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Abstract

The problem of isolating the vibration at any location on a flexible structure mounted on a vibrating
flexible base is considered using a Kalman-based active feedforward–feedback controller (KAFB) with non-
collocated sensors and actuators. The control strategy developed in this study focuses on lowering the force
transmitted to the structure through its vibrating elastic foundation in the presence of process and
measurements noise. A state-space model of the structure is constructed from the natural frequencies and
mode shapes generated via finite element modal analysis of the structure. The important aspect of the
proposed control strategy is that, while it’s design is based on a full order model of the physical structure
(plant), its implementation is reduced to the realization of a second order estimator regardless of the order
of the plant model, and with negligible effect on its accuracy and performance. Therefore, the proposed
control strategy requires low computational effort, which makes it well suited for real time control
applications. Another unique aspect of this control strategy is its agility and speed in compensating for any
phase or magnitude mismatch between transmitted force and control force. Moreover, the stability of the
control system is implicitly attained by the controllability condition posed by the Kalman filter on the
model. Thus, proper choice of Kalman gains will drive the states of the structure, at the sensor location,
ideally to zero. In addition to that, digital implementation of the proposed controller can be easily done
considering the fact that the discrete Kalman filter is exact. Numerical simulation of the controller
performance is carried out and the results are presented.
r 2003 Published by Elsevier Ltd.

1. Introduction

The control of vibration transmission has received much attention in recent years due to its
effect on the functionality of systems involved. For example, vibration transmitted from the
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engine of an automobile to its chassis causes unwanted noise and discomfort to the passengers.
Vibration transmission in precision machining and precision positioning systems degrades its
precision. In other applications, vibration transmission can cause instability [1] or even failure, as
is the case in buildings subject to earthquakes, or sensitive avionics mounted on the airframe of an
aircraft. The wide spectrum of problems caused by vibration transmission has generated interest
in the field of control and isolation of vibration transmission [2].
In general, the purpose of vibration transmission control is to isolate the environment from the

source vibration by lowering the transmitted force between the two. Depending on the
application, the source of vibration can be the base or the structure itself [3]. A good vibration
isolator is potentially a poor shock isolator. Adding damping to decrease transmissibility near
resonance (frequency ratio o1=

ffiffiffi
2

p
) increases the transmissibility at isolation frequencies

(frequency ratio > 1=
ffiffiffi
2

p
). To complicate matters, isolation design is limited by the elastic

deflection and the rattle space of the isolation device [4]. For passive dampers, elastomeric
isolators are the most commonly used passive devices for vibration isolation. The stiffness
required of such mounts for supporting elastic loads, e.g., weight of the structure, could lead to
limitation in their isolation capabilities. In addition, the damping requirements of the mount at
low and high frequency ranges are different, since large damping is needed for low frequency
isolation and low damping is needed for high frequency isolation. For this reason, tuned isolators
such as hydraulic mounts have been developed to remedy this contradiction in damping
requirements [5]. These tuned isolators are passive vibration isolation mechanisms that are tuned
to a certain resonant frequency and only add damping to that resonance; however, once they are
tuned they are not adaptable.
Vibration damping (for shock isolation) and vibration cancellation (for vibration isolation)

can be accommodated by active control. The advantage of using active control techniques over
its passive counterparts is their capability to adapt to changes in the natural frequency of
the system and/or excitation frequencies. Kaplow and Velman [6] isolated two structures by
using active mounts to apply force between the structure and its vibrating base based on
acceleration measurements. Their idea was to maintain zero acceleration of the isolated
side. Gardonio et al. [7,8] presented and analyzed five different techniques for active isolation of
structural vibration on a multi degree of freedom system. The system in their study consisted
of a rigid mass acting as a vibration source, connected to a receiver plate through a pair of mounts
each of which can generate axial control force. They concluded that controlling the total
power transmitted to the plate gives best results under ideal conditions. However, they suggested
that for the realistic cases, the cancellation of velocity or forces is more effective than the
control of measured power. For a comprehensive literature survey on vibration isolation see
Refs. [1,7,8].
A common vibration cancellation technique is the feedforward control. Ideally, such a

technique should cause complete cancellation of the disturbance effect at the sensor location
assuming that (a) the overall gain of the controller and error path matches the forward path gain
exactly and (b) the combined controller and error path is exactly 180� out of phase with the
forward path. When these parameters are not met, the cancellation could actually deteriorate the
system disturbance response.
Considering the importance of gain and phase matching in feedforward control, it is desirable

to implement some type of adaptive algorithm to minimize these errors. Least mean square
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algorithms, based on minimizing the mean square of the disturbance response are commonly used
in noise and vibration control [9,10].
In many cases successful implementation of active vibration control depends on, among other

things, the accuracy of the model of the system to be controlled. In large flexible structures and
due to the complexity of equation of motion, discretization is frequently used for constructing a
finite-dimensional system of ordinary differential equations [11]. However, reducing the infinite-
dimensional distributed system to a finite-dimensional system (discretized) causes some problems
such as spillover, sensitivity to small parameter perturbation, as well as uncertainties [11,12].
Moreover, another problem that arises from discretization is that many modes may need to be
considered, especially if it is desired to control the vibration of large flexible structures over a wide
range of frequencies [13].
In this paper, the problem of isolating the vibration of any location on a flexible structure from

the vibration of its elastic base is considered using a Kalman-based active feedforward–feedback
controller with non-collocated sensor and actuator. The control strategy developed in this study
focuses on lowering the force transmitted to the structure through its vibrating elastic foundation
in the presence of process and measurements noise. A state-space mode of the structure is
constructed from the natural frequencies and mode shapes generated via finite element modal
analysis of the structure. The important aspect of the proposed control strategy is that, while it’s
design is based on a full order model of the physical structure (plant), its implementation is
reduced to the realization of a second order estimator regardless of the order of the plant model,
and with negligible effect on its accuracy and performance. Therefore, the proposed controller
strategy requires low computational effort, which makes it well suited for inline control
applications. Another unique aspect of this control strategy is its agility and speed in
compensating for any phase or magnitude mismatch between transmitted force and control
force. Moreover, the stability of the control system is implicitly attained by the controllability
condition posed by the Kalman filter on the model. Thus, proper choice of the Kalman gains will
drive the states of the structure at the sensor location to zero as required. In addition to that,
digital implementation of the proposed controller can be easily done considering the fact that the
discrete Kalman filter is exact. Numerical simulation of the controller performance is carried out
and the results are presented.
Knowing that the model upon which the Kalman estimator is constructed in this study can

always be reduced to second order, and always resembles that of the actual system, the speed and
agility required for compensating for any phase or magnitude mismatch between the transmitted
force and the control force is almost instant. Such high performance is accredited to the low order
of the estimator and, unlike feedforward controllers, the feedforward–feedback approach also
monitors the output of the system. In this case, any output deviation from the expected value
(zero acceleration) at the sensor location is compensated for by adjusting the magnitude and the
phase of the control force to achieve the desired zero acceleration.

2. Finite element model

To implement the proposed scheme on a distributed parameter system such as the beam shown
in Fig. 1, the structure is discretized into finite elements forming an n-dimensional discrete spring–
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mass–damper system whose dynamics is described by the second order matrix differential
equation,

M .xþ C ’xþ Kx ¼ uðtÞ; ð1Þ

where M; C; and K are the ðn � nÞ square and symmetric mass, damping, and stiffness coefficient
matrices respectively. The variables xðtÞ and uðtÞ are the displacement and force vectors,
respectively. For systems with proportional damping, the matrices M; K; and C can be
diagonalized using normalized orthonormal eigenvectors as the columns of the transformation
matrix [1,12], yielding

.ZiðtÞ þ 2BioiZiðtÞ þ oiZiðtÞ ¼ ViuðtÞ; i ¼ 1;y; n; ð2Þ

where Zi; oi; and Bi represent the transformed co-ordinates, natural frequency, and damping ratio
of the structure’s ith mode of vibration, respectively. When the input is point force (i.e.,
actuators), Vi is the vector of the ith mode shape evaluated at the force input location.
For flexible structures having point force(s) as the input(s) and point displacement(s)

as the measured output, the state-space model of flexible structures can be constructed in
the form,

’z ¼
0 I

�X2 �2BX

" #
zþ

0

V

" #
u; ð3Þ

Xt ¼ ½W 0	zþDu; ð4Þ

where, state vector:

zðtÞ ¼
gðtÞ

’gðtÞ

( )
;

number of modes:

Nm;

number of inputs:

Nu;
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Fig. 1. Flexible beam mounted on a vibrating elastic base.
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number of outputs:

Ny;

modal displacement:

gðtÞ ¼ fZ1ðtÞ; Z2ðtÞ;y; ZNm
ðtÞgT;

modal velocity:

’gðtÞ ¼ f’Z1ðtÞ; ’Z2ðtÞ;y; ’ZNm
ðtÞgT;

input:

uðtÞ ¼ fu1ðtÞ; u2ðtÞ;y; uNu
ðtÞgT;

output matrix

W ¼

c1;1; ??; cNm;1

^ & ^

c1;Ny
; ??; cNm;Ny

2
64

3
75:

The state-space model of Eqs. (3) and (4) can be expressed in the following compact form:

’z ¼ AsðyÞz þ BsðyÞu; ð5Þ

y ¼ CsðyÞz þDsðyÞu; ð6Þ

where As;Bs;Cs; and Ds matrices are functions of the system (natural frequency, damping ratio,
and mode shapes (i.e., if we assume y ¼ f ðoi; zi; and ciÞi¼1;y;nÞ:
The information needed to construct the matrices As; Bs; Cs; and Ds of Eqs. (5) and (6) (i.e.,

mode shapes and natural frequencies) can be obtained by performing FE modal analysis of the
solid model of the plant.

3. Controller design

Assuming that the control effort will be used for the purpose of isolating the tip of the beam
shown in Fig. 1 from the vibration of the elastic base and to better explain the proposed control
strategy, consider a single degree-of-freedom spring–mass–damper system mounted on a vibrating
elastic base. Such system has the equation of motion:

m .x þ c ’x þ kx ¼ c ’y þ ky; ð7Þ

where c and k are the elastic base damping and stiffness, respectively. The variable x is the
physical displacement of the mass m and y is the physical displacement of the base (i.e.,
disturbance). The Laplace transform of Eq. (7) is

ðms2 þ cs þ kÞX ðsÞ ¼ ðcs þ kÞY ðsÞ ð8Þ

and the transfer function mapping the base displacement to that of the mass is

GðsÞ ¼
X ðsÞ
Y ðsÞ

¼
ðcs þ kÞ

ðms2 þ cs þ kÞ
: ð9Þ
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Considering that accelerometers are the sensors of choice in most vibration measurements and
control applications, the transfer function of Eq. (9) can be modified in such a way that the
acceleration of the base is the input to the beam’s structure and the acceleration of any point on
the beam (where vibration isolation is desired) is the system’s output. Thus, the modified transfer
function takes on the form,

GðsÞ ¼
s2X ðsÞ
s2Y ðsÞ

¼
ðcs þ kÞ

s2
�

s2

ðms2 þ cs þ kÞ
; ð10Þ

where ðs2Y Þ is the acceleration of the base and ðs2X Þ is the acceleration of the mass. According to
Eq. (10), the block diagram of the physical system can be represented as shown in Fig. 2 which has

Gf ðsÞ ¼
ðcs þ kÞ

s2
; ð11Þ

and

GsðsÞ ¼
s2

ðms2 þ cs þ kÞ
: ð12Þ

It is clear that by having the base acceleration as the input to the first block (i.e., Gf ðsÞ) of Fig. 2,
the transfer function of that block becomes proper, rational and thus, realizable.
Notice that the double integrator in the denominator of the block Gf ðsÞ can make the

realization unstable unless the correct initial conditions are used. Since the initial conditions are
not known in active vibration isolation applications, a second order filter that has a natural
frequency well below the disturbance frequency(s) approximates the double integrator. Moreover,
replacing the double integrator by a second order filter eliminates the possibility of saturating the
integrator by DC offset of the accelerometer and the associated electronics. By doing so, the block
representing Gf ðsÞ; (also referred to as the transmitted force block) is approximated as

Gf ðsÞ ¼
of ðcs þ kÞ

ðs2 þ 2Bfof s þ o2
f Þ
; ð13Þ

where of ; and Bf are the natural frequency and the damping ratio of the filter, respectively. The
second order filter behaves as an integrator in the frequency range R; where ofpRp2pk=c [14].
The (KAFB) dynamic model is formed from the combined dynamics of the transmitted force

Gf ðsÞ of Eq. (13) and the dynamics of the structure GsðsÞ of Eq. (12).
The equivalent continuous state-space model of the transmitted force Gf ðsÞ is

’xf ¼ Afxf þ Bf YY;

F ¼ Cfxf þDf YY; ð14Þ

where ðYYðtÞÞ is the base acceleration, xf is a vector of the transmitted force states. Af ; Bf ; Cf ; and
Df ; are dynamics, input, output, and direct input matrices of the transmitted force block of Fig. 2,
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Fig. 2. Block diagram of a spring–mass–damper system subject to base excitation.
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respectively. The term F denotes the force transmitted to the mass m through its elastic base and is
a function of time.
Using the above analysis and replacing the mass m with the beam of Fig. 1, one can express the

continuous state-space model of the structure depicted by Eqs. (6) and (7) as

’zf ¼ Aszþ BsF;

Xt ¼ CszþDsF; ð15Þ

where that the term uðtÞ of Eqs. (5) and (6) has been replaced by F in Eq. (15) to indicate that the
input to the structure is the force transmitted to it through its elastic base.
A state-space model of the beam-base system (the transmitted force represented by Eq. (14) and

the structure represented by Eq. (15)) can now be constructed by augmenting the two parts
together [14] such that

Aa ¼
Af 0

BsCf As

" #
; ð16Þ

Ba ¼
Bf

BsDf

" #
; ð17Þ

Ca ¼ ½DsCf Cs	; ð18Þ

Da ¼ ½DfDs	; ð19Þ

where Aa; Ba; Ca; Da represent the state-space matrices of the augmented base-beam system in
which, the first two states belong to the transmitted force part and the remaining states belong to
the structure mounted on the base.
Matrices Aa; Ba; and Ca are used for designing the (KAFB) matrix of gains (Ka) such that

Ka ¼ SoC
T
aR

�1: ð20Þ

The column vector Ka in this case is a ð2þ 2nÞ � 1 column vector, and the first two rows are the
Kalman gains of the states of the transmitted force, and the remaining 2n gains are those of the
states of the structure. So is the steady state solution of the following filter algebraic Riccati

equation,

’S ¼ AaSþ SAT � SCT
aR

�1CaSþ BaQBT
a : ð21Þ

Matrices R and Q positive definite and positive semi-definite matrices, respectively [15]. For a
specific value of R; and Q; the Kalman matrix of gains ðKaÞ of Eq. (20) is

Ka ¼
½Kf 	

½Ks	

" #
¼

½K1	

½K2	

" #

½K3	

^

½K2nþ2	

2
64

3
75

2
66666664

3
77777775
: ð22Þ
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Eq. (23) shows that Ka is partitioned into two parts, namely, Kf which corrects the estimates of xf

of Eq. (14), and Ks which corrects the estimates beam states (i.e., Xt of Eq. (15)).
In general, the dynamics of the Kalman estimator takes on a particularly simple structure that

closely resembles the original dynamic system to be controlled [15,16]. The complete vibration
isolation scheme proposed by this study is shown in Fig. 3.
It is well known that the Kalman estimator should be subject to all the deterministic inputs the

plant is subject to, including the estimated control Force #F shown in Fig. 3. This is why the
realization of the structure inside the controller in Fig. 3 is subject to the estimated transmitted
force ( #F) twice. These two forces have the same magnitude, and like the two forces acting on the
structure (plant), they are opposite in sign, zeroing the net force seen by the realization of the
structure inside the controller. Therefore, the Kalman estimate of the acceleration, of any point on
the beam, is identically zero, which eliminates the need for realizing (including) the structure
inside the controller, which subsequently yields a second order control scheme regardless of the
order of the plant model. This reduces the computational burden on the controller and lowers its
complexity.

4. Numerical simulation and results

The proposed (KAFB) strategy is used in simulating the isolation of the tip of a beam mounted
on a vibrating elastic base as shown in Fig. 4. The beam-base system has the dimensions and
properties listed in Table 1.
The state-space model of Eq. (14) is utilized to mimic the base dynamics, while the state-space

model of Eq. (15) is utilized to mimic the actual dynamic behavior of the beam. The base
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Fig. 3. Schematic of the control strategy.
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acceleration is simulated by a square wave with various amplitudes and frequencies as listed
in Table 2. The acceleration of the beam tip is obtained by differentiating the tip displacement
(i.e., Xt of Eq. (15)) twice.
The reduced-order linear elastodynamic model of the beam-base system, i.e., (plant) needed for

construction of the KAFB and the associated Kalman matrix of gains (Ka) is generated according
to the procedure given in Eqs. (16)–(22). FE modal analysis of a solid model of the beam
discretized by 96-4 node, 0:007 m-thick shell elements, is used to generate the natural frequencies
and mode shapes of the beam-base system. The assumed actual behavior of the beam is
constructed from the first eight (8) modes of vibration of the beam, while the reduced-order state-
space model of the plant (used in constructing KAFB) is constructed from the first three modes of
vibration. The natural frequencies of the first eight modes of vibration found by FE modal
analysis of the beam are listed in Table 3.
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Fig. 4. Control of a cantilevered beam mounted on a vibrating elastic base.

Table 1

Beam-base data

Beam’s material properties Modulus of elasticity E ¼ 207 GPa

Density r ¼ 7800 kg=m3

Beam dimensions Length ¼ 1 m

Width ¼ 0:05 m

Thickness ¼ 0:007 m

Elastic base properties Stiffness k ¼ 10 000 N=m
Damping c ¼ 0:01 kg=s

Table 2

Simulation data used with Matlabs and Simulinks

Base excitation (square wave) 45 Hz with 2g amplitude

150 Hz with 3g amplitude

250 Hz with 3g amplitude

500 Hz with 5g amplitude

Measurement noise Band-limited white noise with 0.01 power

and sample time of 0:0001 s

Process noise covariance/measurement noise covariance Q=R ¼ 6 for all excitations
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Modal damping of 1% is added to the system (approximate natural damping of the beam’s
material), and the damping matrix C of Eq. (1) is constructed based on the initial assumption that
C is proportional to the mass and stiffness matrices M; and K; respectively. Using the
aforementioned data and assumptions, the Kalman matrix of gains ðKaÞ for this study is

Ka ¼
½Kf 	

½Ks	

" #
¼

0:01756355385953

�0:00000076074449

" #

0:01756355385953

�0:00000076074449

�0:00070438539801

�0:00005360989462

�0:00000954747742

�0:00000004835226

0:00000000098030

0:00000000027617

2
666666666666664

3
777777777777775

2
66666666666666666664

3
77777777777777777775

: ð23Þ

While the data listed in Table 1 is assumed to be that of the actual system, a high modelling error
of 50% is assumed for the flexible beam. This modelling error is incorporated into the simulation
by multiplying the matrix (As) of Eq. (15) by (1.5). Measurement noise is simulated by a band-
limited white noise introduced at the feedback path; see Fig. 3. Simulation data used in this study
is listed in Table 2.
The control scheme depicted by Fig. 3 is implemented for the purpose of isolating the beam tip

from the vibration of the base in the vertical direction. The isolation mechanism is achieved
through counteracting the transmitted force by the actuator force (i.e., #F), the magnitude and
direction of which are calculated by the controller as shown in Fig. 3. A sample plot of the force
transmitted to the structure through its elastic base is shown in Fig. 5. Acceleration of the base is
the simulated by square wave acting at the point where the actuator is attached to the base. The
tip acceleration is taken as the output displacement differentiated twice.
The simulation is carried out using Matlabs and Simulinks where the system is excited by the

base excitation signals listed in Table 2, and the acceleration of the beam’s tip with and without
control is plotted. Tip acceleration (s2Xt) plots in Figs. 6–10 show that the proposed control
method has succeeded in reducing the vibration of the beam tip by roughly 40–60% using only a
second order controller. It is also clear that controller has maintained stability and robustness
despite the presence of process and measurement noise and near-resonance base excitation
conditions.
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Table 3

Modal frequencies of the beam generated by ANSYS

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th

Freq. (Hz) 36.641 100.62 197.06 259.46 326.20 431.85 488.94 686.39
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Fig. 3 shows that by disconnecting the feedback signal, the controller becomes a feedforward
controller. Such controller will perform well only if (a) the model is highly accurate, (b) the overall
controller gain matches the feedforward gain exactly, and (c) the controller path is 180� out of
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Fig. 5. Sample plot of the force transmitted through elastic base to the structure.

Fig. 6. Tip acceleration with and without control; 12 Hz square wave base excitation with 20 m=s2 amplitude. No

control, ??; feedforward–feedback control, ——.
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phase with the feedforward path. If these conditions are not exactly met, the cancellation of the
transmitted force will be less effective or, in severe cases of phase mismatch, the controller might
actually worsen the system disturbance response.
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Fig. 7. Tip acceleration with and without control; 150 Hz square wave base excitation with 30 m=s2 amplitude. No

control, ??; feedforward–feedback control, ——.

Fig. 8. Tip acceleration with and without control; 250 Hz square wave base excitation with 30 m=s2 amplitude. No

control, ??; feedforward–feedback control, ——.
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To examine the effect of the feedback signal on the overall controller performance, the process
is simulated with the feedback signal disconnected. Comparison between the performance of
feedforward only controller, and that of the feedforward–feedback is depicted in Fig. 10 which
shows that the active feedforward–feedback controller is more effective than the feedforward only
controller where the latter has kept track of the output and constantly adjusted the control effort
for optimal vibration isolation at the sensor location (beam tip).

5. Conclusions

This paper describes the design and simulation of a new active feedforward–feedback Kalman
estimator-based control strategy (KAFB) using non-collocated actuators and sensors for
vibration isolation of flexible structures mounted on a vibrating elastic base. The control strategy
developed in this paper focuses on lowering the force transmitted to the structure through its
vibrating elastic foundation in the presence of process and measurement noise. A state-space
model of the structure is constructed from the natural frequencies and mode shapes generated via
FE modal analysis of the base-structure system. An important aspect of the proposed control
strategy is that, while it is designed based on a full order model of the physical structure, its
implementation is reduced to the realization of a second order estimator regardless of the order of
the plant model, and with minimal effect on its accuracy and performance.
Knowing that the dynamics of the Kalman estimator are second order and always resembles the

actual system, the speed and agility required for compensating for any phase or magnitude
mismatch between the transmitted force and the control force are almost instant. Such high
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Fig. 9. Tip acceleration with and without control; 500 Hz square wave base excitation with 50 m=s2 amplitude. No

control, ??; feedforward–feedback control, ——.
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performance is accredited to the fact that, in addition to being a low order controller and, unlike
feedforward controllers, the feedforward–feedback approach also keeps track of the output of the
system, where any output deviation from the expected value (zero acceleration) at the sensor
location is compensated for by adjusting the magnitude and phase of the control force to achieve
the desired zero acceleration at the sensor location.
One added benefit of the proposed control strategy is its digital implementation capabilities due

to the fact that the discrete Kalman estimator is exact. Numerical evaluation of the control
strategy suggests that it possesses high performance in terms of isolating any location on the
structure from the vibration of the structure’s elastic base, as well as its considerable robustness in
the presence of process and measurement noise. Comparison between active feedforward only and
active feedforward–feedback arrangements shows that the latter is more effective in isolating the
structure from the vibrating base as shown in Fig. 10. Depending on the nature of the model,
measurements, and method of discretization, different noise characteristics arise such that fine
tuning of the Kalman filter is need. Fine tuning of the filter is available through variation of the
values of Q; and R until satisfactory values of Eq. (22) are obtained [14,16].
It is worth mentioning that although the model used in the simulation is a relatively

low-order one ðn ¼ 8Þ the proposed strategy can function equally well for larger models
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Fig. 10. Tip acceleration with no control, active feedforward control, and active feedforward–feedback control. (A)

0–0:75 s period, (B) 0.75–1:5 s period, and (C) 1.5–2:0 s period. No control, ??; feedforward–feedback control, ——;

feedforward control, .
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where the construction of the state-space model of the system using FE modal analysis will be
truly needed.
Like other control techniques, the proposed method is not without limitations. One of the

limitations of the proposed method is that it is designed to target the isolation of a point or group
of points (i.e., sensor(s) locations(s)) on the structure but not the whole structure.
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