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Abstract

A frequency-domain formulation is used to analyze the stability and performance of an active vibration
isolation system which uses feedback control. The active mount is modelled as a single-axis force actuator
in parallel with a passive spring and damper. The feedback sensor measures either the absolute velocity of
the equipment to be isolated at one end of the mount, or the integral of the transmitted force through the
mount. The plant response, from force actuator input to sensor output, is derived for these two cases in
terms of the mechanical mobilities of the two structures connected by the active mount.

The limits of the phase of the plant response are derived for the two feedback strategies and these are
used to explain the stability and performance of several specific examples of active isolation systems. It is
shown that, in the absence of actuator and sensor dynamics, the integrated force feedback system is
unconditionally stable. The stability of the absolute velocity feedback system is, however, threatened if the
vibrating base structure becomes very mobile, with a small effective mass, at the same frequency as the
equipment structure becomes very stiff.

By quantifying the conditions under which velocity feedback systems can become unstable, these
conditions can be avoided. If the stability of an absolute velocity feedback system can be assured, it is
shown to be more effective at controlling resonances caused by equipment dynamics than integrated force
feedback.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the stability and performance of active systems for the isolation of
sensitive equipment from base vibration that use either absolute velocity feedback or integrated
force feedback. Conventional passive isolation systems suffer from a trade-off in the choice of
their damping [1]. If the passive isolator damping is too small, the equipment vibration is
amplified compared with the base vibration close to the mounted natural frequency. If the passive
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isolator damping is too large, the vibration transmissibility is increased at frequencies well above
the mounted natural frequency. Active isolation using skyhook damping can remove this trade-off
[2]; controlling the vibration amplification and thus reducing the motion of the equipment at the
mounted natural frequency, while not degrading the high frequency vibration isolation.

Absolute velocity feedback is sometimes referred to as skyhook damping [2], although its action is
not completely equivalent unless the active force reacts off a rigid base structure [3]. The absolute
velocity signal can conveniently be derived by integrating the output of an inertial accelerometer.

Integrated force feedback [4] has a similar effect to skyhook damping [5], but has the advantage
of being stable for a wider range of systems to which it is attached [6]. If the equipment being
isolated is also very heavy and the vibration levels are very low, such as in space applications, it
may also be considerably easier to measure the force transmitted to the equipment rather than its
velocity [5]. In more industrial applications, however, the required force gauge may be too fragile
for practical use. The vibration reduction may also not be as great as with absolute velocity
feedback.

In Section 2 the plant responses, from actuator input to sensor output, of the open loop systems
with either absolute velocity feedback or integrated force feedback are derived in terms of the
mechanical impedance of the mount and the input mobilities of the equipment and base structure.
This analysis is similar to that of Blackwood and von Flotow [7]. The frequency responses of these
plant responses are then analyzed in the general case to show that the integrated force feedback
system is unconditionally stable, whatever the equipment and base dynamics, although under
certain circumstances it may not be robust to actuator and sensor dynamics, whereas no such
general proof of stability can be derived for the absolute velocity feedback system.

In Section 3 the particular case is analyzed of when the base structure is rigid. It is shown that
not only is absolute velocity feedback unconditionally stable under these conditions, but that the
plant response is then passive and so the feedback system has a guaranteed 90° phase margin. The
integrated force feedback system is unconditionally stable, but has a phase margin which can
become small under certain conditions. The frequency response, Nyquist plot and root locus
diagrams are discussed, with either absolute velocity feedback or integrated force feedback, for a
particular case in which the equipment is dynamic.

In Section 4 another special case is analyzed; when the base structure is a mass. In this case an
absolute velocity feedback system can become unstable under certain conditions. This is
illustrated using the example isolation system discussed by Preumont et al. [6]. The conditions for
instability in this case are analyzed in some detail.

Finally, in Section 5 the case of a flexible base structure and a flexible equipment structure is
considered. In the particular example analyzed, which is regarded as being reasonably
representative of an equipment isolation system, absolute velocity control is again unconditionally
stable, despite worst-case conditions for the phase of the base mobility and equipment mobility
occurring in the same frequency range.

2. General analysis

The general arrangement assumed for the active isolation problem is shown in Fig. 1, in which
the equipment structure is isolated from the vibrating base structure by a single-axis active mount,
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Fig. 1. Schematic diagram used to derive the plant response from a force actuator to absolute velocity or integrated
force sensor.

represented by its Thévenin equivalent. The objective of the first part of the general analysis is to
derive the plant responses from the actuator force input, f,, to either the absolute velocity output
on the equipment, v,, or the integrated force output, i, which is the integral of the force
transmitted to the equipment, f,. These plant responses will then be used to deduce the conditions
under which a fixed-gain feedback loop, from either the absolute velocity or integrated force
sensor to the force actuator, will be stable. The analysis will initially be undertaken in the Laplace
domain, in terms of the mobilities of the equipment and base structures, Y, and Y;, and the
impedance of the mount, Z,,, although the explicit dependence of the variables on the Laplace
variable, s, is suppressed unless it is required. The frequency response is derived when required by
setting s = jw.

2.1. Derivation of plant responses

If the velocity of the equipment at the point of attachment is v, and the force transmitted by the
actuator and the mount is f,, the equipment (or clean body) dynamics are defined by its input, or
point, mobility

Ve
—=1Y,. (1)
foo of
Similarly if the velocity of the base at the point of attachment is v, and the force transmitted by
the actuator and mount is f3, the base (or dirty body) dynamics are defined by its input mobility
Vb
— =Y. 2
7 )
The mount dynamics are defined to include both the effect of any passive mount and the passive
response of the actuator, both of which are assumed to have negligible mass, so that the mount
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dynamics are defined by its mechanical impedance

In_ 7. 3)

Um

where f,, is the force acting through the mount and v,, is the difference in velocity between its two
ends.
The total force acting on the equipment structure is thus

fe :fa + Zm(Ub - Ue)a (4)

where all forces and velocities are assumed to act in the same direction, so that the total force
acting on the base is f = —f.. Using this and Eqgs. (1) and (2), the total force on the equipment
structure can be written as

fe :fa - Zm( Y, + Ye)fea (5)
so that
Je 1
fo T+ Zu(Yy + Yoy

The absolute velocity of the equipment is related to the force acting on it by the equation
ve = Y. f., so the plant response from actuator force to absolute equipment velocity can be
written in the Laplace domain as

(6)

Ue(s) . Ye(s)
Ju(s) 1+ Zu(s)(Yp(s) + Yels))

Also, if i,(s) = f.(s)/s is the integrated force acting on the equipment, then the plant response from
actuator force to this output signal in the Laplace domain is

ie(s) _ 1/s
Ja(s) 1+ Zn()(Yo(s) + Ye(s))

If the equipment structure behaved entirely like a rigid body of mass, m,, its input mobility
would be equal to Y,(s) = 1/(sm,). The plant response from actuator force to absolute velocity
then becomes proportional to that from actuator force to integrated force, and the two control
strategies would behave identically. In general, however, the equipment structure will be dynamic
and its input mobility will have a more complicated form than that above, in which case the
behaviour of the control system is significantly different if the feedback signal is either absolute
velocity or integrated force.

G, (S) = (7)

Gi(s) = ®)

2.2. Frequency response conditions on stability

Since the mount is assumed to have a negligible mass, then without loss of generality its
impedance can be written as

kﬂ
Zm = Tz + Cm, (9)
where k,, is the mount’s stiffness and ¢, its damping factor, both of which may be frequency
dependent. Some rather general conditions on stability can be derived by examining the reciprocal
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of the plant frequency response. In the case of absolute velocity feedback, Eq. (7), this is equal to
G, (o) = Y, (o) [1 + Zu(o)(Ys(o) + Y.(o). (10)

The first term in this expression, Y, !(jw), is passive, since Y,(jow) is an input mobility, and thus
has a phase shift of between —90° and 90°. The phase shift of Z,,(jw) will be —90° if the mount is
dominated by its stiffness, reducing to 0° if it is dominated by its damping. The phase shift of
Yy(w) + Y.(jw) is between —90° and 90°, since both Y;(jw) and Y,.(jw) are passive input
mobilities.

The phase shift of Z,(jo)Y(Gw)+ Y.(jw)), and thus 1+ Z,(jo)(Y,(jw)+ Y.(jw)), can
therefore potentially vary between —180° and 90°, and the overall phase shift of G, !(jw) could
range between —270° to + 180°. The phase limitations on the plant response from actuator force
to absolute equipment velocity are, in general, thus given by

—180° < £ G (jow) <270°, (11)

and in the most general case a constant gain feedback loop is only conditionally stable. It has
previously been shown by Serrand [§8] that if the equipment remains rigid and has a mass-like
mobility, then the phase of G, is restricted to —180°< / G,(jw)<90°, and the system is
unconditionally stable. Sciulli and Inman [9] have also discussed the design of passive and active
isolators for this kind of flexible base, rigid equipment isolation problem. In this section we
assume that the equipment may also be flexible and seek a more general condition to guarantee
the stability of the feedback system.

The plant G,, with a constant feedback gain, can only become unstable if the phase shift of
G,(jw) were greater than 180°. The conditions for this to occur can be examined by returning to
the general expression for G !(jw) in Eq. (10), which must have a phase shift of less than —180°
for the feedback system to be unstable. The phase of G, !(jw) cannot be less than —180° unless the
phase shift of Y, !(jw) is negative, i.e., the equipment mobility is stiffness-controlled. In order to
derive a relatively simple condition for stability we will assume that the damping in the system can
be neglected and so all the impedances and mobilities are purely reactive. The stiffness-controlled
equipment mobility can thus be written as

Y. (i) Jkﬂ (12)

e

where k, is the dynamic stiffness of the equipment, which in general is frequency dependent.

In order for the phase of [1 + Z,,(jw)(Y.(jw) + Y(jw))] in Eq. (10) to be less than —90° overall,
and thus the phase shift of G,!(jw) to be sufficiently negative for the feedback system to be
unstable, then the real part of [1 + Z,,(jw)(Y.(jw) + Y,(jw))] must be negative, so that

RelZ(jo)(Y.(jo) + Yy(jw)] < — 1. (13)
If the damping in the mount is small, then to a good approximation we may take
Zy(jer) =, (14
jo
where k&, is the stiffness of the mount, and using Eq. (12) for Y.(jw), then

. , : S
Zn(jo)(Ye(jo) + Yp(jw)) = 2=+ jBYb(J(U) (15)
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The only way in which the real part of Eq. (15) can be less than —1, is if the mobility of the base is
mass-dominated, so that
1

Y;,(ja)) =3 N
Jony,

(16)

where m, is the effective mass of the base structure, which in general is frequency dependent. In
this case

k}n kﬂl
Z,(Go)(Y.( Y, ( =—— . 17
i) Yejo) + Yijo) = 72— (a7
The condition under which instability may occur, Eq. (13), then becomes
k k
om__Tm -1 18
. ot , (18)
so that
f’ >1, (19)
w’my
where
kmke
k=" 20
) e

is the total stiffness of the mount and equipment, as experienced by the base structure. The
parameter k,/m>mj,, which must always be less than unity if the system is to be unconditionally
stable, is equal to the modulus of the mobility of the base divided by the mobility of the mount
and equipment, under the conditions that the equipment is stiffness-controlled and the base is
mass-controlled.

In summary then, a feedback system from absolute equipment velocity to actuator force will be
unconditionally stable unless every one of the following conditions is simultaneously satisfied at
some frequency:

(1) The equipment dynamics are stiffness-dominated, so that Y.(jow) = jo/k, and k, > 0,
(2) the base dynamics are mass-dominated, so that Y,(jw) = 1/jowm;, and my, > 0 and
(3) the stability parameter is greater than unity; k,/aw’my, > 1, where k, = kke/(kp + ko).

Turning now to the reciprocal frequency response of the plant in the case of integrated force
feedback, this can be written, from Eq. (8), as
G (jo) = jo + jo Zu(o)(Ys(o) + Ye(o)), 21)
and using Eq. (9) for Z,,
G; ! (jw) = jo + (ki + jocn)(Ys(jo) + Ye(jo)). (22)

The phase shift of (Y,(jw) + Y.(jw)) is between +90°, since both Y,(jw) and Y.(jw) are passive,
whereas the term (k,, + jwc,) can potentially have a phase shift of between 0° and 90°.
Consequently the overall phase shift of G; !(jw) can never be greater than 180° and so G;(jw) can
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never have a phase shift of less than —180°. The limitations on the phase of G;(jw) are thus
—180° < £ Gi(jw) <90°. (23)

In the absence of actuator or sensor dynamics, and assuming that the mount has negligible
mass, the integrated force feedback control system is thus unconditionally stable for any
combination of base and equipment dynamics.

This control system is even more robustly stable if the active mount is stiff. If k,, > wc,,, then
G;(jo) has a phase shift of only +£90° and is thus completely passive. Its Nyquist plot is then
entirely on the right-hand side of the imaginary axis and the feedback system has an infinite gain
margin and a phase margin of at least 90°. This particularly attractive situation occurs, for
example, when a “hard mount” such as a piezoceramic actuator is used, in which case k,,, > wc,,
up to a very high frequency. At these high frequencies the jw term on the right-hand side of
Eq. (22) will dominate the other terms and so G; !'(jw) will be large. Gi(jw) will thus generally be
close to the origin at such high frequencies and there is little danger of unmodelled actuator
dynamics destabilising the system in this case.

In the following sections the consequences of making different assumptions about the dynamics
of the base structure are explored for the practical stability of both absolute velocity and
integrated force feedback systems.

3. Case of a rigid base structure
3.1. Absolute velocity feedback

The base structure is assumed to be rigid, so that
Yy(jw) =0, (24)
but has an imposed velocity of vy.

Under these conditions the frequency response of the plant with an absolute velocity sensor,
Eq. (7), becomes

. Y.(jw)
G,(jw) = . — 25
() =37 Y.(j®) Zn(jo) (25)
so that its reciprocal is
G, '(jo) = Y, (jo) + Z.(jo), (26)

which is the sum of the input impedance of the equipment and the impedance of the mount. Both
terms in Eq. (26) are passive, with phase shifts of between +90°, and so G,(jw) also has a phase
shift of between +90°. Its Nyquist plot is thus guaranteed to be on the right side of the imaginary
axis and so a feedback system with absolute velocity feedback with a rigid base is unconditionally
stable with an infinite gain margin and a phase margin of at least 90°. This condition will also be
closely approximated when Y;(jw) <« Y.(jw), i.e., the base is much less mobile than the equipment.
In terrestrial applications, when the base is the ground, this approximation is often valid.

As an example of such a system, the plant response for the isolation system shown in Fig. 2 has
been calculated. The dynamic equipment structure has been modelled by a main mass, m,, of
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Fig. 2. An example of an active isolation system with a rigid base and dynamic equipment structure.

1.7kg with an appendage consisting of an additional mass, m,, of 0.5kg attached to the main
mass by a spring of stiffness, k,, equal to 12,000 N m . The mobility of the equipment in this case

is given by
Yo=(Zi+Z)", (27)
where Z; is the inertial impedance of the equipment,
Zi(s) = s m,, (28)
and Z, is the impedance of the appendage,
Z.(s) = % (29)

The mount is assumed to also have a stiffness, k,,, of 12,000 Nm ' and a damping factor, ¢,,, of
33Nsm ' and rests on a rigid base.

The frequency response of the plant response from actuator force to absolute equipment
velocity is shown in Fig. 3(a) and its Nyquist plot is shown in Fig. 3(b). The Nyquist plot is the
locus of the real and imaginary parts of GH(jw), where H is the real feedback gain in this case and
G(jw) is the plant’s frequency response, as w varies from zero to infinity. If the mirror image
response, as w varies from minus infinity to zero, is added, which is the complex conjugate of that
above, the system is stable in this case, provided the locus does not enclose the Nyquist point
(—1,0) [10]. The system has a mount-dominated resonance at about 11 Hz, in which m, and m, are
moving in phase on the mount stiffness k,,, so that the resonant frequency is approximately equal
to

1 km

=y —2 30
2\ m, + m, (30)

S
The damping ratio of this resonance is about 10%.
The antiresonance in the frequency response, at about 25 Hz, is due to the attachment acting as
a tuned vibration neutraliser at a frequency given by

_ 1 ke
- 2n\lm,

Ja (1)
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Fig. 3. (a) Frequency response of the plant response from actuator force to absolute equipment velocity for the
isolation system on a rigid base shown in Fig. 2 (solid line) and with the equipment dynamics suppressed by setting
k, = oo (dashed line). (b) Nyquist plot of the plant response from actuator force to absolute equipment velocity for the
system shown in Fig. 2. (c) Root locus diagram for the plant response from actuator force to absolute equipment
velocity for the system shown in Fig. 2. (d) Open and closed loop transmissibilities from the base velocity, v,, to the
equipment velocity, v,, for a feedback system in which absolute equipment velocity is fed back to the actuator for the
isolator on a rigid base as in Fig. 2.

at which frequency the input impedance of the attachment, Z, in Eq. (29), is infinite and this
prevents the equipment main mass from moving.

The second resonance in the frequency response, at about 29 Hz, is dominated by the main
equipment mass and attached mass resonating on the stiffness of the attachment, so that the main
equipment mass and the attached mass move out of phase, at a frequency slightly higher than.

ka(ma + me)
mym,

(32)
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The plant response with the equipment dynamics suppressed, by setting k, = oo, is shown as
the dashed curve in Fig. 3(a), which confirms that the antiresonance and higher frequency
resonance are due to the equipment dynamics. The antiresonance, with its associated phase
increase of 180°, occurs between the two resonances, and so the phase is maintained between
+90°, as expected. The magnitudes of the two resonant peaks are the same in this case, since no
damping is assumed in the attachment, so that the two circles in the Nyquist plot coincide. The
Nyquist plot is entirely on the right-hand side of the real axis because the phase shift in the plant is
never greater than +90°, so that the control system is very robust with an infinite gain margin and
a phase margin of at least 90°. This control system would thus remain stable even if low frequency
phase shifts, due to transducer conditioning electronics, and high frequency phase shifts, due to
actuator limitations, were introduced [11,12].

The root locus plot for this system is shown in Fig. 3(c), with damped pairs of poles at the two
resonant frequencies and zeros at the origin and at the antiresonance. This diagram represents the
locus of the poles of the closed loop feedback system as the feedback gain is increased from zero to
infinity [10]. The alternating pole-zero pattern prevents phase accumulation. The poles remain in
the left-hand side of the s plane for all feedback gains confirming that the system is
unconditionally stable.

The performance of the feedback system is shown in Fig. 3(d) in terms of the open and closed
loop transmissibilities, i.e., the ratio of the equipment velocity to an imposed base velocity. The
feedback gain has been chosen such that the phase margin of the system is 120°. Even with this
very robust feedback controller, reductions of more than 10 dB have been obtained at both the
base-dominated resonance and equipment-dominated resonance.

3.2. Integrated force feedback

When the base is rigid, the reciprocal frequency response of the plant with integrated force
feedback becomes

G = jo(1 + Y(j0) Zn(jo)). (33)

Writing the mount impedance in terms of its stiffness and damping components, as in Eq. (9), this
can be written as

G = jo + kp Yo(j0) + jorcm Ye(jo). (34)

If the mount has significant damping and the equipment is stiffness-controlled, so that the
phase of Y.(jw) is about 90°, then the third term in Eq. (34) could be large and have a phase shift
of 180°. The Nyquist plot of G;(jw) could thus approach the real axis in the third quadrant and
any additional phase lag, due to actuator dynamics for example, could destabilize the system
[11,12].

The frequency response of the plant from actuator force to integrated force acting on the
equipment is shown in Fig. 4(a) for the case shown in Fig. 2 and with the parameters noted above.
The corresponding plant response with k, = oo, i.e., with the equipment dynamics suppressed, is
shown in the dashed curves from which it can again be seen that the equipment dynamics account
for the upper resonance.
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Fig. 4. (a) Frequency response of the plant from actuator force to integrated equipment force for the isolation system
on a rigid base shown in Fig. 2 (solid line) and with the equipment dynamics suppressed by setting k, = oo (dashed
line). (b) Nyquist plot of the plant from actuator force to integrated equipment force for the isolation system on a rigid
base shown in Fig. 2. (¢c) Root locus design for the plant from actuator force to integrated equipment force for the
isolation system on a rigid base shown in Fig. 2. (d) Open and closed loop transmissibilities from the base velocity, vj, to
the equipment velocity, v,, for a feedback system in which the integrated equipment force is fed back to the actuator for
the isolator on a rigid base as in Fig. 2.

The frequencies of the two resonances are the same as those in the plant response above with
absolute velocity feedback. The frequency of the antiresonance has increased so that it is very
close to that of the second resonance. The frequency of the antiresonance is now given by the
frequency at which the equipment structure’s mobility becomes infinite, i.e.,

ka(ma + me)
mym,

(35)
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The second resonance has a smaller magnitude than the first in this case and so forms a smaller
loop in the Nyquist plot, as shown in Fig. 4(b). The phase shift falls below —90° just before the
antiresonance, so that the Nyquist plot strays into the third quadrant and the plant is no longer
passive.

The root locus diagram for this case is shown in Fig. 4(c), and because the zero is now very close
to the pole associated with the second resonance, the corresponding loop of the root locus into the
left-hand side of the s plane is smaller than in the case of velocity feedback and so less damping
can be achieved at these frequencies.

The velocity transmissibility from base to main equipment mass is shown in Fig. 4(d) without
control and with the integrated force feedback loop. The maximum gain has again been adjusted
so that the system would be stable if an additional phase lag of 120° was introduced and is thus
comparable with that shown for the velocity feedback in Fig. 3(d). There is a similar attenuation
in the first, mount-dominated, resonance, about 10 dB, but force feedback gives clearly a smaller
attenuation of the second peak, about 2dB, than velocity feedback.

4. Case of a mass-controlled base structure

In some classes of application, such as in space when the base structure is a satellite, the base
structure will have a mass-controlled dynamic behaviour at low frequencies. The input mobility of
the base is then equal to

Y, =—, (36)

where my,, is the effective mass of the base structure.

In order to perform some illustrative simulations we will continue to assume that the equipment
consists of a main mass m, with an additional mass of m, attached to it via a spring of stiffness k,,
as studied by Preumont et al. [6], so that the system is as illustrated in Fig. 5.

4.1. Absolute velocity feedback

We begin the discussion with the case of absolute velocity feedback and with the additional
mass attached to the equipment, m,, being 0.5kg. The other parameters are m, = 1.7kg,

Equipment
Ka structure

Me
@@ ’ \i/e Sensor outputs
. e
Force fa IL
actuator—»—— Ken
input fa G Mount
Vi
m b

Base mass with
imposed velocity

Fig. 5. An example of an isolation system with a mass-controlled base structure.
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shown in Fig. 5 with m, = 0.5kg (solid line) and with the equipment dynamics suppressed by setting k, = oo (dashed
line). (b) Nyquist plot of the plant response from actuator force to absolute equipment velocity for the system shown in
Fig. 5 with m, = 0.5kg. (c) Root locus plot of the feedback system with the plant response from actuator force to
absolute equipment velocity for the system shown in Fig. 5 with m, = 0.5kg. (d) Open and closed loop responses from a
force on the base structure to absolute equipment velocity for the system shown in Fig. 5 with absolute velocity
feedback and m, = 0.5kg.

my = 1.1kg, k, =12, 000Nm ', k,, = 12,000Nm ' and ¢,, = 33Nsm . The frequency response
of the plant in this case is shown in Fig. 6(a).
The first peak in the response, at about 20 Hz, has an undamped natural frequency of about

Jon = oy [ (37)

2n Wll’
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where

B mp(me + my)
nmy —

my 4 me +my %)

and is primarily due to the mass of the base and the total mass of the equipment resonating on the
mount stiffness. The zero in the plant response again occurs at the natural frequency of the
attachment

_ 1k
- 2n\lm,

Ja (39)

at which frequency the attachment acts like a vibration neutraliser with a very high impedance

that pins the equipment structure. The second peak in Fig. 6(a), at about 29 Hz, has an undamped
natural frequency of about

1 kg

fe=5[-"5 (40)
T\ Ny

where

mg (me + mh)
_ , 41
" e + my + my) “1

and is primarily due to the attached mass of the equipment reacting off the combination of the
main equipment mass and the base mass and resonating on the stiffness of the attachment.

The Nyquist plot and root locus diagram are shown for this case in Figs. 6(b) and (c), from
which it can be seen that absolute velocity feedback is unconditionally stable, although the phase
does increase beyond 90° just after the resonance, causing the Nyquist plot to move into the
second quadrant as predicted by Eq. (10). Thus although the system does have an alternating
pole-zero structure, it is not passive. The open and closed loop velocity response on the equipment
due to a force on the base mass are shown in Fig. 6(d), with the feedback gain again adjusted so
that the phase margin is again 120°. In this case the first resonance has been attenuated by about
3dB and the second by about 5dB.

If, however, the mass of the attachment to the equipment is increased to 3.5 kg [6], for which the
plant response is shown in Fig. 7(a), the resonance frequency of the equipment, f, at about 12 Hz,
is now below that of the basic mounted natural frequency, f;, at about 25 Hz. The antiresonance,
which always occurs below the equipment resonance frequency, is now below both of the two
resonance frequencies of the system and the phase lead due to this antiresonance causes the phase
to increase to about 270° before falling through to 90° after the first resonance and —90° after the
second resonance, as shown in Fig. 7(a). The plant response with the equipment dynamics
suppressed by setting k, = oo is shown as the dashed line in Fig. 7(a) and does not show the phase
advance beyond 90°. The Nyquist plot shown in Fig. 7(b) shows that the equipment resonance,
which now has a phase that goes from about +270° to +90°, causes a loop on the left-hand side
of the imaginary axis. The feedback control system is thus only conditionally stable, as confirmed
by the root locus diagram shown in Fig. 7(c). The open and closed loop velocity response on the
equipment due to a force on the base mass is shown in Fig. 7(d), when the feedback gain is close to
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Fig. 7. (a) Frequency response of the plant from actuator force to absolute equipment velocity for the system shown in
Fig. 5 with m, = 3.5kg (solid line) and with the equipment dynamics suppressed by setting k, = co (dashed line).
(b) Nyquist plot of the plant response from actuator force to absolute equipment velocity for the system shown in Fig. 5
with m, = 3.5kg. (c) Root locus diagram of the feedback control system with the plant from actuator force to absolute
equipment velocity for the system shown in Fig. 5 with m, = 3.5kg. (d) Open and closed loop responses from a force on
the base structure to the equipment velocity for the system shown in Fig. 5 with absolute velocity feedback and
m, = 3.5kg.

the maximum before instability. Some attenuation at the mount resonance is achieved but this is
now accompanied by enhancement of the velocity at the equipment resonance.

This change in stability behaviour with the mass of the attachment can be understood in terms
of the stability conditions listed at the end of Section 2. The base dynamics are always mass-
dominated in this case, with my, being equal to 1.1kg. The equipment dynamics are stiffness-
dominated in the frequency range between the zero in the plant response caused by the attachment
resonance, and the next resonance, which is also due to the dynamics of the equipment. If
m, = 0.5 kg this frequency range is from about 25-29 Hz, and if m, = 3.5 kg this frequency range
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is from about 9-13 Hz. In either case the dynamic stiffness of the equipment at the lower end of
this frequency range is large, i.e., k. > k,. The total stiffness, k;, defined to be k,.k./(k,, + k.) in
Eq. (20), is thus approximately equal to k,,, i.e., about 12,000Nm .

The third condition for the system to be only conditionally stable is that k,/am?m;, > 1, Eq. (19),
which will be most stringent for the lowest frequency at which both the base is mass-controlled
and the equipment is stiffness-controlled, i.e., 25Hz if m, = 0.5kg and 9Hz if m, = 3.5kg.
Substituting these values into Eq. (19) we find

ki

w?my,

=044 if m,=0.5kg, (42)

i.e., the system is predicted to be unconditionally stable, as observed, and
ki

w’my,

=341 if m, =3.5kg, (43)

i.e., the system is predicted to be only conditionally stable, again as observed in the simulations.
The maximum value that the attached equipment mass can take before the system becomes
conditionally stable can be estimated from the fact that the lowest frequency at which the
equipment is stiffness-controlled is given by \/k,/m,. Also using the fact that at this frequency
k. >k, so that k, = k,,, the system will become conditionally stable when

km . kpmmyg

>1, 1ie.,
wflmb kamb

> 1. (44)

In the case considered here k,,, = k,, and so the system becomes conditionally stable when m, =
myp, which is equal to 1.1kg. This prediction is found to be closely approximated in the
simulations.

4.2. Integrated force feedback

Fig. 8(a) shows the frequency response of the plant from actuator force input to the integrated
force output for the arrangement shown in Fig. 5 with an added mass of 0.5 kg on the equipment,
and the Nyquist plot is shown in Fig. 8(b).

The resonance frequencies are the same as for velocity feedback, as shown in Fig. 6(a), but the
frequency of the antiresonance, which is still accurately predicted by Eq. (35), is now much closer
to the equipment resonance, as also shown in the root locus diagram in Fig. 8(c). The performance
of the closed loop system is shown in Fig. 8(d), where again the feedback gain has been adjusted
so that the phase margin is 120°. Comparing the performance with integrated force feedback with
the corresponding result for absolute velocity feedback, Fig. 6(d), it can be seen that for the same
phase margin (120°) the integrated force feedback strategy gives greater control of the first,
mount-dominated, resonance, but lower levels of attenuation of the second, equipment-
dominated, resonance.

When the added mass on the equipment is increased to 3.5kg, the integrated force plant
frequency response is as shown in Fig. 9(a). The resonance frequencies are the same as those for
velocity feedback, in Fig. 7(a), but now the antiresonance frequency, predicted from Eq. (35) to be
16.3 Hz, occurs between the two resonances and so the phase lag does not accumulate and remains
almost within +90°, as seen on the Nyquist plot in Fig. 9(b).



S.J. Elliott et al. | Journal of Sound and Vibration 271 (2004) 297-321 313

0 0.02
@w -20 |
\':f _ - 0.015 |
° -40 [ R
o
s
— 60} 1 0.01f
&
2
- -80
§ 0.005 |
100 L L L L L L L L L =)
0 5 10 15 20 25 30 35 40 45 50 5
Frequency (Hz) g 0
£
+270 T T T T T T T T T g
+180 | i = -0.005 [
__ +90 1
3 -0.01f
< or
=
90 -0.015
180
270 L L L L L L L L n 0.02 L . L L L n
5 10 15 20 25 30 35 40 45 50 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
@ Frequency (Hz) (b) Real (GH(w))
200 0
Y
150
100
z
-
5 50 | 2
> pa)
g =
£ 0 - - °
=)
E ]
g
50 3
=
-100 L
-150 L
Ia
200 L L L L
-250 -200 -150 -100 -50 0
(C) Real (s) (d) Frequency (Hz)

Fig. 8. (a) Frequency response of the plant from actuator force to integrated equipment force for the system shown in
Fig. 5 with m, = 0.5kg (solid line) and with the equipment dynamics suppressed by setting k, = oo (dashed line).
(b) Nyquist plot of the plant response from actuator force to integrated equipment force for the system shown in Fig. 5
with m, = 0.5kg. (c) Root locus diagram for the feedback system with the plant response from actuator force to
integrated equipment force for the system shown in Fig. 5 with m, = 0.5kg. (d) Open and closed loop responses from a
force on the base structure to the equipment velocity for the system shown in Fig. 5 with integrated force feedback and
m, = 0.5kg.

This antiresonance is again undamped, and appears on the imaginary axis of the root locus
diagram shown in Fig. 9(c). The performance is shown in Fig. 9(d) with the feedback gain again
adjusted so that the phase margin is 120°, where attenuation of both resonances is seen. This
example clearly illustrates the fact that integrated force feedback can be a more stable strategy
than absolute velocity feedback under the rather extreme conditions where the attached mass is
considerably greater than the mass of either the main equipment structure or the base and the base
structure is unattached to the ground [6].

In the following section an example is considered in which the base structure is grounded but is
also flexible, so that its dynamics will only be mass-controlled over certain ranges of frequency.
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Fig. 9. (a) Frequency response of the plant from actuator force to integrated equipment force for the system shown in
Fig. 5 with m, = 3.5kg (solid line) and with the equipment dynamics suppressed by setting k, = co (dashed line).
(b) Nyquist plot of the plant response from actuator force to integrated equipment force for the system shown in Fig. 5
with m, = 3.5kg. (¢) Root locus diagram for the feedback system with the plant response from actuator force to
integrated equipment force for the system shown in Fig. 5 with m, = 3.5kg. (d) Open and closed loop responses from a
force on the base structure to the equipment velocity for the system shown in Fig. 5 with integrated force feedback and
m, = 3.5kg.

5. Case of a flexible base structure
5.1. The isolation system

In this section we consider the case of an isolation system in which both the equipment structure
and the base structure are flexible. The mechanical arrangement is illustrated in Fig. 10 and
described fully by Huang et al. [13]. It consists of a flexible steel base plate 700 x 500 x 2 mm thick,
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Fig. 10. Physical arrangement of an isolation system in which the equipment structure is a flexible plate attached to a
base plate, which is clamped on two sides, by four mounts.

clamped on the two longer sides, which supports a flexible equipment structure consisting of a
300mm x 160 mm x 3.2mm thick aluminium plate on which 4 electromagnetic actuators are
mounted, each of mass 0.91 kg. The equipment structure is normally supported by four mounts
underneath the actuators, each of which has a stiffness, &, of 1.2 x 10*Nm~! and damping, ¢,
of 11.5 Nsm™". In the experimental system described by Huang et al. [13], the control forces are
transmitted from the actuators to the base structure through the hollow passive mounts.

We will consider a single-channel active isolation system here, implemented at only one mount
location. The control forces are again modelled as being in parallel and collocated with the mount,
as shown in Fig. 10. The theoretical model described by Huang et al. [13] has been used to predict
the input mobility of the equipment plate at this mount position, as shown in Fig. 11(a), complete
with the mass loading effects of the electromagnetic shakers. At low frequencies the mobility falls
with frequency and has a phase of —90° since it is determined by the mass of the equipment
structure. The first flexural resonance of the equipment structure, a torsional mode, occurs at
about 54 Hz and this creates a resonance in the mobility response at this frequency and an
antiresonance at about 47 Hz, because of the interference between the rigid body mode and the
first flexible mode. Between about 47 and 54 Hz the equipment mobility rises with frequency and
has a phase shift of +90° and is thus stiffness-dominated. The dynamic stiffness of the equipment
structure is much larger than that of the mount over almost all of this frequency range. Above
54 Hz the mobility again becomes mass-dominated until about 140 Hz, where the second flexible
mode of the equipment structure occurs.

The input mobility of the base structure at the mounting position is shown in Fig. 11(b). At low
frequencies this rises with frequency and has a phase of +90° because it is stiffness-dominated, as
expected for a plate clamped on two sides to a rigid base. The first flexural resonance of the base
plate occurs at about 40 Hz and between this frequency and the frequency of the next
antiresonance, at about 48 Hz, the mobility falls with frequency and has a phase shift of —90°, and
is thus mass-dominated. Further flexural modes of the base plate occur at about 60 and 140 Hz
with alternating stiffness-controlled and mass-controlled behaviour in between.

It was originally coincidental that in these simulations the base structure should be mass-
controlled over part of the frequency range in which the equipment structure is stiffness-
controlled. It does, however, provide worst-case conditions from the point of view of the stability
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Fig. 11. The input mobility of the equipment structure (a) and the base structure (b) shown in Fig. 10 at one of the
mounting points.

of an absolute velocity feedback system, as discussed in Section 2, and may thus be seen to be a
challenging case to consider.

5.2. Absolute velocity feedback

Fig. 12(a) shows the frequency response of the plant, from reactive force input to absolute
equipment velocity output for the isolation system described above, and Fig. 12(b) shows the
corresponding Nyquist plot, indicating the system is unconditionally stable.
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Fig. 12. (a) Frequency response of the plant response from actuator force to absolute equipment velocity for the
isolation system with a flexible base structure, as shown in Fig. 10. (b) Nyquist plot of the plant response. (¢) Root locus
plot of the velocity feedback diagram. (d) Open (thick line) and closed (thin line) loop equipment velocity responses.

Returning to the conditions discussed at the end of Section 2, which are necessary for a
conditionally stable system, we see from Figs. 11(a) and (b) that two of these three conditions are
satisfied from about 47 Hz when the equipment becomes stiffness controlled, to 48 Hz, above
which the base is not mass-controlled. The third condition can be evaluated at the worst-case
frequency of 47 Hz, at which the effective mass of the base, my, is about 2.5kg. The dynamic
stiffness of the equipment is significantly higher than that of the mount at this frequency so the
total stiffness, k;, is approximately equal to k,,, which is 12 x 10* N'm™". In this case the stability
parameter defined in Section 2 is thus equal to

k;
w?my

=0.05 at 47Hz, (45)
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and the system is predicted to be unconditionally stable. The simple rules derived in Section 2 for
judging the stability of a velocity-feedback isolation system thus do a good job of predicting the
behaviour of the controller even in this complicated structure.

Fig. 12(c) shows the root locus diagram for this system, which has pairs of poles corresponding
to the resonances at 14, 42 and 54 Hz, and an additional pole with a closely spaced zero at
about 60 Hz. Each of the root loci from the open loop poles to the open loop zeros move to the
left in this diagram, indicating greater damping, except the pole-zero pair at about 60 Hz, for
which the root locus initially moves slightly to the right, to an extent which is difficult to observe
in Fig. 12(c), but does not cross the real axis again, confirming that the system is unconditionally
stable.

This isolation system can become conditionally stable, however, if some of its characteristics are
changed. If, for example, the stiffness of the mount, and hence &, in Eq. (45) was increased by a
factor of 20, the stability parameter would become greater than unity and the system would be
conditionally stable. More subtly, however, if the thickness of the equipment structure is reduced
from 3.2 to 2.9 mm, its first flexural resonance then occurs at 47 Hz instead of 54 Hz and the
equipment structure is stiffness-controlled from 41 to 47Hz. The effective mass of the base
structure at 41 Hz is only about 0.2kg and k,/w”m; is then about 1.8 at this frequency, indicating
that the system is only conditionally stable. The magnitude of the plant response is, however, very
small at 41 Hz, because Y.(jw) has a very small magnitude at this frequency, and so the system
would not become unstable until the feedback gains were extremely high.

Fig. 12(d) shows the equipment velocity due to a primary force acting on the base plate before
control (solid line) and with velocity feedback control (dashed line), where the gain has again been
adjusted to give a phase margin of 120°. About 10dB of attenuation is achieved at the first,
mounted equipment, resonance at about 14 Hz and about 6 dB of attenuation is achieved at the
first base resonance, at about 54 Hz.

The isolation system shown in Fig. 10 has four mounts, but in this section control has only been
considered for a single mount. The reductions in equipment velocity above this mount, as shown
in Fig. 12(d), can thus be accompanied by increases in the equipment velocity above the other
mounts, as the single channel control system acts to pin the equipment at one point. Global
control of the equipment’s vibration can only be achieved by actively controlling each of the four
mounts [13].

5.3. Integrated force feedback

Fig. 13(a) shows the magnitude and phase of the frequency response from actuator input to
integrated equipment force output for the isolation system shown in Figs. 10, and 13(b) and (c)
shows the corresponding Nyquist and root locus plot. The magnitudes of the peak due to the
equipment’s internal resonance, at about 54 Hz, is now much smaller than that due to the main
1solator resonance, at about 12 Hz.

Fig. 13(d) shows the open and closed loop equipment velocity response to a unit primary force
on the base plate, again arranged to have a 120° phase margin. The attenuation at the mounted
equipment resonance is again about 10 dB, but the attenuation at the equipment resonance is now
very small.
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Fig. 13. (a) Frequency response of the plant response from actuator force to integrated force for the isolation system
with a flexible base structure, as shown in Fig. 10. (b) Nyquist plot of the plant response. (¢c) Root locus plot of the
velocity feedback diagram. (d) Open (thick line) and closed (thin line) loop equipment velocity responses.

6. Summary and conclusions

A general analysis has been presented of the plant response in an active isolation system with
either absolute velocity feedback or integrated force feedback, in terms of the mechanical
impedance of the mount and the mechanical mobilities of the equipment structure and the base
structure.

When the reciprocal of the plant frequency responses is considered, it can be seen that for
integrated force feedback, the plant’s phase response is restricted to be between —180° and 90°. In
the absence of actuator and sensor dynamics, this feedback loop is thus unconditionally stable.

When a similar analysis is performed for absolute velocity feedback, the limits on the phase of
the plant’s frequency response are increased, to be between —180° and 270°. This feedback
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control system is thus, in general, only conditionally stable. The frequency domain analysis can,
however, also be used to determine the specific conditions under which the plant’s phase shift
becomes greater than 180° and thus causes stability problems. These are three-fold: first the base
must be mass-dominated, second the equipment must be stiffness-dominated and third the ratio of
the base mobility to the mount and equipment mobility must have a modulus which is greater
than unity.

In the special case in which the base is rigid, the phase of the plant’s frequency response for
integrated force feedback is still —180° to 90°, but for absolute velocity feedback, the phase is now
restricted to —90° to +90°. This is because the plant response is equal to a passive input mobility
function and so the velocity feedback system is not only unconditionally stable but is also very
robust under these conditions.

Numerical simulations have been used to illustrate the frequency response, Nyquist plot and
root locus plot for the particular case of an active isolation system with a rigid base and a dynamic
equipment structure, modelled as a two degree of freedom system. Both absolute velocity
feedback and integrated force feedback give a similar reduction in the transmissibility at the
natural frequency of the isolation system, but absolute velocity feedback also provides good
reductions at the natural frequency of the internal equipment resonance. If the equipment is rigid
but the base is flexible, both feedback strategies are seen to be equivalent.

When the base structure is assumed to be a mass, however, the absolute velocity feedback
system becomes only conditionally stable when the natural frequency of the internal equipment
resonance falls below the natural frequency of the isolation system. If the natural frequency of the
dynamic equipment structure is above the natural frequency of the isolation system, on the other
hand, the absolute velocity feedback system is unconditionally stable and again provides a greater
degree of attenuation at the natural frequency of the equipment than integrated force feedback.

Finally, the case is considered in which both the equipment structure and the base structure are
flexible. Although it is then possible for the base dynamics to be mass-dominated and the
equipment dynamics to be stiffness-dominated at the same frequency, absolute velocity feedback
still appears to be a stable strategy until the feedback gain is much higher than is required for
good attenuation. Absolute velocity feedback again has the advantage of attenuating not just the
main resonance of the isolation system, but also resonances due to the flexibility of the equipment.

Acknowledgements

This work was performed under EPSRC Grant Number GR/M 24424,

References

[11 C.M. Harris, Shock and Vibration Handbook, 3rd Edition, McGraw Hill, NewYork, 1998.

[2] D. Karnopp, Active and semi-active vibration isolation, American Society of Mechanical Engineers, Journal of
Mechanical Design 177 (1995) 177-185.

[3] S.J. Elliott, M. Serrand, P. Gardonio, Feedback stability limits for active isolation systems with reactive and
inertial actuators, American Society of Mechanical Engineers, Journal of Vibration and Acoustics 123 (2001)
250-261.



S.J. Elliott et al. | Journal of Sound and Vibration 271 (2004) 297-321 321

[4] A.B. Watters, R.B. Coleman, G.L. Duckworth, E.F. Berkman, A perspective on active machinery isolation,
Proceedings of the 27th Conference on Decision and Control, Austin, TX, 1988, pp. 2033-2038.

[5] A. Preumont, Vibration Control of Structures: An Introduction, 2nd Edition, Kluwer, Dordrecht, 2002.

[6] A. Preumont, A. Frangois, F. Bossens, A. Abu-Hanieh, Force feedback versus acceleration feedback in active
vibration isolation, Journal of Sound and Vibration 257 (4) (2002) 605-613.

[7] G.M. Blackwood, A.H. Von Flotow, Active control for vibration isolation despite resonant structural dynamics: a
trade study of sensors, actuators and configurations Proceedings of the 2nd Conference on Recent Advances in
Active Control of Sound and Vibration, Virginia Polytechnic Institute, Blacksburg, VA, 1993.

[8] M. Serrand, Direct Velocity Feedback Control of Equipment Velocity, MPhil Thesis, University of Southampton,
Southampton, 2000.

[9] D. Sciulli, D.J. Inman, Isolation design for a flexible system, Journal of Sound and Vibration 216 (2) (1998)
251-267.

[10] G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, 3rd Edition, Addison-
Wesley, Reading, MA, 1994.

[11] M.Z. Ren, K. Seto, F. Doi, Feedback structure-borne sound control of a flexible plate with an electromagnetic
actuator: the phase lag problem, Journal of Sound and Vibration 205 (1) (1997) 57-80.

[12] M.J. Brennan, K.A. Ananthaganeshan, S.J. Elliott, Low and high frequency instabilities in feedback control of
vibrating single-degree-of-freedom systems, P. Gardonio, B. Rafaely (Eds.) Proceedings of ACTIVE 2002, Vol. 2,
Southampton, 2002, pp. 1317-1326.

[13] X. Huang, S.J. Elliott, M.J. Brennan, Active vibration isolation of a flexible equipment structure on a flexible base,
ISVR Technical Memorandum No. 879, 2001.



	Mobility analysis of active isolation systems
	Introduction
	General analysis
	Derivation of plant responses
	Frequency response conditions on stability

	Case of a rigid base structure
	Absolute velocity feedback
	Integrated force feedback

	Case of a mass-controlled base structure
	Absolute velocity feedback
	Integrated force feedback

	Case of a flexible base structure
	The isolation system
	Absolute velocity feedback
	Integrated force feedback

	Summary and conclusions
	Acknowledgements
	References


