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Abstract

The linear stability is investigated of systems which contain a sliding frictional contact at a single point. A
condition for instability is found, in terms of the transfer functions of the two systems at the point of
contact. This condition is explored for generic systems, to establish the circumstances under which
instabilities might be expected. A major conclusion is that if the coefficient of friction is assumed to be
constant, then at least one mode of one or other of the contacting systems must have a displacement
at the contact with a particular pattern of signs. If such a mode exists then instability is possible,
depending on the value of the coefficient of friction and on the frequencies and mode shapes of
the other modes of the system. Stability boundaries are shown to be extremely sensitive to distribution of
damping in the system, suggesting that damping might be one of the causes of the typical ‘‘capricious’’
behaviour of friction-instability experiments. Systems consisting of three modes are studied in detail. This is
shown to be an important case since much of the behaviour of a system consisting of many modes can be
understood by breaking it down into clusters of three. In a subsequent paper, some of the assump-
tions made here will be relaxed so as to catalogue systematically all the possible routes to instability within
linear theory.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Noise and vibration arising in mechanical systems containing sliding frictional contacts is
commonplace. Usually it is undesirable, as in squeaking of hinges or squeal of vehicle disc or
drum brakes. There is significant technological interest in understanding the phenomenon,
or phenomena, well enough that one could design a brake, for example, which never
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squealed. However, despite research over many years which has produced a considerable
literature, this goal has yet to be achieved. Research can be divided into two categories.
First is experimental work, either on simplified laboratory systems (e.g. Refs. [1,2]) or
on real disc or drum brakes [3–7]. The second category is theoretical modelling (e.g.
Refs. [8–10]). A variety of physical mechanisms, and of different styles of analysis,
are presented. What they all have in common is that each model applies rather specifically
to a particular system, and it is not clear how one might generalize the conclusions to other
systems.
However, generalization seems to be what is called for by the experimental evidence. The most

striking feature of the results, agreed on by all authors whether studying real brakes or
idealised pin-on-disc systems, is what might be termed the ‘capriciousness’ of the phenomenon
of self-excited vibration in such a system. The rig will be switched on and might immediately
make a noise with a given frequency. If it is turned off and on again an hour later, perhaps
it will be silent, or produce a noise at a different frequency. This capriciousness is often
discouraging for the experimentalist, and it is tempting to blame this feature on the
numerous parameters potentially influencing the phenomenon (temperature, humidity, normal
load, geometrical details, contacting materials and so on). However, a more constructive
interpretation is that the capriciousness is surely indicating something fundamental about the
nature of the phenomenon. Within very broad limits, any system embodying a sliding frictional
contact seems to be prone to self-excited vibration and when it happens it generally exhibits this
capriciousness. Squeal, or whatever word may be used to describe the phenomenon, is a ‘problem
waiting to happen’, always on the brink of occurring, and often with several different types of
squeal available to be ‘chosen’ by the system. This apparently generic behaviour cannot be
investigated in a very illuminating way by analyzing specific systems, because the details obscure
any possible generality. The aim of this paper is to present a unified analysis of a more general
class of systems. Some conclusions can be drawn from this analysis about which characteristics of
a system may make it prone to squeal, and about the origin of capriciousness. For definiteness this
account will be presented in terms of noise in disc braking systems, although the theory to be
presented applies equally well to self-excited vibration in a variety of other systems containing a
sliding contact.
The systems to be studied, although general in some respects, are still very particular in other

respects. The aim is to study a class of systems which is as simple as possible, while retaining an
essential aspect of generality. Two important restrictions apply:

1. this is a linearized stability analysis,
2. contact only occurs at a single point.

The mathematical result underlying this approach is the so-called ‘‘centre manifold theorem’’
[11]. Only squeal events which can be initiated via linear instability of the state of steady sliding
are considered. There may well be some types of squeal which rely on intrinsically non-linear
phenomena such as parametric resonance, without the necessity of instability when the underlying
system is linearized. Equally, squeal may be initiated by a linear instability, but it may change its
character significantly as it grows to large amplitude. These are all issues worthy of investigation.
However, a clear understanding of the linear problem is surely a prerequisite for any further
study.
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2. Governing equations

The system to be studied is shown diagrammatically in Fig. 1. One linear system, the ‘disc’, is
being driven in uniform motion. Another linear system, the ‘brake’, is stationary apart from
vibration, and makes contact with the first system through a single point. All motion is assumed
to take place in the plane of the diagram, which is also the plane of the imposed frictional sliding.
At the contact point, there is a pair of equal and opposite normal reactions N acting on the two
systems, and similarly a pair of equal and opposite friction forces F : These forces are both
composed of a steady component (N0 or F0) plus a fluctuating component N 0 or F 0; which will be
assumed to be small:

N ¼N0 þ N 0; jN 0j5jN0j;

F ¼F0 þ F 0; jF 0j5jF0j: ð1Þ

Denote the normal and tangential displacements of the disc by u1 and v1; respectively, and the
normal and tangential displacements of the brake by u2 and v2; respectively. The tangential
displacement of the disc needed here is that due to the vibration alone, disregarding the
contribution from steady rotation. All fluctuating quantities will be considered in the frequency
domain, as Fourier transforms of the associated time-varying quantities. The Fourier frequency
variable is denoted o: The goal of this analysis is to study the initiation of self-excited vibration
from a state of steady sliding and all motion will be assumed to be sufficiently small for linear
theory to be used.
The displacements of each system are related to the normal and tangential forces via matrices of

transfer functions, defined by

u1

v1

" #
¼

G11ðoÞ G12ðoÞ

G21ðoÞ G22ðoÞ

" #
N 0

F 0

" #
;

u2

v2

" #
¼

H11ðoÞ H12ðoÞ

H21ðoÞ H22ðoÞ

" #
N 0

F 0

" #
: ð2Þ

The matrices are both symmetric from the standard principle of reciprocity (e.g. Ref. [12]). In
practice, violation of symmetry could arise from the rotation of the disc, but this rotation will be
assumed to be sufficiently slow for the effect to be neglected. To obtain a closed system of
equations, two further relations are required. First, it is assumed that the brake and disc remain in
contact, but some input to the linear system is allowed via surface roughness of the disc. This
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means that the two normal displacements are equal and opposite except for the effect of
roughness, defined by a function (again in the frequency domain) r which is assumed known. Then

u2 ¼ r � u1: ð3Þ

Finally, a frictional constitutive law is needed. In this paper, the simplest possible assumption is
made whereby the friction force F is proportional to the normal force N with a constant
coefficient of friction m0:

F ¼ m0N: ð4Þ

In a companion paper [1], the effect of a more complicated friction law will be investigated. The
sign convention in Fig. 1 has been chosen so that a positive value of m0 is expected.
The set of equations including the simple friction law (4) can be straightforwardly rearranged to

give the solution:

N 0 ¼
r

G11 þ m0G12 þ H11 þ m0H12
ð5Þ

and

u1 ¼ðG11 þ m0G12ÞN 0;

v1 ¼ðG12 þ m0G22ÞN 0;

u2 ¼ðH11 þ m0H12ÞN 0;

v2 ¼ðH12 þ m0H22ÞN 0: ð6Þ

Since all the individual transfer functions Gij; Hij are of stable systems, all poles are in the upper
half of the complex Fourier plane.
It follows immediately that this system can be unstable if and only if the function

DðoÞ ¼ G11 þ m0G12 þ H11 þ m0H12 ð7Þ

has at least one zero in the lower Fourier half-plane.
So far, o has been used as a complex variable, as opposed to the Laplace variable s; more

familiar in control. The domain of stability for the Laplace variable s is the left hand side complex
plane, so that t/est remains bounded. For t/eiot to remain bounded, the Fourier variable o
must be in the upper half complex plane.
The statement above is the key theoretical result of this paper. Much of what follows will be

based on exploring this equation from different points of view. First, this condition for instability
will be analyzed in general terms, as some useful information can indeed be gained from a purely
formal inspection. Then, the criterion will be tested by simulations of increasing complexity.

3. Some general observations

If the first subsystem is indeed a model of a brake disc, or a brake drum, then to a good
approximation there is a plane of symmetry through the contact point and the centre of the
disc/drum. It follows immediately that

G12 ¼ 0; ð8Þ
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since tangential forces and displacements are anti-symmetric with respect to this plane, while
normal forces and displacements are symmetric so that they cannot interact. If this is indeed the
case, then the function DðoÞ reduces to

DðoÞ ¼ G11 þ H11 þ m0H12: ð9Þ

Henceforth, G12 will be assumed to be zero. Eq. (9) shows that, within the linear theory, the
coefficient of friction only influences the stability via the dynamic cross-coupling of the ‘brake’. If
the ‘brake’ subsystem is also symmetrical so that H12 ¼ 0; then the coefficient of friction no longer
enters the formulation. D is then further reduced to DðoÞ ¼ G11 þ H11; which simply expresses the
passive normal coupling of the two subsystem. One expects such a system to be unconditionally
stable. This is confirmed if the transfer functions are expressed in terms of modal parameters,
which will be carried out next.
The transfer function G11 is a driving-point receptance, which can be expressed in terms of the

mode shapes fn; their natural frequencies od
n and their modal damping factors dd

n using the
standard formula

G11ðoÞ ¼
X

n

f2nðxÞ

ðod2
n þ 2iood

nd
d
n � o2Þ

; ð10Þ

where fnðxÞ denotes the value of the (mass-normalized) mode shape at the position of the contact
point, in the normal direction. Proportional damping has been assumed here, for simplicity. The
effect of non-proportional damping will be discussed in the companion paper [1].
In a very similar way, the transfer functions H11 and H12 can be expressed in terms of the brake

mode shapes cn; their natural frequencies o
b
n and their damping factors d

b
n:

H11ðoÞ ¼
X

n

c2nðxÞ

ðob2
n þ 2ioob

nd
b
n � o2Þ

; H12ðoÞ ¼
X

n

cnðxÞcnðyÞ

ðob2
n þ 2ioob

nd
b
n � o2Þ

; ð11Þ

where cnðxÞ denotes the value of the (mass-normalized) mode shape at the position of the contact
point, in the normal direction, and cnðyÞ denotes the corresponding mode shape in the tangential
direction. Thus

DðoÞ ¼
X

n

f2nðxÞ

ðod2
n þ 2iood

nd
d
n � o2Þ

þ
X

n

cnðxÞ½cnðxÞ þ m0cnðyÞ	

ðob2
n þ 2ioob

nd
b
n � o2Þ

: ð12Þ

The function DðoÞ has the functional form of a transfer function, although it is not the transfer
function of any obvious physical system. However, the zeros of D may, in some sense, be thought
of as the complex eigenvalues of the coupled system. The fact that D has the form of a transfer
function means that its characteristics can be deduced from standard arguments about the
distribution of peaks and anti-resonances [12]. The frequencies on must be appropriately
interleaved to give the full set of peaks in this function. Between an adjacent pair of peaks, there
will either be a shallow dip or a sharp anti-resonance. If the coefficients of the resonant terms in
the expansion (12) have the same sign, an anti-resonance generally occurs, while if they have
opposite signs, a shallow dip occurs. This distinction is important for the present investigation: to
predict the threshold of instability, one is interested in the zeros of D and particularly in zeros
which are very close to the real o-axis, either just above (and thus stable) or just below (and thus

ARTICLE IN PRESS

P. Duffour, J. Woodhouse / Journal of Sound and Vibration 271 (2004) 365–390 369



unstable). Such zeros, which are near the stability threshold, will occur close to anti-resonance
frequencies of D:
To investigate the formal properties of DðoÞ; it is useful to consider the resonant terms in

expansion (12) as belonging to a single pool of ‘‘modal blocks’’, regardless of which subsystem
they come from. It is also convenient to write the combinations of mode shape coefficients
appearing at the numerators in Eq. (12) as single coefficients ai: The function DðoÞ can then be
written as

DðoÞ ¼
a1

ðo21 þ 2io1d1o� o2Þ
þ

a2

ðo22 þ 2io2d2o� o2Þ
þ?: ð13Þ

This form will later be used as the basis for simulations, because it reduces slightly the large
number of parameters involved. For convenience, the coefficients ai in Eq. (13) will be referred to
as ‘‘modal amplitudes’’, although they may not represent the amplitude of any physical variable
of the system.
In Eq. (13), DðoÞ appears as the sum of rational fractions of degree �2: Putting these fractions

to the same denominator, D can be written as a single ratio of two polynomials, say P and Q; so
that DðoÞ ¼ PðoÞ=QðoÞ: The roots of QðoÞ; which are the poles of DðoÞ; are the roots of the
quadratic denominators appearing in expansion (12). For small damping di51; these poles have a
simple approximate expression: oið1þ idiÞ and oið�1þ idiÞ: The zeros of DðoÞ are the roots of
PðoÞ: P has a number of noteworthy properties:

1. If D consists of Ntot resonant terms in total, the degree of P will be 2ðNtot � 1Þ: Therefore P will
have 2ðNtot � 1Þ roots and D has as many zeros.

2. PðioÞ has real coefficients. Therefore the roots of DðoÞ are either purely imaginary or appear as
‘‘�i’’ times a complex conjugate pair. In geometrical terms, this means that the pattern of zeros
is symmetrical with respect to the imaginary axis in the complex o-plane. Given the expression
for the poles of D given above, it is clear that these poles will have the same symmetry
property.

3. The leading coefficient of PðoÞ is always the sum of the ai: When this sum equals zero, the
degree of P drops by one and so does the number of roots. Therefore, one can expect the
condition

P
ai ¼ 0 to appear as a remarkable event. The odd power coefficients of P are a

linear combination of damping factors, therefore P only possesses even-power coefficients
when the system is undamped.

4. The root-coefficient relationships ensure that if the coefficients of PsðsÞ ¼ Pð�ioÞ have
different signs, the system is unstable (see e.g. Ref. [13]).

Property (4) is clearly of interest for this study, as it links the modal properties of the two
subsystems, to the stability of the coupled system. This property can be refined by using complex
analysis theory. In principle, the number of unstable zeros of DðoÞ could be obtained using the
Nyquist criterion, familiar from control theory (see e.g. Ref. [13]). This would amount to defining
a contour consisting of a large portion of the real axis, closed by a semi-circle in the lower half
complex plane (unstable region). A typical situation is represented diagrammatically in Fig. 2,
where the crosses represent the poles and the circles, the zeros of DðoÞ:
This plot shows two unstable zeros in the lower half-plane, encircled by the contour labelled G0:

Nyquist’s criterion states (among other things) that the number of zeros inside the semi-circular
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contour is equal to the number of times the curve obtained by plotting DðoÞ as o moves along G0;
encircles the origin.
In practice, counting these encirclements when D contains many modes can be difficult, because

the image curve DðG0Þ usually follows a very intricate path. However, the criterion can be used to
prove an interesting result: the function DðoÞ cannot have any zero in the lower half complex
plane if all the ‘‘modal amplitude’’ coefficients ai are positive. This statement can be proved
without difficulty by noticing that if the ai are all positive, then, as o moves along the path G0; the
image path DðG0Þ cannot take real negative values. Therefore, it cannot encircle the origin. This
points towards the importance of the negative compound coefficients ‘‘ai’’. From expansion (12),
it appears that only those compound coefficients coming from the brake can be negative. Their
expression is then

ai ¼ c2i ðxÞ þ m0ciðxÞciðyÞ: ð14Þ

Therefore, for instability to occur, it is necessary that the brake possesses modes such that
ciðxÞciðyÞo0: If there are no such modes, then this theory predicts that the system cannot be
unstable when the disc rotates in the direction shown in Fig. 1. However, reversing the rotation of
the disc amounts to changing the sign of the coefficient of friction in D; so that those modes of the
brake such that ciðxÞciðyÞ > 0 can now induce instability. Disregarding whether this is practically
feasible or not, Eq. (14) also shows that any brake mode such that ciðxÞciðyÞo0 could result in
the corresponding compound ai being negative providing the coefficient of friction m0 is
sufficiently large.
This completes the general observations that could be made on the properties of criterion (7). In

the next section, a number of approximate systems will be investigated using this formalism. These
analyses will now be local: a system will approximated by a number of neighbouring modes. Most
of the general comments made in this section will re-emerge, often as elementary mathematical
properties of the particular system under investigation.
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4. Approximate analysis of generic systems

The previous sections point towards the study of the zeros of transfer functions. It is more
customary to study poles of transfer functions. Coming from a different perspective, Lyon and co-
workers [14–16] have made some useful observations on the location of transfer function zeros and
their relation to the phase of the frequency response. The results presented in this section can be
thought of as an extension of Lyon’s work. The approach adopted here is based on the assumption
that however complicated the function DðoÞ for a particular system, one can usually expect to
obtain a reasonable approximation in the vicinity of a given frequency by considering only the
nearby resonances. Therefore, this approach is only expected to give meaningful results where this
assumption is valid, that is, in the vicinity of a given particular frequency, for instance that of a
squeal event. In this section, various approximations of increasing complexity will be investigated.
The simplest useful approximation which can lead to a prediction about zeros ofDðoÞ is to consider
just two terms, and neglect all others. This case is so simple that it can be dealt with in some detail.
The influence of additional terms from distant resonances will then be considered.

4.1. Two-mode approximation

The two-mode approximation can be useful if the system squeals at a frequency in the vicinity
of which there are two relatively isolated modes of the uncoupled subsystems. In this context, the
function D will have the form

DðoÞE
a1

ðo21 þ 2io1d1o� o2Þ
þ

a2

ðo22 þ 2io2d2o� o2Þ
: ð15Þ

Suppose, for example, that the first term comes from mode n of the disc, while the second comes
from mode m of the brake. Then using the notation defined in the previous section,

a1 ¼ f2nðxÞ; o1 ¼ od
n ; d1 ¼ dd

n ; ð16Þ

and

a2 ¼ c2mðxÞ þ m0cmðxÞcmðyÞ; o2 ¼ ob
m; d2 ¼ db

m:

4.1.1. Positive-frequency pole approximation
As well as neglecting all but two terms in Eq. (13), further simplification can be obtained by

factorizing the denominator expressions, which are quadratic in o; expressing each term as a sum
of two partial fractions and retaining only the one with a resonance at a positive value of ReðoÞ:
The second term, with a negative value of ReðoÞ; is typically more distant than the other neglected
resonances of the system. This leads to the approximation

DðoÞE
c1

ðo� %o1Þ
þ

c2

ðo� %o2Þ
; ð17Þ

where

%okEokð1þ idkÞ and ck ¼ �
ak

2ok

ðk ¼ 1 or 2Þ ð18Þ

ARTICLE IN PRESS

P. Duffour, J. Woodhouse / Journal of Sound and Vibration 271 (2004) 365–390372



are, respectively, the positive-frequency poles of the modes retained, and their
corresponding residues. By convention, whenever the term ‘‘residue’’ is used in an unspecified
way in what follows, it will always be understood as the residue associated with a positive-
frequency pole.
The one complex zero o ¼ oz resulting from this approximation is simply

ozE
ðc1 %o2 þ c2 %o1Þ

ðc1 þ c2Þ
: ð19Þ

From Eq. (19), it is clear that, whatever the values of c1 and c2; oz always lies on the straight line
passing through %o1 and %o2 in the complex plane. The slope of this line depends on the ratio of
damping factors of the two modes (this slope depends on their natural frequencies as well, but
these are assumed to be close). If the poles have similar imaginary parts, the pole line will be
almost parallel to the real axis and will only cross it far away from the poles. In that case, the
present approximation is not expected to hold since the influence of other poles may no longer be
negligible. On the other hand, if the two damping factors are very different, the line will have a
large slope and will cross the real axis to produce potential instability not too far from the poles.
This suggests that if two neighbouring modes have very different damping factors, then instability
is more likely to arise in the vicinity of these two modes.
If c1 and c2 both have the same sign, then oz is simply a weighted average of the two complex

poles and therefore lies on the line segment joining them. Since the two poles are stable, they both
lie in the upper half complex plane and so do all the points on the segment joining them. Thus, this
combination cannot lead to an unstable zero.
More interesting is the case when c1 and c2 have opposite signs. Note that given the sign

reversal between the residues ci and the modal amplitudes ai (see Eq. (18)), the residues of the disc
can only be negative, while those of the brake can be positive or negative (provided the mode
shapes are real, as implied by the assumption of proportional damping).
Two cases may be distinguished. Suppose first that c1o0; c2 > 0 and c1 þ c2o0: Then

oz ¼ %o2 þ að %o2 � %o1Þ with a ¼ �
c2

c1 þ c2
: ð20Þ

The zero occurs on the opposite side of %o2 from %o1; and if a is reasonably small it will be close to
%o2: It may, of course, be influenced by the next resonance on that side of %o2; but it is supposed
that %o1 and %o2 are close together compared to the interval to the next resonance, so that this
possibility can be temporarily ignored. This zero can be unstable if

�a Imð %o1Þ þ ð1þ aÞ Imð %o2Þo0 ð21Þ

or, using Eq. (16)

db
mo

a
1þ a

� �
od

n

ob
m

� �
dd

n : ð22Þ

Instability can occur if the damping of the brake mode is sufficiently small. Fig. 3 shows a plot of
the function DðoÞ for a typical example of the behaviour just discussed, with parameter values
producing an unstable zero.
The second case occurs when c1o0; c2 > 0; c1 þ c2 > 0 and yields very similar results so only the

main points are given here: this time the zero occurs on the opposite side of %o1 from %o2 and it can
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be unstable if

db
m >

1þ b
b

� �
od

n

ob
m

� �
dd

n ; with b ¼ �
c1

ðc1 þ c2Þ
> 0: ð23Þ

In this case, instability can occur if the damping of the brake mode is sufficiently large.
This two-pole analysis suggests that

1. a prerequisite for the occurrence of instability is the presence of consecutive modes having the
amplitudes ‘ai’ of opposite signs;

2. the stability of the system is significantly influenced by the damping. More precisely, stability is
more likely when the two damping factors are very different.

4.1.2. Influence of the negative-frequency poles
To verify how much these conclusions are specifically linked to the ‘‘positive-pole’’

approximation, the stability of the system is now studied with the negative poles added back
in. To compare the two approximations, it is more convenient to use the modal amplitudes ai;
rather than residues ci: The function D for this system was expressed in Eq. (15). Its zeros are the
roots of the following quadratic equation:

ða1 þ a2ÞðioÞ
2 þ 2ða1o2d2 þ a2o1d1ÞðioÞ þ a1o22 þ a2o21 ¼ 0: ð24Þ

Written as a polynomial in s ¼ io; it is possible to use the Routh–Hurwitz criterion [13] to
determine the stability of the roots of Eq. (24). For a quadratic, the set of conditions for the
system to be stable is simply that all the coefficients should have the same sign, either positive or
negative:

ð1Þ a1 þ a2 > 0

ð2Þ a1o2d2 þ a2o1d1 > 0 or

ð3Þ a1o22 þ a2o21 > 0

ð1Þ a1 þ a2o0;
ð2Þ a1o2d2 þ a2o1d1o0;
ð3Þ a1o22 þ a2o21o0:

ð25Þ
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Fig. 3. Plot of D showing a zero (antiresonance) beyond the two fixed poles at frequencies 1 and 1:5 rad=s: The
damping factors were 0.02 and 0.01, respectively, and the residues �1 and 0.5 in the same order. (a) Magnitude plot of
D (in dB). (b) Plot of the real (solid line) and imaginary (dashed line) parts of D (linear scale).
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From these two sets of inequalities, it is clear that the system is always stable if the two modal
amplitudes have the same sign. This conclusion confirms a general result from Section 3. From the
definitions of a1 and a2 given in Eq. (16), a1 is always positive (disc ‘mode’), and only a2 can be
positive or negative (brake ‘mode’). Since it is the only interesting case, a2 will be assumed to be
negative (i.e. �a2 > 0). In order to analyze the interaction of the two modes in a somewhat
systematic way, one mode, say mode 1, has its characteristics kept fixed, while mode 2 will be
varied in frequency and amplitude. This will also set the scene for the subsequent approximations,
where this procedure will be used extensively.
If a2 and o2 are varied, the two sets of conditions (25) can be represented as areas in the

ðo2; a2Þ-plane. These areas of stability are delimited by three curves whose equations are given by
setting each condition to zero. The first condition is simply a horizontal line at �a2 ¼ a1; cutting
the plane into two parts. Condition (2) also defines two regions, delimited by the straight line
�a2 ¼ a1ðd2=ðd1o1ÞÞo2; while the third condition defines two areas delimited by a parabola of
equation �a2 ¼ a1o22=o

2
1: The domain of stability is the intersection of all these areas. Note that

only condition (2) involves the damping factors. This means that conditions (1) and (3) remain
unchanged whatever the system damping.
Fig. 4 shows the stability domain as a shaded area for values of the damping factors such that

d2=d1 ¼ 3=2: For this plot, Mode 1 has both its frequency and modal amplitude set to 1. The
damping factor is 0.01. Mode 2 is varied in natural frequency from 0 to 2, and in modal amplitude
from �5 to 0. This plot is particularly useful to understand how the damping effects the stability
regions. As already noted, the damping factors are only involved in condition (2), through their
ratio. This ratio governs the slope of the dashed straight line. If they are identical, the three curves
meet at a single point ðo1; a1Þ; so that the line resulting from condition (2) does not modify the
regions of stability defined by conditions (1) and (3) alone. The stability domain is then the same
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as that of the undamped system. This feature will recur many times in the subsequent
sections: if all the modes have the same damping factor, then the stability region is the same
as in the undamped case. When the damping factors are different, the line defined by
condition (2) encroaches either on the upper ‘‘undamped’’ stability region if d2=d1 > 1 (Fig. 4),
or on the lower ‘‘undamped’’ region, if d2=d1o1: The more different the damping
factors, the more the stability region is reduced. This behaviour was also observed in the two-
pole analysis. In contrast to the latter, the present analysis predicts the existence of instability,
even if the system is undamped (the single zero predicted by the two-pole analysis is always
marginally stable if the system is undamped). Subsequent analysis will throw some light on this
particular point.
It may be objected at this point that the range of variation of the second mode frequency may

be too large for a local analysis. If a normalized frequency equal to 1 represents 1 kHz; then
varying the second frequency between 0 and 2 means varying it between 0 and 2 kHz! A real
system would probably have many other modes within this range, which makes the assumption
that the two frequencies are relatively isolated very implausible. This objection is probably fair.
The reason for choosing such a wide range is that it gives a good understanding of how plots
showing thresholds of stability (Fig. 4) are constructed. These plots will recur throughout this
work. Most of the features described here will still be present, but the complexity of the algebra
will prevent the clear analytical understanding reached with this simple case.

4.2. Two poles plus a constant residual

The conclusions of the two-mode analysis are likely to be affected by the presence of other
poles. With more than two poles, analytical investigation is difficult because the algebra becomes
rapidly unwieldy, and with six or more poles it is in principle impossible in most cases, because it
requires the roots of a polynomial of degree 5 or higher. However some further progress is
possible by supposing that around a frequency of interest, the function D can be appropriately
approximated by keeping the two nearest poles and assuming that the contribution from more
remote poles can be equated to a constant residual. Further analytical progress can be achieved by
ignoring the contribution from the negative-frequency poles.
With the notation introduced in the previous sections, the approximate expression for D then

becomes

DðoÞE
c1

ðo� %o1Þ
þ

c2

ðo� %o2Þ
þ R; ð26Þ

where R is the contribution from remote poles. Denote by %o3 ¼ o3ð1þ id3Þ one of these remote
poles. The exact contribution of this pole to D would be a term proportional to 1=ðo� %o3Þ: As o
moves further away from %o3; the imaginary part of 1=ðo� %o3Þ decays like 1=ðo� o3Þ

2; whereas
its real part decays like 1=ðo� o3Þ; so that in the vicinity of %o1 or %o2; the real part of 1=ðo� %o3Þ
will dominate its imaginary part. Therefore, R will be assumed to be real.
If D given by Eq. (26) is rearranged as a single rational fraction, its numerator is a quadratic in

o; whose roots are

oz7 ¼ %o�
c1 þ c2

2R
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c2

2R

� 	2
þ %D2 þ

c1 � c2

R
%D

r
; ð27Þ
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where

%o ¼
%o1 þ %o2
2

and %D ¼
%o2 � %o1
2

:

Eq. (27) shows that oz7 can only have a negative imaginary part when the square root possesses a
negative imaginary part large enough to overcome that of %o: In order to carry this analysis
further, the system will be assumed to be undamped. Then, all the quantities become real and it is
possible to study the sign of the expression under the square root. The influence of damping will
be discussed at the end of this section.

4.2.1. The undamped case
With no damping, Eq. (27) can be conveniently rewritten as

oz7 ¼ o�
c1 þ c2

2R
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ

c1 � c2

2R

� 	2
þ

c1c2

R2

r
; ð28Þ

where o and D are the (real) values of %o and %D when the damping is set to zero. One of these zeros
has a negative imaginary part if and only if the expression under the square root is negative. It is
immediately clear that this can only occur if c1c2o0: Assume first that c1o0 and c2 > 0: Then

Dþ
c1 � c2

2R

� 	2
þ

c1c2

R2
¼ D2 1�

ð
ffiffiffiffiffiffiffiffi
�c1

p
�

ffiffiffiffi
c2

p
Þ2

2RD

 !
1�

ð
ffiffiffiffiffiffiffiffi
�c1

p
þ

ffiffiffiffi
c2

p
Þ2

2RD

 !
:

If RDo0; both brackets are positive, so that the zeros cannot be complex. If RD > 0; the product
of the two brackets is negative whenever RD satisfies

ð
ffiffiffiffiffiffiffiffi
�c1

p
�

ffiffiffiffi
c2

p
Þ2

2
pRDp

ð
ffiffiffiffiffiffiffiffi
�c1

p
þ

ffiffiffiffi
c2

p
Þ2

2
: ð29Þ

Similarly, when c1 > 0 and c2o0; instability can only arise if RDo0 and satisfies

�
ð
ffiffiffiffi
c1

p
þ

ffiffiffiffiffiffiffiffi
�c2

p
Þ2

2
pRDp�

ð
ffiffiffiffi
c1

p
�

ffiffiffiffiffiffiffiffi
�c2

p
Þ2

2
: ð30Þ

In the ðc1; c2;RDÞ space, these inequalities represent a volume bounded by two surfaces of
identical shape and symmetrical about the origin. Fig. 5 shows one of these two surfaces, confined
in one octant.
Note that the apex of this ‘‘cone-like’’ surface is at the origin, and the surface touches the plane

RD ¼ 0 along the line c1 ¼ �c2: This means that in principle, for some values of the ratio c1=c2 (in
particular when, c1=c2 ¼ �1; the only case studied by Lyon), any non-zero value of R; however
small, can produce instability. This suggests that even very remote modes could tip a zero into the
unstable region. It is also interesting to note that only the difference between the frequencies
matters for the stability, not their individual values.
Fig. 6 shows how the zeros move in the complex plane when o1 and o2 are fixed at 1 and 1.2,

respectively (i.e., D ¼ 0:2) and the value of R is gradually increased from nearly zero to 50. The
residue values are kept constant at c1 ¼ �1 and c2 ¼ 2: Increasing R in these conditions
corresponds to moving up along the black vertical line shown in Fig. 5.
It is reassuring that as R decreases to zero, one of the roots tends towards minus infinity along

the real axis, while the other root tends towards the value of the single zero given by Eq. (19) in
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the previous section. As R increases and passes 0.85 in the run shown, the roots meet and split to
become a complex conjugate pair. One is in the upper half plane (stable) and the other in the lower
half (unstable). Each root goes symmetrically around an oval shape and they merge again on the
real axis (when RE30) between the two poles. They subsequently remain real, and each converges
towards a different fixed pole. Provided the parameter values are such that the surface of Fig. 5 is
crossed as R varies, such behaviour is always observed. Without damping, either the roots are real
and the system is marginally stable or they are complex and the system is unstable since one of the
roots will always be in the lower half complex plane. Therefore, the merging/splitting of the roots
represents bifurcation points regarding stability. A Taylor expansion of the expressions of the
zeros given by Eq. (28), for very large or very small values of R; shows that the roots always tend
towards the limits described, whether the surface is crossed or not.
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4.2.2. The influence of damping

When damping is added, it becomes very difficult to obtain analytical results for the
stability thresholds, but an extensive range of simulations has shown that the pattern outlined
above remains recognizable as long as the damping is light (i.e. di of the order of a few percent). In
Fig. 7, the damping factors have been set to d1 ¼ 0:03 and d2 ¼ 0:02; everything else being
unchanged.
To a good approximation, it can be shown (using Eq. (28)) that this plot corresponds to the

undamped plot ‘shifted up’ by Imð %oÞ: Imð %oÞ being always positive, this suggests that the damped
system has become stable when the undamped one was only marginally stable. The main
difference between the damped and undamped case is that the two mergings of the roots in the
undamped case have been replaced by two kinds of ‘veerings’. The distortion of the merging/
splittings into veerings means that there is no longer a direct correspondence between those events
and stability thresholds. However, the oval shape is still recognizably present, so that the
description made of the undamped case still holds good and one can expect the surface plot in
Fig. 5 to provide a good first approximation of the system stability.
Since these mergings can be thought of as bifurcation points through which the system becomes

unstable, they merit further examination. A suitable way of characterizing this veering would be
to determine the length and orientation of the minimal distance between the two curves. From
Eq. (27), these properties are given by the minimum modulus and the corresponding argument of
the complex number:

ozþ � oz� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%Dþ

c1 � c2

2R

� 	2
þ

c1c2

R2

r
: ð31Þ

If the system is unstable, the modulus of this complex quantity will be minimized for two values of
R: The corresponding values of the quantity ‘‘ozþ � oz�’’ will be denoted s1 and s2; respectively.
A simple analysis shows that the orientation of the veerings is, in most cases, governed by the sign
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Fig. 7. Root locus plot showing how the zeros move when the value of R is varied from nearly zero to 50 with non-zero

damping. As before, the squares ð&Þ are the two fixed poles, while the crossed circle ð#Þ is the position of the zero
when R ¼ 0: For this run c1 ¼ �1 and c2 ¼ 2 and the damping is 0.02 for the two poles.
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of a parameter d; defined by

d ¼
ðo2d2 � o1d1Þ
ðo2 � o1Þ

:

If d > 0; Argðs1ÞEp=4 and Argðs2ÞE3p=4; whereas if do0; Argðs1ÞE3p=4 and Argðs2ÞEp=4:
In the case shown in Fig. 7, d > 0 and the inclination of s1 is approximately p=4 as expected.

Modifying slightly the parameter values so that d becomes negative has the unexpected result of
swapping the role of the roots so that the bottom root plotted in Fig. 7 is flipped to the top and
vice versa. Therefore, a slight variations of the damping factors can induce drastic rearrangements
of the roots in the complex plane.

4.2.3. Conclusions
In this section, a detailed study of the roots of a system made of two modes and a constant

residual showed that

* Without damping, the system is either marginally stable or unstable. The emergence of
instability is equivalent to a splitting of two previously real roots into a complex conjugate pair.

* With damping, broadly speaking, the system becomes stable when it was previously marginally
stable. To a good approximation, the damped system is unstable when it was already unstable
without damping, although there is no longer an exact correspondence between splitting of the
roots and the emergence of instability.

* The effect of damping was shown to be subtle. Small variations of the damping factors can
result in drastic rearrangements of the roots in the complex plane. This point confirms previous
observations, made for the two-mode systems.

This system can be thought of as a useful intermediate case between the two-mode system
studied in Section 4.1 and the next one, where the influence of a third resonant term in D is
studied.

4.3. Stability of a three-mode system

In this section, the stability of a system consisting of three modes is investigated. As in Section
4.1, it would be possible to ignore the negative-frequency poles at first, then investigate their
influence. However, the positive-frequency pole approximation is not very useful, because little
can be done analytically. Therefore, the influence of a third pole will mainly be studied using
numerical simulations of the complete three-mode system.
The rationale for the sequence of numerically calculated cases to be considered is as follows. As

already mentioned, the ‘composite transfer function’ DðoÞ will have, for most of its resonant
terms, amplitudes of positive sign, corresponding to the driving-point terms in Eq. (12). It was
shown in Section 3, that for the system to be unstable, at least one mode with a negative
‘amplitude’ must be introduced. Therefore, the system investigated in this section will have two
modes with positive amplitudes, say modes 1 and 2, and a third mode, labelled 3, with a negative
amplitude. Following the procedure adopted in Section 4.1.2, the two modes with positive
amplitudes will have fixed frequencies and amplitudes, while these two modal properties will be
varied for mode 3. Recall that according to expansion (12), the expression for the amplitude of
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mode 3 is c2ðxÞ þ m0cðxÞcðyÞ; so that varying it can also be thought of as varying the coefficient of

friction m0:
Using the same notation as before, the expression for DðoÞ is

DðoÞE
a1

ðo21 þ 2io1d1o� o2Þ
þ

a2

ðo22 þ 2io2d2o� o2Þ
þ

a3

ðo23 þ 2io3d3o� o2Þ
: ð32Þ

First, the system is considered without damping.

4.3.1. The undamped case

This simplification makes it possible to obtain a glimpse of analytical insight. The zeros of DðoÞ
are the roots of the biquadratic equation:

ða1 þ a2 þ a3ÞðioÞ
4 þ ½a1ðo22 þ o23Þ þ a2ðo21 þ o23Þ þ a3ðo21 þ o22Þ	ðioÞ

2

þ a1o22o
2
3 þ a2o21o

2
3 þ a3o21o

2
2 ¼ 0: ð33Þ

In principle, it is possible to express the roots of this equation, but this is not very illuminating. In
order to link this section with previous results, it is more interesting to apply a similar analysis
using the Routh–Hurwitz criterion. Inspection of the possible stability cases for a biquadratic
equation shows its roots are in the stable region if and only if

(i) all the non-zero coefficients have the same sign, and
(ii) the discriminant of the equation, regarded as a quadratic in ðioÞ2; is positive.

As in Section 4.1, this leads to a set of inequalities: one for each coefficient and an additional
one for the discriminant. Each of these inequalities can be represented graphically in the ðo3; a3Þ
plane thus defining the stability domain of the system. The curves of equation:

ð1Þ �a3 ¼ a1 þ a2;

ð2Þ �a3 ¼ ½a1ðo22 þ o23Þ þ a2ðo21 þ o23Þ	=ðo
2
1 þ o22Þ;

ð3Þ �a3 ¼ ða1o22o
2
3 þ a2o21o

2
3Þ=o

2
1o

2
2

ð34Þ

can be expected to be salient features of this plot. Viewed as functions of o3; condition (1) is a
straight horizontal line, while (2) and (3) are parabolas. The fourth condition, obtained by setting
the discriminant to zero, is of a different nature: it is an implicit equation involving the square of
a3 and the fourth power of o3: Although this equation is not of a standard type, it can be
factorised, so as to express a3 in terms of the other parameters. This expression is cumbersome
and not very enlightening in itself, except that it contains the following square root:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4a1a2ðo21 � o23Þðo
2
2 � o23Þ

q
:

If a1 and a2 have the same sign, so that their product is positive, the square root only exists if o3 is
between the other two frequencies. Setting the discriminant to zero therefore yields a stability
threshold curve, which will be confined in between the other two mode frequencies in the ðo3; a3Þ
plane. Simulations show that this curve has broadly the shape of an ellipse. Further inspection of
this equation reveals that it has some interesting geometrical properties which are summarized in
Fig. 8.
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The behaviour of this system will now be simulated. Mode 1 has a frequency 1 and amplitude 1.
Mode 2 has a frequency 1.2 and amplitude 1. Mode 3 has its amplitude varied from �5 to 0 and
its frequency will range from 0.8 to 1.4. As in the two-mode section, the frequencies have been
normalised. The range of variation of the third mode frequency spans a symmetrical interval
around the fixed pole frequencies. As explained in the introduction to this section, only the poles
around a given frequency of interest are assumed to have an influence on the stability.
In order to condense the maximum information into a single plot, the stability of the system will

often be represented by a surface plot showing the minimum imaginary part of the zeros of DðoÞ;
as a3 and o3 are varied. Fig. 9(a) shows such a plot. The system is unstable whenever this plot
shows a negative value.
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Fig. 9. (a) Surface plot showing the minimum imaginary part of the zeros of an undamped three-mode system where

two are kept fixed whereas the third one is varied in amplitude and frequency. The zero contour line (stability threshold)

is shown on the surface and on the base plane. (b) Contour plot of the surface plot shown in (a). The thick line is the

zero contour. Thinner lines are the contours for values �0:1; �0:2; �0:5: Note that for better visibility, the surface plot
has been rotated, so that the origin is the bottom right corner.
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Fig. 9(b) shows the contour plot corresponding to the surface shown in (a). The thick line is the
zero contour: it is the threshold of stability of the system. Thinner lines are the contours for more
negative values. This plot is the three-mode version of the plots shown in Fig. 4 with two modes.
The horizontal line at �a3 ¼ a1 þ a2 ¼ 2 is clearly visible. The sloping curve across the plot
corresponds to the quadratic condition (3) given above in Eq. (34). The curve of approximately
circular shape corresponds to the discriminant condition. It is the new, higher order feature
introduced by the third mode.
The zero contour is superimposed on the surface plot shown in Fig. 9(a). The surface plot gives

some information regarding the ‘‘degree’’ of instability. Three main parts may be distinguished.
First, in the front right of the plot, the surface has a cylindrical shape corresponding to the ellipse
shape described above. Along and within this cylinder, the surface dips to relatively modest
negative values. Second, the region near the line where the third pole amplitude is �2 shows a
‘‘canyon’’. The edges of this ‘‘canyon’’ correspond to conditions (1) and (3) above. Condition (1),
which marks the passage through zero of the leading coefficient of the quadratic equation (33),
causes one of the roots to move from plus to minus infinity at the crossing. This being well off the
scale of this plot, the vertical scale has been limited to show the smooth part of the behaviour.
Third, at the back, left hand side of the plot, there is a flat surface. This shows that the system is
(marginally) stable for higher values of ja3j:
To link these results to the behaviour observed when the third mode was approximated by a

constant residual, it is useful to investigate the individual behaviour of the zeros. This also helps
understand how the surface just shown is constructed.
Fig. 10 details the behaviour of the roots by showing (a) the real parts of the roots, (b) their

imaginary parts. Plot (c) combines (a) and (b) into a root locus plot. For these three plots, a3 is set
to �1:5; while o3 is varied from 0.8 to 1.4. This amounts to looking at the roots within a vertical
plane section of the surface plot. This section is marked by a black frame in Fig. 9(a), and a
dashed line on the contour plot (b). In Fig. 10(b), the bottom curve is the minimum imaginary
part within the section, therefore it is the curve that shapes the surface. The moderate dip between
the two fixed frequencies represents a section through the cylinder. The splitting at the lower end
of the frequency range appears as a cliff in the surface plot.
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Fig. 10. Plots showing the behaviour of the zeros when the third mode frequency o3 is varied from 0.8 to 1.4, while the

third mode amplitude is kept constant at �1:5: (a) shows the real part of the zeros, (b) their imaginary part, (c)
combines (a) and (b) in a root-locus plot. The crosses in (c) show the position of the poles of the two fixed modes in the

complex plane.
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These results agree with the conclusions from the previous approximation, where the third
mode was modelled as a constant residual. Fig. 10(c) is clearly similar to Fig. 6. Figs. 10(a) and (b)
also confirm the previously observed relation between mergings of the real parts and the
occurrence of instability. In the undamped case, the system becomes unstable whenever the real
parts of two modes of the coupled system merge. Mathematically, this is a direct consequence of
the fact that P is a polynomial in o2 .
Fig. 10 also reveals that for lower values of o3; the roots become purely imaginary. The presence

of purely imaginary zeros is somewhat problematic. If the system had only 3 modes, the model
would be exact and the purely imaginary zeros would simply imply that for those parameter
values, the system variables could grow or decay exponentially. However, the objective of these
simulations is rather to approximate locally a complex system by a few modes. It is possible that
purely imaginary zeros may actually exist for a given system, but it is not possible to tell from the
present analysis whether they constitute reliable predictions or not. Given that the analysis is
intended to be local, credit should only be granted to those roots which lie in the vicinity of the
original poles (the two fixed ones at 1.0 and 1.2 as well as the varying one). The frequency band in
which the results can be considered meaningful has been chosen (somewhat arbitrarily) to range
from 0.6 to 1.6 (i.e., 70:2 the limits of third pole frequency range). This ‘range of validity’ is
indicated in Fig. 10(a) by two dashed lines.
Bearing this in mind, the way the surface is plotted can be modified, so that the only roots

included in the calculation of the minimum imaginary part, are those whose real parts lie within
this assumed ‘‘range of validity’’. Fig. 11 shows the result when this procedure is applied.
This surface plot shows that the only remaining instability feature is the cylindrical sleeve. As a

cross-check, the zeros have also been computed using a positive-pole approximation for DðoÞ:
The result is not shown because the corresponding surface plot looks exactly the same as Fig. 11.
This suggests that this cylindrical feature might indeed play an important role; an argument which
becomes even stronger if one recalls that the rounded shape in the root-locus plot, characteristic of
a section through the cylinder, was also apparent from the ‘‘constant residual’’ approximation.
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Fig. 11. Surface plot showing the minimum imaginary part of the zeros of a three-mode system where two are kept

fixed whereas the third one is varied in amplitude between �5 and 0 and in frequency between 0.8 and 1.4. Only those
roots whose real part lies between 0.6 and 1.6 were considered for the computation of the minimum. The zero contour

line (stability threshold) is shown on the surface and on the base plane.
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From now on, the zeros that have a real part lying outside the ‘‘range of validity’’ will always be
ignored. The next task is to investigate the influence of various parameters on the stability. First,
the influence of varying the values of the modal amplitudes will be discussed.

4.3.2. Influence on stability of varying the modal amplitudes
The expression for the function DðoÞ given by expansion (12) is a linear combination of ai: This

means that only the relative magnitude and sign of these coefficients matters. In the simulation
results shown so far, the two fixed modes had an amplitude of 1. When the three modes have three
different modal amplitudes, the description given so far is not essentially modified. Simulation
cases show that the circular sleeve becomes more ‘‘elliptical’’, in accordance with the properties
described in Fig. 8. This suggests that a significant variation of the amplitudes does not add any
new feature to the previous description.

4.3.3. The influence of damping

The study of the simpler approximations showed that the damping had a rather subtle but
important effect on stability. Therefore, it is of interest to investigate the influence of damping on
the present three-mode model. To show how damping affects the system, a particular distribution
of damping will be described first, following a similar format to that used in the undamped case.
Several distributions of damping will then be compared.
If modes 1 and 2 are indeed modes of the disc and mode 3, a mode of the brake, it is plausible

that mode 3 has a higher damping than modes 1 and 2. Accordingly, the damping factors will be:
d1 ¼ 0:01; d2 ¼ 0:01; d3 ¼ 0:03: To make comparisons with previous plots easier, other parameter
values will be given the same values as in the undamped case. Mode 1 will have a frequency and
amplitude of 1. The frequency and amplitude of mode 2 will be set at 1.2 and 1, respectively.
Mode 3 will be varied in frequency from 0.8 to 1.4, while its amplitude will cover ½�5 0	: Fig. 12
shows the surface plot resulting from simulating the behaviour of the three-mode system with
these values.
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Fig. 12. Surface plots showing the minimum imaginary part of the zeros for a three-mode system with damping. The

parameter values are as follow: o1 ¼ 1; a1 ¼ 1; d1 ¼ 0:01; o2 ¼ 1:2; a2 ¼ 1; d2 ¼ 0:01; d3 ¼ 0:03; a3 and o3 are varied
within the ranges shown. Only the zeros whose real part lies in the range of validity are taken into account. The thick

line on the surface and bottom plane shows the zero-contour.
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For this plot, only the zeros whose real parts lie within [0.6 1.6] are considered. Damping
appears to have distorted the surface, but all the features previously described can still be
recognised. Overall, damping has blunted most of the sharp edges, and made stable most of the
areas previously marginally stable. The cylindrical sleeve is again an important feature of the plot.
The main difference occurs for large negative values of a3: In this area, the surface now slightly
slopes down near the valley. It also has a ridge along the line o3 ¼ 1:1: As in the undamped case,
ignoring the zero outside the ‘‘range of validity’’ caused the steep valley to disappear. However, a
substantial area of the zone a3o� 2 is now unstable. It was marginally stable in the undamped
case.
A wide variety of damping distributions have been examined. It is easier to make comparisons

by showing zero contour plots. Fig. 13 shows a typical comparison for two different distributions,
described in the figure caption. The plots shown here are representative.
These particular cases are shown because one of them, (a), has just been studied in detail.

Case (b) is simply a permutation of the damping factor values used in (a). As noted in the
two-mode section, any uniform distribution of damping will give the same stability contour
as in the undamped case. This contour is visible on the surface shown in Fig. 11. The last
possible permutation of the damping factor values (d1 ¼ 0:03; d2 ¼ 0:01; d3 ¼ 0:01) gives a
contour similar to that in Fig. 13(b), except that the shape is flipped with respect to the centre
line o3 ¼ 1:1:
From these plots and others not shown, some important conclusions can be drawn:

1. As noted for the two-mode approximation, when the distribution of damping is uniform, the
stability threshold is the same as in the undamped case.

2. Whatever the distribution of damping, the cylinder described in the undamped case appears to
be a significant and extremely robust feature. It was shown in the undamped case that this
feature occurs for values of a3 between 0 and �ða1 þ a2Þ: The stability thresholds for larger
negative values of a3 are more variable. This is probably due to the relative flatness of the
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surface in this region: a small variation of the position of the surface can result in a large shift
in the threshold line.

3. It seems that the unstable region is larger, whenever the damping is not uniformly distributed.
This suggests that, from a stability point of view, a uniform distribution of damping is
optimum.

4. The damping affects the stability boundary very significantly and in a non-systematic way.
Slight modifications of the damping within a system can result in a very different stability map.
This may be one of the reasons for the ‘‘capriciousness’’ of friction-induced vibration
phenomena. It is difficult to believe that the natural frequencies or mode shapes of a particular
system will change significantly if only minor modifications are made. However, it is plausible
that tightening a bolt, or adding a shim, can slightly alter the damping mechanisms within the
system, causing it to become stable or unstable.

The next section reviews the concept of ‘‘mode locking’’ in the light of the conclusions reached
so far.

4.3.4. Mode-locking

In the brake noise context, the phrase ‘‘mode locking’’ is used by some authors who suggest that
instability is more likely to occur when two natural frequencies of the uncoupled subsystems are
very close [17]. The present analysis sheds a new light on this idea. The simulation results
presented in this paper suggest that with only two modes, instability is not influenced by the
closeness of the two natural frequencies. With three modes, it appears that the most robust feature
is the shallow dip showing in the surface plots in the damped case, or the cylindrical sleeve in the
undamped case. In all simulation results shown, the imaginary part reaches its most negative value
when the third mode frequency equals 1.1 (that is mid-way between the two fixed mode
frequencies) and when the third mode amplitude equals �2 (that is when the amplitudes add up to
zero). This qualifies the concept of ‘mode locking’: the most general conclusion that can be drawn
from this analysis is that instability is more likely to arise when three consecutive modes have fairly

close frequencies o1oo2oo3; whose corresponding modal amplitudes have alternating signs: þ�þ
or, less probably, �þ�: It might be helpful to recall here that the phrase ‘‘modal amplitude’’
refers to the numerator of the resonant terms in DðoÞ: The study of the three-mode approximation
suggests that the coincidence of two frequencies is a significant property. However, it does not
indicate that instability is more likely or any stronger. Rather, it often marks the limit between
stability and instability. It also appears from observation of the real part plots (e.g., in Fig. 10(a)),
that when the pattern just described is unstable, the unstable frequency of the combined system is
very close to the middle frequency o2: It is also interesting to note that in this analysis, no
distinction is made regarding the origin of a particular mode: once the system is coupled by
friction, the modes form a pool of equivalent interacting ‘‘modal terms’’, regardless of which
subsystem they originate from. However, as already mentioned, ‘‘modal terms’’ with negative
amplitudes can only arise from the brake, if the disc is perfectly symmetrical.
This completes the study of the three-mode approximation. The array of behaviours resulting

from the presence of a third mode proved to be much richer and irreducible to the behaviour
exhibited by only two modes. The next section investigates whether the addition of other modes
again results in such drastically different behaviours.
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4.4. Influence of additional modes

The previous section points toward the important influence on stability of particular three-
mode sequences. In order to investigate how many of the previous conclusions hold when the
three modes are included in a more complex system, a fourth relatively remote mode is added to
the system studied in the previous section.
Fig. 14(a) shows the minimum imaginary part of the (suitable) zeros for a four-mode system.

Three modes are fixed. The first two are the same as before with frequencies of 1 and 1.2, and
amplitudes of 1. The third mode is varied in frequency and amplitudes. The fourth mode is fixed
at a frequency 2 and amplitude 1. In Fig. 14(b), the imaginary parts of the zeros is plotted against
their real parts in the section taken from the surface at a3 ¼ �1; while o3 is varied from 0.8 to 2.4.
These plots clearly show that with more than three modes, the behaviour described in the three

mode section (e.g., in Fig. 10(c)) is reproduced within each cluster of three modes with alternating
signs. With more modes, there can be several possibilities to form such clusters, depending on the
sign of each amplitude coefficient and the position of the varying frequency o3: The root locus
plot shown in Fig. 14(b) also suggests that the dimensions of the loop that goes into the unstable
half of the complex plane are connected to the interval separating these two fixed mode
frequencies (this is clear in the undamped case, as seen from Fig. 8). Therefore, instability might be

stronger for clusters of 3 modes with amplitudes of alternating signs and fairly widely spaced
frequencies.

5. Conclusions

The modelling presented in this paper allows stability to be investigated for any system
containing two linear subsystems in sliding contact at a single point. The mechanical behaviour of
the two contacting subsystems is captured via a set of transfer functions at the contact point,
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Fig. 14. (a) Surface plot showing the minimum imaginary part of the zeros for a four-mode system containing 2 fixed

modes with frequencies 1, 1.2, amplitudes 1, while a third mode is varied in frequency and amplitude. The fourth mode

is added with frequency 2 and amplitude a4 ¼ þ1: (b) Root locus plot for the four-mode system described in (a) when

the third mode amplitude is kept fixed at a3 ¼ �1: These plots show that the behaviour of a three mode system, as

shown in Fig. 9(c), is essentially duplicated when the system contains more modes. The crosses represent the position of

the fixed poles in the complex plane.
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regardless of their physical realization. Assuming the damping is proportional, these transfer
functions can in turn be expressed in terms of eigenfrequencies, damping factors and mode shapes.
Using Coulomb’s law with a constant coefficient of friction to model the friction behaviour at the
interface, a number of conclusions can be drawn:

1. For such a system to be unstable, it is necessary that the system possesses some asymmetry so
that, at least for one of the subsystems, the normal and tangential degrees of freedom are
dynamically coupled.

2. It is also necessary that at least one of the ‘‘composite modal amplitudes’’ appearing in
expansion (12) becomes negative. Larger values of the coefficient of friction help to reach such
negative modal amplitudes.

3. For a three-mode undamped system, instability was shown to arise if and only if the composite
modal amplitudes satisfy a certain pattern of signs. If this pattern occurs, instability will occur
within a definite region in the parameter space.

4. For a damped three-mode system, damping will usually make the system stable when the
corresponding undamped system is marginally stable. Provided damping is light, the stability
boundaries of the undamped system are only moderately affected, so that the stability domain
is usually recognizable. However, damping can also cause substantial new unstable regions of
the parameter space to appear. The exact topography of these unstable regions is highly
unpredictable and it strongly depends on the damping distribution. The less uniform the
damping in the system, the wider the instability domain of the damped system is likely to be.
This suggests that damping distribution is one source for the capriciousness of systems
containing a sliding point contact.

5. Many features of systems with more than 3 modes can be understood by viewing them as
consisting of fairly independent clusters of 3 modes. Therefore, the conclusions reached from
the three-mode system analysis can be used for any other system to a reasonable extent. This
justifies a posteriori the appropriateness of using a local approximation for the study of
stability.

A major strength of the present modelling is that the theory proposed is inherently non-
controversial. When instability is predicted by this linear theory, one would expect something to
be observed. It is therefore important to review all the plausible features that might influence
stability within linear theory. This is the object of the companion paper [1].
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Appendix A. Nomenclature

u1=2 displacement at the contact point on the ‘‘disc’’ in the normal/tangential direction
v1=2 displacement of the contact point on the ‘‘brake’’ in the normal/tangential direction
F=N total friction/normal force

ARTICLE IN PRESS

P. Duffour, J. Woodhouse / Journal of Sound and Vibration 271 (2004) 365–390 389



F0=N0 average value of the friction/normal force
F 0=N 0 fluctuating component of the friction/normal force
G;H ð2
 2Þ receptance matrices at the contact point for the ‘‘disc’’ and the ‘‘brake’’
m0 constant coefficient of friction
o frequency
oi natural frequency of mode ‘‘i’’

%oi positive-frequency pole associated with mode ‘‘i’’
di damping factor of mode ‘‘i’’
fiðx=yÞ mass normalised ith mode shape coefficient of the disc in the normal/tangential direction
cðx=yÞ mass normalised ith mode shape coefficient of the brake in the normal/tangential direction
ci residue associated with pole %oi
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