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Free vibrations of rectangular cantilever plates.
Part 2: in-plane motion
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Abstract

An analysis of the free in-plane vibrations of a cantilevered rectangular plate is performed by means of a
variational approximation procedure. The problem is treated by first obtaining the exact solution for waves
in the plate satisfying the equations of plane stress including in-plane inertia with two opposite edges
traction free. The solution results in a set of dispersion curves. A number of the resulting waves are used in
what remains of the variational equation, in which all conditions occur as natural conditions. Roots of the
resulting transcendental equation are calculated, which yield the eigensolutions and associated
eigenfrequencies. The results are compared with results obtained using FEM, and good agreement is
shown.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, the equations of plane stress including in-plane inertia are used to treat the
problem of the free vibrations of a thin relatively short cantilever plate. Although the results
obtained from the analysis of the transverse vibration of a thin plate are available for a wide range
of boundary conditions and aspect ratios, there is a paucity of results in the open literature
regarding the in-plane motion of the plate. Kobayashi et al. [1] performed the calculation for the
in-plane motion of such a plate with point supports. More recently, Bardell et al. [2] performed the
eigenanalysis for the cases of all edges free and all edges clamped using the Rayleigh-Ritz method
for the in-plane motion of isotropic rectangular plates.
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Since the cantilever plate is short, the simple one-dimensional equations of the flexure of a beam
will not yield accurate results. Since the problem of the in-plane free vibrations of a rectangular
plate held at one edge and free on the other three cannot be solved exactly, it must be treated by
some form of approximation procedure. A variational approximation procedure similar to that
employed in Part 1 [3] is used, in which the differential equations and traction-free conditions on
two opposite edges are satisfied exactly and the remaining conditions are satisfied by means of
what remains in the variational equation. In the treatment, the variational equation of linear
elastic plane stress with in-plane inertia is taken from Part 1. As in Part 1, all conditions, i.e., those
of both natural and constraint types, arise as natural conditions in a form suitable for the
application in this work. The analysis proceeds by satisfying the dynamic linear plane stress
equations and the free edge conditions on two opposite faces exactly, while the remaining edge
conditions are satisfied variationally.

The exact solution of the differential equations and free edge conditions on opposite faces yields
dispersion curves. The dispersion curves for in-plane flexure of rectangular plates presented in this
work are exact and, to our knowledge, have not appeared in the literature before. Up to seven of
these solutions are taken, which are represented by the dispersion curves in what remains of the
variational equation with all natural conditions to obtain a system of linear homogeneous
algebraic equations, from which calculations are performed. Among other things, the calculation
clearly reveals the dependence of the frequencies of free vibrations on the length-to-width ratio.

2. Variational equation for the in-plane motion of a thin orthotropic plate

Consider a fixed Cartesian co-ordinate system xi with the faces, of area S; at x3 ¼ 7h: The axes
x1 and x2 are co-ordinates lying in the middle plane, which intersect the right prismatic boundary
of the plate in a line path c: The origin of the x2 co-ordinate axis is rigidly attached to the plate
and the plate is bounded by a fixed edge at x1 ¼ �l and three free edges at x1 ¼ l; x2 ¼ 7b
(see Fig. 1). In this work as in Part 1 the material of the plate is taken to have orthotropic
symmetry, in which the three-dimensional extensional constitutive equations are not coupled with
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Fig. 1. A schematic of rectangular plate fixed on one edge and free on the other three.
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the independent shear constitutive equations. In Part 1, the variational equation for both the
extension and flexure of thin plates with all conditions arising as natural conditions was obtained
from the appropriate three-dimensional variational equation [4].1 In Part 1, the extensional
behavior, which uncouples from the flexural behavior, was taken to vanish because only the
transverse motion was treated. In this work the flexural behavior is taken to vanish and only the
in-plane motion is treated. From (16) of Part 1, when the flexural motion is taken to vanish, there
results Z t

t0

dt

Z
S

ðtð0Þab;a � 2rh .u
ð0Þ
b Þdu

ð0Þ
b dS �

Z
cN

nat
ð0Þ
ab du

ð0Þ
b ds

�
þ
Z

cC

u
ð0Þ
b dðnat

ð0Þ
ab Þ ds

�
¼ 0; ð1Þ

where

tð0Þab ¼
Z h

�h

tab dx3 ð2Þ

and the notation is defined in Section 2 of Part 1. Note that all of the inhomogeneous terms in
Eq. (1) have been ignored since they are not required in this treatment. In this work, it is also
assumed that the system obeys the linear constitutive equations and the infinitesimal strain–
displacement gradient relations given in Eqs. (2) and (3) of Part 1.

From the assumption of plane stress and with the three-dimensional constitutive equations for
the material having orthotropic symmetry, the two-dimensional constitutive equations for the
lowest order extensional motion of the plate were obtained in Part 1. From Eqs. (7), (8), (14) and
(15) of Part 1, there results

tð0Þ11 ¼ 2hc�11ðu
ð0Þ
1;1 þ #nu

ð0Þ
2;2Þ; tð0Þ22 ¼ 2hc�11ðRu

ð0Þ
2;2 þ #nu

ð0Þ
1;1Þ; ð3Þ

tð0Þ12 ¼ 2 hc66ðu
ð0Þ
1;2 þ u

ð0Þ
2;1Þ: ð4Þ

For the plate fixed on one edge and free on the other three shown in Fig. 1, the variational
equation (1) takes the formZ

S

ðtð0Þab;a � 2rh .u
ð0Þ
b Þdu

ð0Þ
b dS �

Z l

�l

dx1½½nat
ð0Þ
ab du

ð0Þ
b �x2¼�b þ ½nat

ð0Þ
ab du

ð0Þ
b �x2¼b�

þ
Z b

�b

dx2½u
ð0Þ
b dðnat

ð0Þ
ab Þ�x1¼�l �

Z b

�b

dx2½nat
ð0Þ
ab du

ð0Þ
b �x1¼l ¼ 0; ð5Þ

where the definition ½f ðxÞ�x¼p ¼ f ðpÞ has been employed.
As discussed in Part 1, since in the formulation the constraint conditions were included by the

method of Lagrange multipliers, each variation is treated as independent, the coefficient of each
variation in Eq. (5) must vanish, which yields the differential equations and edge conditions.
However, since the resulting equations cannot be solved exactly, this problem is treated by first
satisfying exactly the differential equations and edge conditions on the two opposite traction-free
edges. This solution yields dispersion relations. In the next section the dispersion relations of the
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rectangular plate for the in-plane motion are obtained for the symmetric and antisymmetric
modes, separately.

3. Solution of the differential equations and edge conditions on the two traction-free opposite faces

Since the du
ð0Þ
b in the surface integral in Eq. (5) are independent, the differential equations for

the in-plane motion of the plate take the well-known form

tð0Þab;a ¼ 2 rh .u
ð0Þ
b : ð6Þ

In addition, since the du
ð0Þ
b at x2 ¼ 7b are independent, from Eq. (5), the edge conditions can be

written in the form

tð0Þ22 ¼ 0; tð0Þ21 ¼ 0 at x2 ¼ 7b: ð7Þ

The substitution of Eqs. (3) and (4) into Eq. (6) now yields

2hfc�11u
ð0Þ
1;11 þ ðc�11#nþ c66Þu

ð0Þ
2;12 þ c66u

ð0Þ
1;22g ¼ 2 rh .u

ð0Þ
1 ; ð8Þ

2hfðc�11#nþ c66Þu
ð0Þ
1;12 þ c�11Ru

ð0Þ
2;22 þ c66u

ð0Þ
2;11g ¼ 2rh .u

ð0Þ
2 ; ð9Þ

which are the in-plane equations of motion of the thin plate. A solution of the coupled Eqs. (8)
and (9) can be written in the form

u
ð0Þ
1 ¼ A1 cosðgx1ÞsinðBx2 þ s0Þeiot; ð10Þ

u
ð0Þ
2 ¼ A2 sinðgx1ÞcosðBx2 þ s0Þeiot; ð11Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and

s0 ¼ ðs � 1Þp=2;

which includes waves either antisymmetric (s ¼ 1) or symmetric (s ¼ 2) in x2; and A1 and A2

denote arbitrary constants.
Eqs. (10) and (11) satisfy Eqs. (8) and (9), provided

ðc�11g
2 þ c66B2 � ro2Þ ðc�11#nþ c66ÞgB

ðc�11#nþ c66ÞgB ðc�11RB2 þ c66g2 � ro2Þ

" #
A1

A2

" #
¼

0

0

" #
; ð12Þ

which yield non-trivial solutions when the determinant vanishes, thereby resulting in a biquadratic
equation in B of the form

c�11c66RB4 þ ½fc�2
11R � c�11#nðc

�
11#nþ 2c66Þgg2 � ro2ðc�11R þ c66Þ�B2

þ ðc66g2 � ro2Þðc�11g
2 � ro2Þ ¼ 0: ð13Þ

For a given o and g; Eq. (13) yields two B2; i.e., B2
ð1Þ; B

2
ð2Þ; each of which, from either of the linear

algebraic equations denoted by the matrix equation (12), yields amplitude ratios, which may be
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written in the form

%A
ðnÞ
1 ¼ �ðc�11#nþ c66Þg BðnÞ; ð14Þ

%A
ðnÞ
2 ¼ c�11g

2 þ c66B2
ðnÞ � ro2; n ¼ 1; 2: ð15Þ

Hence, the coupled solution functions satisfying the traction-free edge conditions at x2 ¼ 7b

given in Eq. (7) can be written in the form

u
ð0Þ
1 ¼

X2

j¼1

CðjÞ %A
ðjÞ
1 sinðBðjÞx2 þ s0Þcosðgx1Þeiot; ð16Þ

u
ð0Þ
2 ¼

X2

j¼1

CðjÞ %A
ðjÞ
2 cosðBðjÞx2 þ s0Þsinðgx1Þeiot; ð17Þ

where CðjÞ are arbitrary constants.
The substitution first of Eqs. (3)2 and (4) into Eq. (7) and then Eqs. (16) and (17) into the

resulting equations yields

c�11

P2
j¼1

CðjÞð#ng %AðjÞ
1 þ RBðjÞ %A

ðjÞ
2 Þsinð7BðjÞb þ s0Þ ¼ 0;

c66

P2
j¼1

CðjÞðBðjÞ %A
ðjÞ
1 þ g %AðjÞ

2 Þcosð7BðjÞb þ s0Þ ¼ 0;

ð18Þ

which may be written in the matrix form

ð#ng %Að1Þ
1 þ RBð1Þ %A

ð1Þ
2 ÞsinðBð1Þb þ s0Þ ð#ng %Að2Þ

1 þ RBð2Þ %A
ð2Þ
2 ÞsinðBð2Þb þ s0Þ

ðBð1Þ %A
ð1Þ
1 þ g %Að1Þ

2 ÞcosðBð1Þb þ s0Þ ðBð2Þ %A
ð2Þ
1 þ g %Að2Þ

2 ÞcosðBð2Þb þ s0Þ

" #
Cð1Þ

Cð2Þ

" #
¼

0

0

" #
: ð19Þ

The linear algebraic equations in Cð1Þ and Cð2Þ yields non-trivial solutions when the determinant of
the system vanishes. The vanishing of the determinant of the matrix equation (19) yields the
dispersion curves, i.e., the o versus g relation, and from either of the consistent equations (18),
yields amplitude ratios, which may be written in the form

%Cð1Þ ¼ �ð#ng %Að2Þ
1 þ RBð2Þ %A

ð2Þ
2 ÞsinðBð2Þb þ s0Þ; ð20Þ

%Cð2Þ ¼ ð#ng %Að1Þ
1 þ RBð1Þ %A

ð1Þ
2 ÞsinðBð1Þb þ s0Þ: ð21Þ

For the purpose of calculation, it is convenient to introduce the following dimensionless variables:

%g ¼
2b

p
g; %B ¼

2b

p
B; %xa ¼

p
2b

xa; %O ¼
o
%o
; %c

�
11 ¼

c�11

c66
; t ¼ %ot; ð22Þ

where

%o ¼
p
2b

ffiffiffiffiffiffi
c66

r

r
: ð23Þ

ARTICLE IN PRESS

J. Seok et al. / Journal of Sound and Vibration 271 (2004) 147–158 151



The substitution of Eqs. (22) and (23) yields the dimensionless form of Eq. (12) and the
amplitude ratios in Eqs. (14) and (15), thus

%c�11%g
2 þ %B2 � %O2 ð%c�11#nþ 1Þ%g %B

ð%c�11#nþ 1Þ%g %B %g2 þ %c�11R%B2 � %O2

" #
A1

A2

" #
¼

0

0

" #
; ð24Þ

%A
ðnÞ
1 ¼ �ð%c�11#nþ 1Þ%g %BðnÞ; ð25Þ

%A
ðnÞ
2 ¼ %c

�
11%g

2 þ %B2
ðnÞ � %O2; n ¼ 1; 2: ð26Þ

The further substitution of the dimensionless quantities defined in Eqs. (22) and (23) into
Eqs. (19)–(21) yields

ð#n %g %Að1Þ
1 þ R%Bð1Þ %A

ð1Þ
2 Þsinðp%Bð1Þ=2 þ s0Þ ð#n %g %Að2Þ

1 þ R%Bð2Þ %A
ð2Þ
2 Þsinðp%Bð2Þ=2 þ s0Þ

ð%Bð1Þ %A
ð1Þ
1 þ %g %Að1Þ

2 Þcosðp%Bð1Þ=2 þ s0Þ ð%Bð2Þ %A
ð2Þ
1 þ %g %Að2Þ

2 Þcosðp%Bð2Þ=2 þ s0Þ

" #
Cð1Þ

Cð2Þ

" #
¼

0

0

" #
; ð27Þ

along with the dimensionless form of the amplitude ratios in Eqs. (20) and (21)

%Cð1Þ ¼ �ð#n%g %Að2Þ
1 þ R%Bð2Þ %A

ð2Þ
2 Þsinðp%Bð2Þ=2 þ s0Þ; ð28Þ

%Cð2Þ ¼ ð#n %g %Að1Þ
1 þ R%Bð1Þ %A

ð1Þ
2 Þsinðp%Bð1Þ=2 þ s0Þ: ð29Þ

For an isotropic material,2 the coefficients of the stiffnesses have the form:

c�11 ¼ c�22 ¼ E=ð1 � n2Þ; c�12 ¼ nE=ð1 � n2Þ; c66 ¼ E=f2ð1 þ nÞg; ð30Þ

where E is Young’s modulus and n is the Poisson ratio. It is worth noting that the characteristic
equation of the vanishing of the determinant of the matrix in Eq. (27) is a function of the Poisson
ratio only for an isotropic material without referring to the specific geometry of the plate if the
dimensionless quantities defined in Eqs. (22) and (23) are introduced.

In order to determine cut-off frequencies, i.e., values of o on the g ¼ 0 axis, in the dispersion
relations, one can examine the solutions when g ¼ 0: In this special case, the solutions simply
degenerate, and from Eq. (12), the characteristic determinant takes the particularly simple form

c66B2 � ro2 0

0 c�11RB2 � ro2

�����
����� ¼ 0; ð31Þ

which yields the two wave numbers

B2
ð1Þ ¼ ro2=c66; B2

ð2Þ ¼ ro2=ðc�11RÞ: ð32Þ

Under these circumstances, A
ð2Þ
1 ¼ 0 and A

ð1Þ
2 ¼ 0 and the resulting equations in the two

homogeneous edge conditions (18) yield the characteristic determinant for the cut-off frequencies
in the form

A
ð1Þ
1 Bð1ÞcosðBð1Þb þ s0Þ 0

0 A
ð2Þ
2 Bð2ÞsinðBð2Þb þ s0Þ

�����
����� ¼ 0: ð33Þ
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Therefore, two cut-off frequencies are obtained for the antisymmetric modes

%Oð1Þ
n ¼ 2n � 1; ð34aÞ

%Oð2Þ
n ¼

ffiffiffiffiffiffiffiffiffiffi
%c�11R

q
ð2nÞ; n ¼ 1; 2; 3; y: ð34bÞ

and two for the symmetric modes

%Oð1Þ
n ¼ 2n; ð35aÞ

%Oð2Þ
n ¼

ffiffiffiffiffiffiffiffiffiffi
%c�11R

q
ð2n � 1Þ; n ¼ 1; 2; 3; y: ð35bÞ

These cut-off frequencies provide convenient starting points for performing the calculation.
The solutions at %O ¼ 0 cannot be obtained from Eq. (19) in the isotropic case because then only

one independent B is obtained from Eq. (13). However, in the isotropic case the solution can be
obtained by using Eq. (19) and taking the limit as %O approaches zero from above as in the last
paragraph of Section 3 of Part 1.

Since the differential equations and the homogeneous edge conditions at the two side edges are
satisfied exactly, the satisfaction of the remaining edge conditions variationally yields the result.
The procedure will be explained in more detail in the next section.

4. Variational approximation

Since the solution functions given in Eqs. (16) and (17) satisfy Eqs. (6) and (7) exactly, all that
remains of the variational equation (5) isZ b

�b

dx2½u
ð0Þ
b dðnat

ð0Þ
ab Þ�x1¼�l �

Z b

�b

dx2½nat
ð0Þ
ab du

ð0Þ
b �x1¼l ¼ 0: ð36Þ

From Eqs. (16) and (17) when P dispersion curves are included, it is clear that the solution may be
written in the form

u
ð0Þ
1 ð %x1; %x2; tÞ ¼

XP

p¼1

X2

q¼1

X2

r¼1

Bpr %H1 pq sinð%Bpq %x2 þ s0Þcosð%gp %x1 þ r0Þei %Ot; ð37Þ

u
ð0Þ
2 ð %x1; %x2; tÞ ¼

XP

p¼1

X2

q¼1

X2

r¼1

Bpr %H2 pq cosð%Bpq %x2 þ s0Þsinð%gp %x1 þ r0Þei %Ot; ð38Þ

where

r0 ¼ ðr � 1Þp=2; %Bpq ¼ %BðqÞð%gpÞ; %Hnpq ¼ %CðqÞð%gpÞ %AðqÞ
n ð%gpÞ; n ¼ 1; 2 ð39Þ

and the Bpr are arbitrary constants.
When the solution functions (37) and (38) are inserted in the variational equation (36),

the resulting linear algebra uncouples into two distinct sets of linear homogeneous equations.
The transcendental equations that arise when the determinant resulting from each of the
uncoupled homogeneous linear algebras vanishes yield the same eigenfrequencies, which by
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comparison with a PATRAN calculation is the correct frequency in each case. Consequently, a
double root is always obtained from the variational equation (36). On account of this the
amplitude ratios between the two uncoupled eigensolutions cannot be determined uniquely
from this description.3 Clearly, this peculiar algebraic difficulty is caused by the use of the
same functional behavior in both the solution functions and the variations for the particular
conditions for the cantilever, in which one edge has displacement conditions going through
the variation in traction and the other edge has traction conditions going through the
variation in displacement, as shown in Eq. (36).4 Although this non-uniqueness of the
amplitude ratios can be tolerated and would be removed if a forced vibration problem
were treated, since it is unusual and only free vibration problems are treated in this work, it
seems preferable to remove the double root and associated non-uniqueness of the amplitude
ratios from the free vibration description. To this end an auxiliary constraint condition is
introduced at the fixed edge. The mean displacement is taken to vanish as the constraint
condition, which is introduced in the variational equation (36) by means of the method of
Lagrange multipliers [6], as shown in Eq. (40). The transcendental equation resulting from
Eq. (40) does not have multiple roots, and enables all the amplitude ratios to be determined.
About half the roots coincide in frequency very closely with the double roots obtained from
Eq. (36) and are retained and the remaining roots are spurious roots introduced by the constraint
condition and are ignored.

In accordance with the foregoing discussion, the auxiliary constraint condition is introduced in
Eq. (36), which takes the form

Z b

�b

dx2½u
ð0Þ
b dðnat

ð0Þ
ab Þ�x1¼�l �

Z b

�b

dx2½nat
ð0Þ
ab du

ð0Þ
b �x1¼l þ d lðdÞ

Z b

�b

dx2½u
ð0Þ
d �x1¼�l

� �
¼ 0; ð40Þ

where the subscript

d ¼
1 for symmetric modes;

2 for antisymmetric modes

(

and the undetermined Lagrange multiplier lðdÞ can vary freely.
The substitution of the two-dimensional constitutive equations (3)1 and (4) into Eq. (40) and

the introduction of the dimensionless quantities defined in Eqs. (22) and (23) gives the
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3 The discussion in the text is for the case when the origin of co-ordinates is at the center of the cantilever, which is

when the complete decoupling into two distinct sets of linear homogeneous equations occurs. If the origin is placed

other than at the center of the cantilever, one set of linear homogeneous algebraic equations is obtained, but

the resulting determinant does not exhibit a zero crossing and has a horizontal slope at the root, which does not yield

the eigenfrequencies as accurately as when a zero crossing exists. In addition, at the eigenfrequencies the rank of the

apparently fully coupled matrix is reduced by two [5] and two distinct algebraic solutions are still obtained and the

amplitude ratios are not unique.
4 Exactly the same thing happens in the case of a cantilever beam, for which an exact solution can readily be obtained,

in which the amplitude ratios are uniquely determined. If the edge conditions for the beam are satisfied variationally, a

double root is obtained and the amplitude ratios cannot be uniquely determined.
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dimensionless form of the variational equation thusZ p=2

�p=2

d %x2 ½%c�11u
ð0Þ
1 dðuð0Þ1;1 þ #nuð0Þ

2;2Þ þ u
ð0Þ
2 dðuð0Þ

1;2 þ u
ð0Þ
2;1Þ� %x1¼ð�pl=2bÞ

h
� ½%c�11ðu

ð0Þ
1;1 þ #n u

ð0Þ
2;2Þdu

ð0Þ
1 þðuð0Þ

1;2 þ u
ð0Þ
2;1Þdu

ð0Þ
2 � %x1¼ðpl=2bÞ

i

þ dlðdÞ

Z p=2

�p=2

u
ð0Þ
d d %x2 þ lðdÞd

Z p=2

�p=2

u
ð0Þ
d d %x2

" #
%x1¼ð�pl=2bÞ

¼ 0; ð41Þ

where the spatial derivatives are taken with respect to the dimensionless co-ordinates %xa:
The introduction of solution Eqs. (37) and (38) in the variational equation (41) yields a system

of homogeneous algebraic equations, which may be written in the matrix form

KX ¼ 0; ð42Þ

where K is a 2P þ 1 by 2P þ 1 square matrix and X is a 2P þ 1 unknown amplitude vector, which
is defined by

X2ðp�1Þþr ¼ Bpr; X2Pþ1 ¼ lðdÞ; ð43Þ

from which the solution vector X can be readily transformed into the actual amplitude of the
displacement functions and the Lagrange multiplier.

The vanishing of the determinant of K yields the transcendental characteristic equations for the
symmetric and antisymmetric modes. The amplitude ratios may be determined from any 2P of the
2P þ 1 equations, which are consistent when the determinant vanishes.

The amplitude ratios (43) along with the solution functions (37) and (38) yields the mode shapes
of the plate for the symmetric and antisymmetric modes.

5. Discussion of results

The calculation was performed with 20 significant digit accuracy using the symbolic math
package Maple [7] in quadruple precision. Since one edge is clamped and the others free
(cantilevered), the modes can be categorized in accordance with the axis on the plane of the plate
orthogonal to the clamped edge as (a) symmetric modes and (b) antisymmetric modes. Even
though the variational equation obtained in this work is for an orthotropic material,2 the
computation was performed for an isotropic material with the Poisson ratio of 0.3 for consistency
with the calculation for the out-of-plane motion of the plate in Part 1.

Fig. 2 shows the dispersion relations for the in-plane motion of a plate with two free-edges
facing each other. In this figure, the dimensionless frequency %O is plotted against Rð%gÞ and Ið%gÞ
over a range that includes the first seven complex branches near %O ¼ 0: Here, Rð%gÞ and Ið%gÞ
represent real and imaginary, respectively.

Due to the scarcity of published results, the computed results were compared with those
obtained from P3/PATRAN [8]. The same aspect ratios were chosen as those in the treatment of
the out-of-plane motion of the rectangular plate in Part 1. A comparison of the results obtained
from the present analysis with those from P3/PATRAN is given in Table 1.
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Although the results of calculations shown in Table 1 are for l=b ratios of 5
2
; 3

2
; 1, 2

3
and 2

5
; the

analysis presented in this work should not really be used for l=b ratios significantly smaller than 1
because then the edge conditions satisfied exactly are over a smaller region than those satisfied
variationally. When l=bo1 the edge conditions at the fixed edge and the opposite free edge should
be satisfied exactly and the conditions on the free opposite edges should be satisfied variationally.
However, when this is done the waves that determine the dispersion become asymmetric and a
much larger number of dispersion curves must be included to make any calculation. Rather than

ARTICLE IN PRESS

Fig. 2. Dispersion curves for the in-plane motion of the rectangular cantilever plate: (a) for symmetric modes and

(b) for antisymmetric modes.
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Table 1

Dimensionless natural frequencies for the in-plane motion of the rectangular cantilever plate and their comparison with

P3/PATRAN [8]

Mode # l=b

2/5 2/3 1 3/2 5/2

1 C6 1.0849 A C6 0.5861 A C6 0.3370 A C6 0.1807 A C6 0.0749 A

P 1.0894 P 0.5878 P 0.3382 P 0.1812 P 0.0751

2 C7 1.7540 S C7 1.2113 S C7 0.8102 S C7 0.5399 S C6 0.3178 A

P 1.7522 P 1.2159 P 0.8106 P 0.5404 P 0.3194

3 C7 2.0990 S C6 1.3289 A C6 0.9093 A C6 0.5969 A C7 0.3236 S

P 2.1026 P 1.3256 P 0.9081 P 0.5973 P 0.3242

4 C6 2.1202 A C7 1.5412 S C7 1.4452 S C6 1.1781 A C6 0.6827 A

P 2.1178 P 1.5450 P 1.4444 P 1.1823 P 0.6850

5 C7 2.4042 S C7 1.8421 S C6 1.5569 A C6 1.3928 A C7 0.9560 S

P 2.4073 P 1.8466 P 1.5602 P 1.3936 P 0.9581

6 C6 2.6484 A C6 2.0465 A C7 1.6541 S C7 1.4196 S C6 0.9882 A

P 2.6511 P 2.0569 P 1.6577 P 1.4220 P 0.9922

S: symmetric mode, A: antisymmetric mode, N( )=natural frequency %O (ND) of ( ); Cn (ND)=N (current research)

with n dispersion branches included, P (ND)=N (P3/PATRAN).
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Fig. 3. First six mode shapes for the in-plane motion of the rectangular cantilever plate with various length-to-width

ratios: (a) l=b ¼ 2
3
; (b) l=b ¼ 1; (c) l=b ¼ 3

2
:
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doing this additional work, the solution presented is used for ratios l=bo1 and it was extremely
surprising to see the accuracy of the results, as shown by comparison with the FEM P3/PATRAN
calculation in Table 1. That is the reason the results for l=bo1 are presented in the table.

Depending upon the aspect ratio of the plate, around 800–1200 quadrilateral shell elements
with four nodes were also employed for the computation of the natural frequencies and the mode
shapes of the plate. For the modal analysis, the subspace iteration method [8] was employed as
well. With few exceptions, seven dispersion branches for the symmetric modes and six dispersion
branches for the antisymmetric modes were generally included for the eigenanalysis of the present
work.

Overall agreement is pretty good for most of the cases considered in this simulation. However,
for the case in which the clamped edge is much wider than that of the adjacent edge, the maximum
error increases up to 2%. Provided the results of the FEM are accurate enough, the error may be
reduced if more branches are included.

Mode shapes of the first six modes for some selected cases are shown in Fig. 3. A little wriggling
at the fixed edges is due to the fact that the boundary conditions of the clamped edge and the
opposite free edge are satisfied not exactly but approximately through the minimization of the
integrated virtual work induced by the displacement (or slope) of the fixed edge and the tractions
on the opposite free edge.
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