotropic fluid-saturated
porous media.
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3. Characteristic equations of Rayleigh waves

Assuming the wave motion is caused by a pulse at the infinite distance (for example,
earthquake), the frequency is positive. Establish Cartesian co-ordinates with plane xoy the free
surface of the half-plane and positive z-axis pointing inside the media. We seek the solutions of
Eq. (4) that represent the Rayleigh waves traveling in a half-space with symmetry about z-axis in
the form

[t;, wi] = [A4;, Bilexp ik(lyx + by + 1z — ct), (5

where A; and B; are amplitudes of displacement components, i the imaginary unit, /; the direction
cosines, r a complex attenuation coefficient whose imaginary part should be positive
corresponding to the half-space z >0, k = w/c the wave number, in which ¢ is the Rayleigh
wave speed and o the frequency.

Substitution of Eq. (5) into Eq. (4) leads to simultaneous equations

[dkl]{Ax’AyaAz,BXaBy:BZ}T = O, (6)
where the elements dj; of the 6 x 6 complex matrix are given as

diy = pw? — (Anl} + Agols + Assr?)k?,  dia = day = —(A12 + Aee)1 K,

dis = d3) = —(A13 + Ass)h rk?, dig = dy = pro® + My Tk,

dis = ds; = My 11 Lk?, dig = doy = My, 1 rk?,

dhy = pw? — (Aesli + Anl3 + Asr®)k?,  doz = dzy = —(A3 + Ass)lark?,

dhy = dsy = Myl LK, drs = ds; = waz + MynBBk?,

the = dgy = Mnbrk?, diz = pa? — (Assl} + Aul3 + Az3r*)k?,
dyg = dyz = M33lirk?, dys = ds3 = Mazhrk?,

dig = dg3 = pfa)2 + My3r2k?, day = pfa)z/(,b — Ml%kz,

dys = dss = — ML LK, dss = des = — M rk?,

dss = p,o? )¢ — MEK?, dsg = des = — Mbrk?,

des = pfwz/qb — Mr2k>.
In order to have a non-trivial solution of Eq. (6), we have Det[d;] = 0, i.e.,
arr® + ayr® + asr* + agr? + as = 0. (7)

The coefficients a,, (m =1, ...,5) are very miscellaneous, the explicit forms are not given here.

In isotropic or transversely isotropic situations (Eq. (7) degenerates to four order or six order,
respectively), the solutions of Eq.(7) is pure imaginary [11,12]. But in the orthotropic
porous media, the roots of Eq. (7) are in general complex. Assuming r = & + i, Eq. (5) can be
rewritten as

[, wi] = [Ai, Bilexp (—k] 2)exp(ik; 2)exp ik(lx + by — ), ®)
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with k, = k(¢ + in) = kX + ik!. From Eq. (8) it can be obtained that the disturbance direction of
Rayleigh waves inclines to the free surface with the angle of « = cos™! &. Moreover, it is apparent
that

FP = gl? = K& =), |kf |kl cos p =S k*én. ©

As shown in Fig. 1, though the dispersion caused by the fluid viscosity is ignored, the phase
plane (the plane vertical to the vector kX) and the amplitude plane (the plane vertical to the vector
k?) are not parallel to each other any more. The maximal attenuation is not along the direction of
the wave propagation, but along the direction of the vector k. The Rayleigh wave in orthotropic
fluid-saturated porous media is a non-homogenous wave.

The condition to be Rayleigh waves requires the imaginary part of r being positive in Eq. (8).
Assume 7 = £ 4 iy® (o =1, ...,4) be the four of the roots of Eq. (7) with positive imaginary
parts. If Ag”) are normalized solutions of Eq. (6), the general solutions of Eq. (6) must be of the
form

(n) gy g p(n) pm) po)
[4} A , A, B B ,BY]

= A(’l) A(Zn)’ Ag”)’ AE{’)’ A(ﬂ) A(”)] K(H)f(n)’ (10)
2
where f"(n = 1, ...,4) are arbitrary constants, K" =[3>¢_| ’AE”) 17'/2,

(n) (n) (n) (n) (n) (n) (n) (n) (n) (n)
dig dyy diy diy dj diy dig dy diy dj;
Ny B

(n)y _ (n _
Aln - d(ﬂ) d(”) d(”) d(”) d(”) , A2n - _ d(n) d(n) d(") d(ﬂ) dgl;) ,

(n) (n) (n) (n) (n) (n) (n) (n) (n) (1)
A0 4D g g g AP dn gn g g
£ 8 8L P

o
v

Fig. 1. Complex wave vector of Rayleigh waves in orthotropic fluid-saturated porous media.
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& Ay d oy d
&8 A A 8 88 L &
N A A A P !
N G R O AP dn g g g
4 dy Y ) dy
A0 4D g g g A4 4w g g
B dy B dy
T R R IV T !
4y Ay A 4y d
404 4D g g PR G R O

in which d,i’;) can be got by substitution of #™ for r in the elements dy; of Eq. (6).
Then the displacements due to the Rayleigh wave propagation in the porous media are

[ty Uy Uz, Wy, Wy, W2] = ifr(n)Kr(n)[A(ln)’ A(zn)’ A(3n)’ AE;"): A(Sn)’ A(ﬁn)]
n=1
x exp(—kn™2)exp ik(l x + Ly + 7z — ct). (11)
The free boundary conditions are
T =Te:=T,=p=0 atz=0. (12)

By making use of Egs. (3) and (5), the boundary conditions can be expressed as

[Hal OS2 D T =0 (kon=1,...,4), (13)

where
Hiy = AihAV + Aph AT 4 A33r™ 4
— My3h A — M3, AY — Mzr™ A%,
Hyy = Aush A + Agar™ A,
Hs, = Assh AP + Assr™ 4",
Hy, = MllllA(ln) - Mzzlzﬁgn) + M33V(")A(3n)
— MLAY — MBLAY — My 4P,

In order to get the non-trivial solution of fr(”), the determinant of matrix [Hy;] must be equal to
zero, so the characteristic equation of Rayleigh waves in the orthotropic fluid-saturated porous
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media is
H, Hp» H;; Hy
H H H H
Det H — | 72! n Hyn Hu| (14)
Hyy Hy» Hi; Hiy

Hy Hp Hipz Hy
In general, Det H is complex. Eq. (14) can be rewritten as
Re[Det H] =0, (15a)

Im[Det H] = 0. (15b)

Eq. (15) are functions of Rayleigh wave speed ¢. For a given frequency, the speed ¢ satisfying
Egs. (15a) and (15b) simultaneously is the solution that we need.
Moreover, the displacements of the media are given by

4
[u_x, uya uZ’ M}x, M})H M}Z] = Re[zf;'(n)K)(n)[A (1n)7 A(Zn)’ Agn)7 Afln)a A(Sn)v A(Gn)]
n=1

x exp(—kn™z)exp ik(lix + by + ™z — ¢f)]

4
=1 cos [k(hx + by + Pz — ety + 61",

n=1

|H§”)| cos [k(lix + by + Enz ct) + qo(-")]], (16)

1
where
[, 1o, o 1o, 1w, m®) = fMKOA7, ..., A exp(—ky™z),
05”) and (pgn) are the corresponding polar angles of I’ E”) and IT E”), respectively.

3.1. Special case

Pure solids can be treated as the porous media in the case ¢ = 0, that is, pr =0, Ajs = Cy,
p = p;, My = M = 0. Thus, Eq. (6) degenerate to

[d//([]{A;aA;JA;}T = 0 (kal = 1)2, 3)7 (17)
where
dj, = p,0* — (Ciil§ + Cesly + Css’))i?,  djy, = djy; = —(Cia + Ces)1 bk,
diy = dy; = —(Ci3 + Css)li 'k, djy = p,* — (Cesli + Cnaly + Caar’?)i?,
d£3 = dgz =—(Cy + C44)lzl”/k2, d§3 = pS(D2 — (Cssllz + C44l% + C33V/2)k2.

Consequently, we have

/16 /14 /12

a\r"° +dyr"™ + ayr’ + ay = 0. (18)

Following the same routine, we can get the three roots with positive imaginary parts ¥ and
corresponding normalized solutions of Eq. (17) with the form
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where f/¢)(n = 1,2,3) are arbitrary constants, K'® = [S7_, |47/,
/(n) /(n) /(n) /(n)
d13 dlZ dll d13
/() /(n) /(n) /(1)
d23 d22 dlZ d23

/(n) 1(n)
dl 1 dl 2

() (n)
dl 2 d22

o _

nn) _
> 2 -

(n)
AW =~ , A

1

2

in which d,’((,") can be got by substitution of ™ for  in the elements d}, of Eq.(17).Then the
displacements due to the Rayleigh wave propagation in the pure solids are

3
[ux; Uy, uz] — Zﬂ/(ﬂ)K;(n)[A/l(ll)’ A/2(n)’ Ag(n)] exp (—k?]/(n)Z)

n=1

x exp ik(lix + by + &Pz — ). (20)

The free boundary conditions are
T =T =T,:=0, z=0. (21)

By making use of Eq. (13), the boundary conditions can be expressed as
[H, D AP SO =0 (on=1,2,3), (22)
where
Hin = Clgllﬂll(n) =+ C2312A12(n) + C33I"/(n)Al3(n),
H, = C44le/3(n) + Cag?® A,
4y = Cssh A + Cssr'™ A, (23)
Thus, the characteristic equation of Rayleigh waves in the orthotropic media is
Hi Hy Hj,
Hy Hy Hi
Eq. (24) is just the expansion expression of the solution given by Ref. [2] for orthotropic solids.
This shows that the characteristic equations for Rayleigh waves in pure solids are particular cases
of fluid-saturated porous media and can be obtained directly from the corresponding

characteristic equations for Rayleigh waves in fluid-saturated porous media through appropriate
degeneration.

Table 1

Parameters for solid skeleton and pore fluids (porosity @ =0.2)

Solid skeleton Pore fluid
Cn Ciz Cis Cx Cy 3 Cuq Css Ces K, Ps Ky Pr

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m®) (GPa) (kg/m’)
957 119 233 93 2 832 3 3.2 3.8 35 2600 2 1000
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4. Numerical results

In order to illustrate the effects of the orthotropic solid skeleton on the propagation
characteristic of Rayleigh waves, variation of Rayleigh wave speeds with its propagation
directions and the displacement field are calculated by using Egs. (15) and (16), respectively. The
material parameters for the orthotropic fluid-saturated porous medium are given in Table 1. For
an assumed value of the speed ¢, from Eq. (7) we can obtain four values of #™. Substitute #* into
Eq. (15) and whether the Det H equals to zero is investigated. Here interval dichotomy is used to
determine a root in a given range of the independent variable with a specified small relative error.
When the speed ¢, satisfying Eq. (15) are determined, the corresponding displacement components
are derived according to Eq. (16).

Fig. 2 shows the variation of Rayleigh wave speeds on the free surface of the half-space. Owing
to anisotropy of the solid skeleton, the Rayleigh wave speed is no longer invariable as it shows in
the isotropic or transversely isotropic fluid-saturated porous media (here transverse isotropy
means the horizontal transverse isotropy). The Rayleigh wave speed changes with the variation of
the propagation directions. But along a certain direction, it propagates with a certain speed, for
example, the speed along the direction from the point (0, 0, 0) to the point (1, 1, 0) is 0.925 km/s.

Fig. 3 gives the particle traces at different depth in different sagittal planes (the plane normal to
both the bounding surface and the wave front) with 4, = [2;31:1 [F™1P1712K™ for transversely
isotropic fluid-saturated porous media. From plane xoz to plane yoz, every 15° a sagittal plane is
selected. It can be seen that the particle traces are elliptical and along with the increase of the
depth, the amplitudes decrease exponentially. At the same layer, the amplitudes of the particle
traces are not changed and the shapes are identical. It can also be seen that in the transversely
isotropic fluid-saturated porous media, every particle moves in its own sagittal plane.

Fig. 2. Variation of Rayleigh wave speeds on the free surface.
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|2

Fig. 3. Particle traces in different sagittal planes for transversely isotropic fluid-saturated porous media when fluid
viscosity is omitted.

4\

o X

Fig. 4. Particle trace in different sagittal planes for orthotropic fluid-saturated porous media when fluid viscosity is
omitted.

Fig. 4 describes the particle traces at different depth in different sagittal planes with A4, =
[22:1 |fr(”)|2]’1/ ZKF(”) for orthotropic fluid-saturated porous media. Comparison between Figs. 3
and 4 shows that with the same situation in the isotropic or transversely isotropic fluid-saturated
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~Z = 0

1
20 2=05 S

—~Z = 1
1-5 R S ; 0
1,0 ~Z 8

sz
Z/A;

Fig. 5. Particle traces in 30° sagittal plane.

porous media, the particle traces in orthotropic fluid-saturated porous media are elliptical and the
sizes of ellipses decrease exponentially with the increase of the depth. But owing to the orthotropic
characteristic of the media, even on the same layer, the sizes of the ellipses change with the
variation of the propagation directions which can be seen clearly in Fig. 4.

For orthotropic fluid-saturated porous media, the complex attenuation exponent r is no more
pure imaginary as it is in the isotropic or transversely isotropic porous media. From Eq. (8) it can
be seen that because the real part of complex attenuation exponent r is not equal to zero, the
disturbance directions of Rayleigh waves in orthotropic fluid-saturated porous media may not be
parallel to the free surface as they do in the isotropic or transversely isotropic ones and the
motions of the particles also show different characteristic. The particle motions exhibit a
sinusoidal variation with z-axis. The main axis of the elliptical trace is not vertical to the free
surface any longer. The particles do not move in their own sagittal planes but do some out-of-
plane motions, which is different from that they generally do in the isotropic or transversely
isotropic ones. In order to see clearly the variations of the particle motions with the variation of
the depth, the particle traces in the 30° sagittal plane are given in Fig. 5. It can be seen obviously
that the particle motion planes incline to the sagittal plane.

5. Conclusion

Summarizing the results above, we assert that, due to anisotropy of the solid skeleton, the
Rayleigh wave in orthotropic fluid-saturated porous media exhibits special characteristic. Its
speed and particle traces show direction dependence. Though the dispersion caused by the fluid
viscosity is omitted, the phase plane and the amplitude plane are not parallel to each other as they
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do in the isotropic or transversely isotropic fluid-saturated porous media. It is a non-homogenous
wave and the maximal attenuation is not along the propagation directions. In orthotropic fluid-
saturated porous media, the main axis of the elliptical traces of the particles is not vertical to the
free surface but displays a sinusoidal variation with the depth. Obviously, in orthotropic fluid-
saturated porous media, Rayleigh waves are not the classical Rayleigh waves in general sense.
Anisotropy of the solid skeleton has great influence on the propagation characteristic of Rayleigh
waves in fluid-saturated porous media.
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