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Abstract

In a companion paper, a theory was presented which allows the study of the linear stability of a class of
systems consisting of two subsystems coupled through a frictional contact point. A stability criterion in
terms of transfer functions was derived and used to simulate the behaviour of generic systems. In the
present paper, this approach was pursued and generalized by relaxing in turn certain of the assumptions
made earlier. By doing this, it is possible to catalogue systematically all the routes to instability conceivable
within the scope of linearity for the class of systems considered. The additional routes to instability
identified are as follows. First, the contact point was made compliant by adding a linear contact spring at
the interface between the two subsystems. This feature proved to have a significant influence on stability
when the contact spring stiffness takes values of the same order of magnitude or lower than that of the
average structural stiffness of the system. Second, a route to instability is possible if the system structural
damping possesses a slight non-proportional component. The last and most elaborate extension consisted in
allowing the coefficient of friction to vary linearly with the sliding speed. Simulation results suggest that a
coefficient falling with increasing sliding speed can destabilize an otherwise stable system or can make it
even more unstable. In accordance with previous results, a coefficient of friction rising with the sliding speed
tends to make a system more stable, although this is not systematic. The theory presented here allows these
possible routes to instability to be combined, so that data from vibration measurements or modelling and
from frictional measurements can be used directly to predict the region of instability in parameter space.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Many systems containing a sliding frictional contact of some kind are prone to self-excited
vibration. Usually this is undesirable, as in squeal of vehicle brakes. Manufacturers of such
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systems would obviously like to be able to design them in such a way that squeal, judder,
chatter or whatever it may be called does not occur. Such design efforts have up to now
been based almost entirely on empirical modification and testing, but a rational design
strategy based on a theoretical understanding of the phenomenon would be preferable. Al-
though there is a long history of scientific literature on the subject, no fully satisfactory and well-
validated general theory of frictional excitation of vibration has yet been demonstrated. In a
companion paper [1], an attempt at the first stage of such a theory was advanced. Under
certain assumptions, to be described in detail below, a method was presented which allows
any frequencies of unstable vibration to be calculated from a knowledge of the vibration
dynamics of the contacting systems, and the frictional conditions at the contact. This theoretical
framework was used to analyse generic systems, to establish which features encourage or inhibit
instability.

The goal of the research is to catalogue all possible ““routes to instability” within a unified
framework. It seems likely that there is no single phenomenon of brake squeal, or whatever:
rather, there is a family of related but distinct mechanisms of instability. To design a non-
squealing brake it is not sufficient to design against one particular form of instability while
neglecting others. A robust design must take account of all possible instabilities. The earlier paper
[1] considered a deliberately circumscribed family of systems, to establish the groundwork. In the
present work certain of the assumptions made there will be relaxed, to see whether and when new
forms of instability can appear. The intention is that this process will be continued in later work so
that systems of increasing generality are drawn within the scope of the theory. In parallel,
experimental studies are being made to test the predictions of the initial theory, and these will also
be extended to progressively more complicated systems.

The theory proposed in [1] relies on the following set of assumptions:

f—

. The dynamics of the two subsystems in contact are linear.

2. The subsystems are in a steady-sliding regime.

3. Sliding results from the motion of one or both subsystems. The bulk motion of the moving
subsystem(s) does not alter significantly its/their dynamical properties measured at rest.

4. Sliding occurs at a single location with no geometrical extension (single point contact).

5. The contact between the two subsystems is not compliant.

6. The damping is proportional so that the modes of the two subsystems can be described by real
mode shape coefficients.

7. The relation between the friction force and the normal force can be appropriately described by

a constant coefficient of friction.

With these assumptions, two main conclusions were drawn. First, instability mainly occurs
when sequences of three consecutive modes have displacements at the contact point with a
particular pattern of signs. More precisely, instability is linked to the presence of modes such that
the product of the tangential and normal mode shape coefficients is negative. When this occurs, a
sufficiently high value of the coefficient of friction will produce the required sign pattern. For
definiteness, the two contacting subsystems will be referred to as the “disc” and the ““brake’: if the
disc is perfectly symmetrical, such modes can only originate from the brake subsystem. The
second conclusion was that instability is more likely to arise if subsystem modes have very
different damping factors.
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The present paper investigates the stability of slightly more general systems, obtained by
relaxing certain of the assumptions just listed. Some of these assumptions cannot be relaxed easily.
For instance, allowing the dynamics to be non-linear (i.e., relaxing (1)) would change the nature of
the problem profoundly and require a different style of analysis. This assumption will be retained
throughout the present work.

Assumptions (2) and (3) can be empirically or practically motivated: squeal mainly occurs at
very low speeds (which supports (3)) and in a vast majority of cases it indeed occurs in systems in
steady sliding, for example when a disc or drum brake is applied to stop a vehicle.

Relaxing assumption (4) would be difficult if it is understood as implying line contact or area
contact. However, it is possible to extend the theory of the companion paper [1] by reformulating
the theory with two contact points. The algebra becomes more complex and the study of the
stability will be the object of further research.

This leaves assumptions (5)—(7). These will be relaxed in turn: (5) and (6) are very easily dealt
with, but (7) requires a more elaborate analysis. For each assumption relaxed, a revised stability
criterion will be derived and investigated by simulating the behaviour of generic systems.

Relaxing assumption (5). The system studied in [1] can be modified by allowing the contact to be
compliant. Extending the theory to include this feature was also motivated by reports from
researchers studying brake noise using the finite element method (e.g., [2]). They observed that
adding a contact spring between the contacting nodes can have a strong influence on the stability.
Using standard linear system techniques, the system studied in [1] was modified by adding a
contact spring at the interface of the two subsystems. A modified version of the stability criterion
can be derived using standard linear system techniques and its significance investigated.

Relaxing assumption (6). The second extension investigated is the non-proportionality of the
structural damping. To our knowledge, this has never been mentioned as a possible source of
instability in friction-induced vibration studies. However, if the structural damping is non-
proportional, transfer functions take a slightly different form and it will be shown that this can
affect the stability of the system in an unexpected way.

Relaxing assumption (7). In the companion paper, the stability criterion was derived by
modelling the contact interaction by a constant coefficient of friction. In the present work, this
assumption will be relaxed and the coefficient of friction will be allowed to vary. A coefficient of
friction decreasing with the sliding speed was long thought to be the main source of friction-
induced vibration. It is now generally agreed that this is not the only cause of instability, but
the influence of velocity-dependent friction is still of interest. For definiteness, the theory will be
presented for a coefficient of friction varying linearly with the sliding speed. However, it will be
seen that many other friction laws, once linearized, would take a similar form, so that the
conclusions can apply to a rather general class of frictional interactions.

2. Influence of contact compliance

Before studying how contact compliance influences stability calculations, it is useful to recall
the basics of Hertz theory, since it is within this framework that the notion of contact stiffness is
best defined [3].
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2.1. Background of contact compliance

Assuming that a single spherical asperity made of a linearly elastic material is pressed on a rigid
smooth flat plane, Hertz showed that the normal compliance law takes the form:

N = 45, (1)

where N is the normal load, A4 is a coefficient of proportionality depending on the geometry and
the mechanical properties of the sphere, and ¢ is the surface separation. Thus, Hertz’ theory
predicts a non-linear normal compliance law. For small dynamic variations of load around a
mean value, this law can be linearized around the operating load value. The contact stiffness can
then be defined as the coefficient of proportionality between N and ¢ in this linearized law. The
generalization of such a law to extended areas of contact between rough surfaces is a difficult
problem. In general, a statistical characterization of the surfaces is necessary. Greenwood and
Williamson [4] gave a solution assuming a Gaussian peak height distribution and showed how it
gives rise to the familiar Coulomb law of friction. However, throughout this paper, a point
contact is assumed so the issue of distributed contact does not arise.

Some authors have suggested that contact compliance may have an effect on the stability of
systems in sliding contact. Interest in this area actually stems from two different concerns. The
first originates from a seminal paper by Tolstoi [5], in which it was suggested that there is no
essential difference between kinematic and static friction. The apparent distinction is due to the
influence of normal vibration superimposed on the tangential vibration. A number of authors
[6-8] have developed this idea further. If the normal contact compliance is non-linear, of Hertz
type, the waveform of normal oscillations will be significantly non-symmetrical and such that the
average ‘‘dynamic penetration” of the contacting surfaces will be smaller than the static
“penetration”. This would produce a slight lifting-up of the slider, which in turn results in a
reduction of the real contact area, thus reducing the coefficient of friction. This mechanism
explains how a non-linear contact compliance can result in an apparent drop in the friction
coefficient in a dynamic regime. For more detail see [6, pp. 36—38]. However, this mechanism lies
outside the linearized theory relevant to this study.

The second interest in contact compliance in relation to friction instability is more relevant here
and arises from its use as a convenient device in computational studies. When a brake assembly,
for instance, is modelled by finite elements, it is convenient to include contact springs between
contacting nodes. By this device, the normal contact force is simply the product of the contact
spring stiffness and the node distance. The friction force is then obtained by multiplying the
normal force and the coefficient of friction [2,9,10]. A sufficiently large value for this contact
stiffness (typically 10® N/m) also ensures that the surfaces in contact do not penetrate. Within this
context, the contact stiffness becomes a parameter which can be varied like any other and it is
possible to investigate its influence on stability.

2.2. Addition of a contact stiffness to the linear model

Adding a linear contact spring between the two subsystems poses no difficulty for the model
presented in [1].
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Fig. 1. Diagram showing two linear systems in sliding contact through a contact spring. #; and v; denote, respectively,
the tangential and normal displacements at the location shown.

In Fig. 1, a normal contact spring k, has been included at the tip of the ““brake”. This spring
could equally well have been attached to the disc, or two different contact springs could even be
attached at the contacting end of each subsystem. u, and v}, represent the displacement of the
brake tip in the direction shown, while u, and v, represent the displacement at the end of the
contact spring that will now be in contact with the disc. For clarity, the forces are not represented
on this picture. With the same notations and sign conventions used in [1], there are equal and
opposite normal and tangential forces N and F at the new contact point. Each force is
decomposed into a static component, denoted with a zero subscript, and a fluctuating component
denoted with a prime. These forces are transmitted directly through the massless spring. The
dynamics of the two subsystems ‘“‘disc” and ‘“‘brake” considered independently are again
represented using the matrices of transfer functions previously defined. If the contact region is
compliant in the normal direction and if that compliance matters for stability, there is no reason
to believe that the same will not be true in the tangential direction [11-13]. Therefore, a contact
spring in the tangential direction &, will also be included in the analysis, although this is not shown
in Fig. 1 to prevent overloading.

For clarity, the notation used to express these transfer functions in [1] is recalled in Table 1.

Following Soedel [14] or Bishop and Johnson [15], the contact springs and the “brake” can be
viewed as two linear systems in series. The relationships among forces and displacements defined
in Fig. 1 are

N/ = kn(uz — u’z) = kn(ug — H11N’ — H12F/), (2)

F' = k/(vs — v)) = k(vy — HyN' — HnF'). (3)

The dynamics of the subsystem ‘“‘brake” coupled with the contact springs can then be expressed
from the new contact point via the matrix H' defined as

1
Hi(w) + I Hix(w) N

pat @

1
Hy (o) Hy(w) + ©
t

In this formulation, it is assumed that the contact compliance does not induce any cross-coupling
term between the normal and tangential directions. With H' thus defined, the process outlined in
the companion paper [1] can be applied in exactly the same way. Assuming a constant coefficient
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Table 1
Expression of the transfer functions for the brake and the disc
Disc Brake
$p(x) WA(x)
Gii(w) = 4 Hy(w) = 2
(@) =2 o 4 2iwads! — w? (@) =2, 2 + 2iwwbd? — w?
$,()¢,(») YOV, (y)
Gpp(w) = Hp(w) =
() =2 wd? 4 2iwads! — w? 2(0) =2 P + 2iwwbd? — w?
2 2
Gn(w) =3 :0) Hy(w) =3 Vi)

n yd2 iwwds? — w2
¥ 4+ 2iwwds; — w

" b2 iwwbd? — w2
"% + 2iwwho, — w

of friction, the conclusion is now that the fully coupled system is unstable if and only if the
function

D(a))zki—i-kit-i- G + oGz + Hyy + poHyp (5)
n

has at least one zero in the lower half complex w-plane. Before investigating the effect of the extra
term from simulation results, some general comments can be made.

First, it appears from Eq. (5) that the normal and tangential compliances have an equivalent
influence on stability. This justifies the assumption that if a normal spring is included, a tangential
one should too.

It is also interesting to examine how the contact stiffness term alters the expected number of
zeros of D. Assuming proportional damping, as in Table 1, D(w) can again be expressed in terms
of the real mode shapes, natural frequencies and damping factors of the two uncoupled
subsystems. This yields the following expression for D(w):

2
Z ¢;(x) 5 n Z (O (x) + o (v)] ©6)

1 1
D(w) =+—+-—+ .
(@) kn ki (0 + 2iwwd s — w (0 + 2iwwld? — v?)

1
As in [1], the mode shape combinations in the numerator of each resonant term will be called «;,
a», etc. When the contact stiffnesses are not included, it was shown in [1] that a system containing
N modes in total when the subsystems are uncoupled possesses N — 1 modes once the subsystems
are coupled. Now, the same initial N modes give a total of N modes for the coupled system, as can
be seen by putting the terms in D to the same denominator. If both positive and negative
frequency poles are included in the analysis, this indicates that an extra pair of complex conjugate
zeros has appeared, intuitively representing the ““‘contact resonance”. The reason is that the two
“masses’ at the original contacting points are no longer merged into a single “‘mass’ but remain
as separate degrees of freedom.

Another point deserves some discussion. In [1], the absolute magnitude of values given to the
mode shape compounds a; was not a problem. The expression for D(w) was a linear combination
of the a;, therefore only their relative sign and magnitude mattered. In this section, however, the
addition of a constant stiffness term introduces an ‘absolute’ reference in terms of magnitude. It is
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useful to carry out a simple order of magnitude analysis in order to estimate plausible values to be
used in the subsequent simulations. Assuming that 1 kg is a plausible value for the modal mass of
a typical brake system, then, to a normalized natural frequency of 1, corresponds a non-
dimensional structural stiffness of order unity too. Thus, the values chosen for the contact
stiffness in the following simulations will have to be consistent with a structural stiffness of order
unity.

2.3. Simulation results

Some simulation results will now be described. For ease of comparisons and connections with
previous results, a contact compliance is added to the three-mode system investigated in
[1, Section 4.3].

Fig. 2 shows two surface plots of the minimum imaginary part of the zeros for systems
consisting of three modes plus contact compliance, characterized by the “equivalent” contact
stiffness k., = k,k,/(k; + k). The two plots correspond to two different values of k,: (a) k, = 10
and (b) k. = 0.1. Amongst the three modes constituting the system, two are fixed with frequencies
1 and 1.2, damping factors 0.01, 0.01 and both amplitudes equal to 1 (by “amplitude’ is meant the
numerator coefficient of the corresponding term in Eq. (6)). The third mode is varied in frequency
within 0.8 and 1.4, and in amplitude within —5 and 0. Its damping factor is set to 0.03. Following
the notation defined in [1], the natural frequency and amplitude of the varying third mode will be
denoted w3 and a3 respectively. On each surface plot, the zero contour is plotted with a thick line
on the surface itself, as well as on the bottom plane. As before, the minimum imaginary part is
taken among those roots whose real part lies within the range of validity [0.6 1.6].

Fig. 2 clearly shows that k., = 1 is indeed a critical value. In Fig. 2(a), where k. = 10, the surface
plot looks very similar to the corresponding plot obtained in [1] for the same underlying three-
mode system, without contact springs. For this value of k., the main effect of the contact
compliance is to initiate a steep “‘canyon’ spanning the higher range of the third mode frequency

and approximately centred on the line a3 = —2.5. This canyon becomes wider and wider as k.
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Fig. 2. Surface plots showing the minimum imaginary part of the zeros for systems consisting of three modes and a
contact frequency term varied as shown. Two of the modes are fixed, while the third one is varying in frequency and
amplitude. The bottom of these plots has been clipped at 0.1 to make important features more visible. The thick line
plotted on the surface is the zero contour. This contour is also reproduced on the bottom plane.
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decreases, gradually deforming the higher quadrant of the surface plot (larger values of w3 and
|as]). This can be seen in Fig. 2(b). Note that the half of the surface corresponding to the lower
frequency range is little affected, even for small values of k.. As k. becomes larger, the width of the
canyon reduces, so that for k, = 100 (case not shown), the surface plot looks almost as if the
contact was not compliant (i.e., as if the contact spring had an infinite stiffness). This is not
surprising since k, only affects the function D(w) through its inverse 1/k,, so that relatively large
values of k. will only have a slight effect on the stability.

Fig. 2(b) shows that lower values of the contact stiffness k, significantly modify the behaviour
of the underlying three-mode system. This plot also shows that such values can significantly
increase the region in which the system is unstable. It seems that, as the value of k., becomes
smaller, two ““dips”, characteristic of a three-mode cluster with alternating signs, lic next to each
other. This similarity is not fortuitous. In [1, Section 4.2], the influence of remote poles was
modelled as a constant residual. It was argued that far away from a mode natural frequency, the
influence of this mode on D(w) could be modelled as a real constant. Mathematically, this is
precisely what the contact stiffness term in Eq. (5) amounts to. Therefore, it is not surprising that
the influence of a compliant contact bears a strong similarity with the influence of a remote mode.
As the equivalent contact stiffness k., becomes smaller, its inverse increases in magnitude. So, one
might not expect this similarity to continue to hold, since the approximation of a neighbouring
mode by a constant residual term may no longer be accurate. However, simulation results (not
shown for lack of space) suggest that a contact stiffness has a strikingly similar effect to that of a
remote mode, even for relatively low stiffness values. This is a quite remarkable result.

2.4. Conclusions on the influence of contact compliance

In this section, a contact compliance was added to the linear formulation presented in the
companion paper [1]. This compliance was modelled by tangential and normal linear springs. A
new expression for the function D(w) governing the stability of the coupled system was obtained.
Simulated examples showed that a contact compliance significantly affects the system stability
when the value of the contact stiffness is of the same order or below the order of magnitude of the
structural stiffness. If the contact stiffness takes a value of this order of magnitude, then, to a good
approximation, the effect on the system is similar to that of a remote extra mode.

3. Influence of non-proportional damping and complex modes

If the damping in either or both subsystems is not extremely small, there is another effect which
can influence the threshold of stability. So far, proportional damping has been assumed
throughout the system, so that the mode shapes are real. However, although this assumption is
very commonly made, the condition of proportional damping is an artificial one, made purely for
mathematical convenience. There is no physical reason to expect most real systems to conform to
this assumption. Instead, one must expect mode shapes to be complex in general. For most
purposes of vibration modelling this distinction matters little, but for stability analysis it can be
very important since it introduces phase shifts. Unfortunately, there is no universal predictive
theory of structural damping which has the same convincing physical justification as the treatment
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of stiffness and inertia through stiffness and mass matrices. The best that can be said is that if the
damping is governed by linear theory and is light, then a perturbation approach can be used to
obtain approximations to the complex frequencies and mode shapes. Surprisingly, it turns out
that the expressions for transfer functions are closely analogous to those used before. Specifically,
expansions like those in Table 1 take approximately the same form, provided the mode shapes
appearing in the coefficients are replaced by their approximate complex equivalents [16].

It is not usually possible to predict the complex mode shapes from an a priori model of a
system, but at least it is possible to measure them. The techniques of experimental modal analysis
can be applied in the standard way [17], and provided a sufficiently sophisticated signal-processing
method is used, complex mode shapes can be extracted.

It is of interest to examine briefly the effect of complex mode shapes on the threshold of
stability. In this particular context, the important physical interpretation of complex mode shapes
is simply that, in a mode of the ‘brake’, the normal and tangential components of motion might
not be exactly in phase. In a free vibration, the contact point would then describe an elliptical path
rather than oscillating along a straight line. For the generic systems studied here, the introduction
of even slightly complex modes can have a very significant effect. This effect can be better
understood if the expected number of zeros is first considered. Suppose there are N poles at
positive frequencies and correspondingly N negative frequencies. Multiply out the partial fraction
expansion into a ratio of polynomials. If the damping is not proportional, so that the residues are
complex, the numerator polynomial will have (2N — 1) zeros. However, if the damping is
proportional, the order turns out to be only (2N — 2) [1]. This means that with non-proportional
damping, an extra single zero must appear, and on symmetry grounds this must lie on the
imaginary axis since the numerator of D(iw) is a real-valued polynomial. As an infinitesimal
imaginary part is added to one of the residues, this new zero appears “from infinity”, either at
very large positive values or at very large negative values depending on the sign of the imaginary
part of the residue. To see this behaviour algebraically, it is enough to consider just one pair of
poles. Using the notation defined in [1],

Cq CT (C] — CT)CO + cla’)T + CTCL_)l
D - — - — % - — — % s (7)
(w—d1) (0+a7) (0 — @)+ &f)
where the star denotes complex conjugation. This function has a single zero, at
. Re(cioF
=17 (8)
Im(cy)

As Im(c) tends to zero this moves off along the imaginary axis to infinity, the direction (and
hence stability) depending on the sign of the ratio in Eq. (8).

This result is quite unexpected: a very small amount of non-proportional damping, if it induces
a complex residue with the appropriate sign, can immediately produce a very strong instability in
a system which was previously stable. In [I, Section 4.3], purely imaginary zeros were also
predicted for some parameter values, even with real residues. It was then argued that these zeros
should not be given too much significance since the analysis was only intended to be locally valid,
and they fall outside the range of validity of the model. The situation is now slightly different:
however many modes are included in the model, if the residues become complex, a purely
imaginary zero will appear, stable or unstable depending on the other parameter values.
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Therefore, an assumption of proportional damping could be dangerously misleading in any study
of the stability of frictionally sliding systems. It seems plausible that this phenomenon is giving
one more clue regarding the physical mechanisms underlying ‘capriciousness’, since small changes
to a system might influence the (slight) complexity of the modes. This conclusion, together with
those of the companion paper [1] regarding the influence of damping point towards the crucial
importance of modelling damping accurately, if one hopes to make reliable stability predictions
for friction-induced vibration.

4. Influence of varying coefficient of friction

In this section, the influence of a coefficient of friction varying with sliding speed is investigated.
It is well known that including such a feature for a single-degree-of-freedom oscillator introduces
a term proportional to the velocity into the equation of motion. A coefficient of friction
decreasing with increasing sliding speed (negative resistance) has often been proposed as a
possible mechanism for frictional instability (e.g. [18]). Within the scope of a linearized theory, it
is possible to use a friction law featuring such a variable coefficient of friction. First, a new
stability criterion including this friction law is derived.

4.1. Solution with a variable coefficient of friction

It is a common observation from frictional tests carried out at different speeds of steady sliding
that the coefficient of friction may vary, either increasing or decreasing as sliding speed increases.
If this variation carries over to high-frequency dynamic variations of speed and friction force,
then the relation in the vicinity of the imposed sliding speed from the disc rotation can be
linearized, so that

Fx[uy +iwe(v) + 0N, )
hence
Fo + F' [y + iwe(vy + 0)](No + N') (10)
~ Uy No + iweNy(v) + v2) + N’ (11)
so that
F'~iweNo(v) + v2) + poN'. (12)

The factor iw serves to convert the displacements v; and v, into velocities. ¢ denotes the slope of
the straight line characterizing the linear relation between F' and v.

When the system is analysed using the more general friction law (12) the expressions presented
in Section 2 of [1] become more complicated. Using the notation introduced in [1],

Gy + 1yGn + Hip + togHxn

N' = K(@)N' 13
1 — iweNo (G + Ha) (@) (13)

v+ vy =
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say. Then, one has
, r

- D(w) +iweNy (G2 + Hi2)K(w) (9

so that, for example
_ G + py G2 + 1weNo[G12(Gra + Hiz) — Gi1(Gx + H)] ;
D(w) — iweNy [(Giy + Hii) (G + Hy) — (Gia + Hia)]

The numerator of this expression consists of transfer functions of stable systems, and contains no
unstable poles. Thus the new condition for instability is that the function

E(w) = D(w) — iweNy [(Gi1 + Hi)(Ga + Hx) — (Gia + Hn)’]
= D(w) — iweNydet[G + H] (16)

has at least one zero in the lower half-plane, where G and H denote the transfer function matrices
previously defined.

The effect of the more complicated linearized friction law equation (12) will be examined
using simulated examples. Following the earlier presentation of the constant coefficient of friction
case, the next section gathers some general points that can be made from inspection of the
criterion just derived. Many of these points will be useful when the behaviour of the system is later
simulated.

(15)

23]

4.2. General comments on the new criterion

4.2.1. Miscellaneous remarks

(1) First, criterion (16) reassuringly reduces to the previous condition (Eq. (7) in [1]) when & = 0.

(2) From the sign conventions of Fig. 1, (v; + v,) is minus the change in sliding speed due to the
vibration, so that a positive value of & corresponds to a friction coefficient which decreases with
increasing sliding speed; precisely the condition which commonly produces an effect of “‘negative
resistance” (e.g. [19]).

(3) When the coefficient of friction is allowed to vary with the sliding speed, the stability of the
system appears to be influenced by the static value of the normal load Ny. This is a new feature: so
far, only the fluctuating quantities had an effect. Eq. (16) also shows that mathematically ¢ has the
same effect as the nominal normal load Nj. It is very difficult to know a priori which values these
two parameters should take for a typical system. For convenience, they will often be treated as a
single compound quantity in the simulation section.

4.2.2. Expression of E(w) in terms of modal parameters

Proportional damping will be assumed so that the standard transfer function formulae can be
used. The disc will again be supposed to be perfectly axisymmetrical, so that G, = G>; = 0. In
contrast to the companion paper [1], G», appears in the stability criterion. This raises an issue. The
symmetry argument adduced to conclude that Gj, = 0, implies that ¢,(x)¢,(y) = 0 for all disc
modes. Clearly for out-of-plane disc modes, ¢,(x) is non-zero. One could then be tempted to
conclude that ¢,(y) = 0, which would imply that G, is also be zero. This is obviously incorrect.
The reason for this apparent contradiction lies in a subtlety of disc vibration which did not matter
previously, but which it is now necessary to clarify. For modes of the disc which do not contain
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any nodal diameter, ¢,(y) is zero, so that these modes do not contribute either to G, or G.
However, any mode with at least one nodal diameter will appear as a doublet. Gy; is the
normal response, at the contact point, to a normal impulse at the contact point. If the disc is
perfect, a normal impulse will only excite one mode of each doublet, and this mode will
have an antinode at the point of impact, so that lateral motion, corresponding to ¢,(), cannot
arise. Similarly, G», is the lateral response at the contact point, to a lateral impulse at the
contact point. This time, only the second mode of the doublet—that which has a nodal line at the
contact point, will be excited, so that no normal motion arises at the contact point. Lateral motion
is due to the thickness of the plate. This is illustrated in Fig. 3, with a three nodal diameter
doublet.

It is now clear that both Gy; and G, really contribute to E(w), although G, = 0. This point
clarified, it is possible to obtain an expression for E(w) in terms of modal parameters. E(w) being
significantly more complicated than D(w), it is difficult to obtain an expression for an
indeterminate number of modes n. Therefore, the expanded form E(w) will be derived first for a
system consisting of three terms: two from the disc and one from the brake. Note that according
to the explanation just given, this actually amounts to one mode of the brake and four modes of
the disc in general, although there are only three resonant frequencies in all. The same procedure
can be applied if more modes are included.

To simplify the notation, the quadratic denominators appearing in the transfer functions
recalled in Table 1 will be denoted Zisc,, Zisc, for the disc, and Zrake; for the brake. With this
notation:

det[H + G]

_ <¢%<x) LW wﬂx)) (qﬁ%(y) L 50 40 > RAOVH0)
- \Gisc,  Disc, Brake, ) \Disc;,  Disc;  Brake, @rake% '

(17)

(@) (b)

Fig. 3. Diagrams showing the vibration of a disc in a three-diameter mode when the disc is excited by a lateral impulse
(a) or a normal impulse (b). The thick lines on the disc represent the nodal diameters. The thick arrows represent the
impulses. The zoomed frames show the motion of the median plane of the disc. In case (a), there is a nodal line at the
point of impact so that no out-of-plane motion is possible. Lateral motion arises through the thickness of the disc. In
case (b), there is an anti-nodal line at the point of impact so that no lateral motion is generated along the anti-nodal
diameter.
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Expanding, the expression for E(w) can be written:

) | B3 @) + ol 0)

E(w) :@iscl Discy Brake,
: P1()PT(0) | P3NP | P3P + dTX)PI()
—1weho Disc? * Disc} * Disc1Disc;
L $IOWI0) +Yi0AI0) | SN0 + Y1 ()430) (18)
Disci Brake, DiscrBrake, '

In Eq. (18), the first three terms correspond to the expression of D(w) derived in the companion
paper [1]. The remaining terms correspond to the expanded expression of the new determinantal
term. The zeros of E(w) are the zeros of the numerator of the single fraction obtained when all the
terms in equation (18) are put to the same denominator. If P,(w) denotes this polynomial
numerator, its expression can be given by multiplying £ by the common denominator:

P.(w) = E(w) X QZisc% X @isc% X RBrake, X Brake,
= d)% (X)Zisc) @iscé@raka Brake, ... —1iweNy [qﬁf (x)d)% (82} isc%gﬁrakel Brake,...]. (19)

D() det[H+G]

The term introduced by the varying coefficient of friction, imeNodet[H + G], can be thought of as
a real function of iw, so that P,(iw) is also a real polynomial, and its roots will again be either
purely imaginary or ‘i times a complex conjugate pair. P,(iw) is a polynomial of degree §,
yielding four modes for the coupled system (if the zeros are all complex).

The generalization of expansion (18) is rather intricate, but some useful insight can be gained
from understanding the process. Assume that the disc, considered independently, has N; modes
and the brake, Np. A general expression for D(w) was given in [1, Eq. (12)]. The same expression is
still valid for the corresponding part in E(w). The new, determinant term is more complicated.
Each term in det[H + G] will have at the denominator a product of any two quadratics Zisc, and/
or ABrakey, except for the terms in g@rake,%, which cancel out in the determinant calculation. In
general, there is no divisor common to all these denominators, so that to put the terms of E to the
same denominator to obtain P,, it is necessary to multiply E(w) by the product of all the disc
quadratics squared, Zisc2, multiplied by the product of all the brake quadratics %rake; (not
squared). This amounts to multiplying E(w) by the product of all the denominators, which is a
polynomial of degree 2 x (2N; + Np). At the denominator of each fractional term in D(w), there is
a single quadratic term Zisc, or Brake;. The denominators of the terms of det[H + G] involve the
product of two quadratics. When E is multiplied by the product of quadratics as shown in
Eq. (19), only one quadratic cancels out for each term of D, whereas two will simplify for each
determinant term. It follows that each term of D(w) yields a polynomial of degree 2 x 2N, +
Njp) — 2, whereas the terms coming from det[H + G] are polynomials of degree 2 x (2N, + Np) —
4. Due to the multiplication of the determinant by iw, these polynomials become of degree
2 x (2N; 4+ Np) — 3 and they have no constant term (i.e., coefficient of degree zero). This has
several consequences:

® The degree of P.(w) is the same as the degree of the polynomials coming from D(w), that is,
2 X (2N4g 4+ Nj — 1). By comparison, the corresponding degree of P(w), when the coefficient of
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friction is constant, is 2 X (Ng + Ny — 1). The new factor 2 multiplying N, is related to the
presence of doublet modes.

e The term of highest power of P,(w) will come from D(w) and the leading coefficient (as well as
the constant term) will be the same as for P(w) in [1]:

N(l Nh
D 0h)+ D W) + o))
n=1 k=1

Therefore, one can again expect to observe a “catastrophic’ event when this term is equal to
Zero.

e The multiplication of the determinant by iw means that the terms with an even power of w
become of odd power and vice versa. It was mentioned in [1, Section 3], that by multiplying
quadratic polynomials of the form —w? + 2iw,d,® + ?, the terms of odd powers are linear
combinations of damping factors, whereas the terms of even powers are combinations of
products of natural frequencies (plus products of damping factors which are negligible in
general). This implies that in practice, the odd power coefficients are in general about a hundred
times lower in magnitude than those of even power. When multiplied by iw, the roles are
switched, so that the addition of the determinant term to the D(w) amounts to: (1) adding
relatively small quantities to the coefficients of even power of the polynomial coming from D,
which should be of little effect in general, and (2) adding relatively large values to the
coefficients of odd power of the polynomial coming from D(w). This can be interpreted as
introducing a form of damping: P, would have odd power terms, even though the two
subsystems were structurally undamped (i.e., §; = 0). This confirms the close relationship
between a coefficient of friction varying with sliding speed and damping. The validity of this
argument is strongly dependent on the actual value of the product ¢Ny. This point will be
discussed further in the next section.

Finally, note that although the combinations of mode shape coefficients appearing in the
determinant are all positive, the complex analysis argument used in [1, Section 3] is unlikely to
hold for at least two reasons: (1) the various terms appearing in £ have a different nature: some
have a single quadratic denominator, some have the product of two quadratics; (2) even if the
mode shape combinations are all positive, the determinant is multiplied by minus iw, so that the
final result could still contain negative signs if ¢ is positive. Therefore, instability might occur, even
if the brake mode shape combinations, ¥, (x)[{,(x) + e, (»)], are all positive. Whether this is the
case or not will be revealed by simulations. Before investigating the behaviour of a generic system,
it is useful to examine the orders of magnitude of some of the terms appearing in Eq. (16).

4.2.3. Estimation of orders of magnitude

The behaviour of a system comprising a limited number of modes will be simulated, using the
new criterion (16), derived from the more sophisticated friction law (9). To use plausible values for
the disc modal amplitudes, d)n(x)2 and <;5,,(y)2, it is necessary to estimate the relative orders of
magnitude of these two quantities. To this end, the values of these modal amplitudes were
computed using analytical expressions obtained from an annular thin plate model for a disc of
comparable dimensions to a typical vehicle brake disc. From this calculation, it appears that, at
least for the lowest modes (zero or one nodal circle), q’)i(x) ranges from 1 to 10, more frequently
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around 10. qbﬁ(y) is often of order 10~ and sometimes smaller. For the brake, there is no reason to
believe that, in general, there should be such a difference in magnitude between H;; and H,. It is
now possible to examine expansion (18), bearing these orders of magnitude in mind.

As already mentioned, it is very difficult to estimate the values of ¢ and Ny, as those two
parameters may strongly depend on the specific system implementation. However, using a simple
order-of-magnitude analysis, it possible to estimate a critical value of the product ¢Ny. E(w)
appears as the combination of two different terms, the first of which is the function D(w), the
second is ieNygwdet[H + G]. The magnitude of D(w) can be taken as the peak amplitude of a
transfer function:

a
OXhY
where a denotes the amplitude, w the natural frequency and J the corresponding damping factor.
Similarly, the order of magnitude of the second term can be approximated by
2
eNyw a

w*6

The ratio of these two orders of magnitude should provide a rough estimate of the value of ¢ N, for

which the second term becomes significant compared to the first one. Dividing the two terms
yields:

eNya

ow

(20)

A value of order unity for this ratio defines the critical value of ¢Ny. If eNy < dw/a, one expects the
system behaviour to be similar to that described in the companion paper [1]. Conversely, if
eNy>dw/a, the new term introduced should have a significant influence, altering the behaviour
previously described.

Throughout this paper and its predecessor [1], damping has been assumed to be light, (i.c.,
0~0.01). It was shown that a was typically equal to 10, and frequencies were normalized so that
the ratio (20) is of order 0.001. If N, takes the plausible value of 100 N, the critical value of ¢ is
10~>. This very small value is partly due to the natural frequency normalization. For a frequency
of about 1 kHz, the critical value of ¢ would be 0.01. This is still fairly small, suggesting that a very
slightly varying coefficient of friction could have a significant effect on the system stability.

4.3. Study of a generic system

In this section, the behaviour of a three-mode system is investigated, using the new stability
criterion (16). The method used to explore this system will be the same as in the previous cases:
two modes, say of the disc, will be kept fixed, while a third one, from the brake, will be varied in
“amplitude” and frequency. In the companion paper [1], the “amplitude” parameters, a; = cbf(x),
a = ¢>§(x), az = Y(x)[Y(x) + poy(»y)], were independent. As can be seen from Eq. (18), it is no
longer possible to group the mode shape combinations into single parameters “a,”, because each
mode shape coefficient appears in several places. Therefore, instead of varying a whole compound
like a,,, mode shape coefficients (¢, (x), (), etc...) will be varied individually. This raises the issue
of finding plausible values for each of them. For the disc, the mode shape estimations from
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Section 4.2.3 can be used directly. They were given the following values:

$1(x) = ¢o(x) =3 and  ¢(y) = ¢2(y) = 0.05, 21)

so that d)f /2(x)~ 10 and d)% /2(y)~ 1073, For the brake, it is difficult to estimate which values the
mode shape coefficients should be given in comparison to those of the disc. There is probably no
correlation between the magnitude of the mode shape coefficients of the two subsystems in
general, but a conclusion from the companion paper [1] is that strong instability occurs when the
leading coefficient of P, is around zero. For this condition to be satisfied, y(x)[y(x) + uot(»)]
must be equal to —(¢(x)+ ¢,(x)) = —18. This value is reached when (y)=—17. For
comparison with the previous analysis, the y-compound should be varied from about —50 to
0. However, it was mentioned that instability could arise, even if all the “mode shape compounds”
are positive. Therefore, the range of variation is extended to positive values, say 50 as well. If
o = 0.5, and if Y(x) is set to 4,

—50<yY ()Y (x) + uop(»)]< + 50 is equivalent to  —33<y(y)< + 18,

For the simulation described next, the two fixed modes have frequencies w; =1 and w, = 1.2
and the same damping factors ; = d, = 0.01. The brake mode frequency, ws is varied from 0.8
to 1.4, and its damping factor is 0.03. Following the same format as before, Fig. 4 shows
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Fig. 4. Surface plots showing the minimum imaginary part of the zeros for four different values of ¢Ny. The underlying
system consists of three modes.



P. Duffour, J. Woodhouse | Journal of Sound and Vibration 271 (2004) 391-410 407

surface plots of the minimum imaginary part of those zeros of E(w) whose imaginary parts lie
within 0.6 and 1.6. Each plot corresponds to a different value of e¢Ny, everything else being
unchanged.

For each plot, the zero contour is shown with a thick line on the surface and on the bottom
plane. Note that the surface has been clipped only when it reaches fairly large negative values.
This does not occur in Fig. 4(a), therefore the vertical scale is different from the other plots. These
plots show that a linearly varying coefficient of friction can have a strong effect on the stability of
this system. Several observations can be made:

(1) Fig. 4(a) shows that when &N, is sufficiently large and negative, an otherwise unstable
system can be stabilized. This is in accordance with the common belief that a coefficient of friction
increasing with sliding speed can stabilize an otherwise unstable system. (See the preliminary
remarks for the relation between the sign of ¢ and the slope of the u against sliding velocity curve.)

(2) Conversely, for relatively large and positive values of ¢Vy (Fig. 4(d)), the system is unstable
within two narrow bands, almost independent of w3, and roughly symmetrically located around
the plane (y) = 0. The effect is not as strong as one could have expected from a ‘“‘negative
resistance”. Instability is now possible even if the brake mode shape combination is positive. This
possibility was mentioned in the previous section. As ¢ is increased (up to 0.1, case not shown), the
two bands become narrower and they tend to conflate. This would suggest that higher values of ¢
do not make the stability of the system worse.

(3) Fig. 4(c) is very similar to the surface plot obtained for the same underlying system with a
constant coefficient of friction. It is reassuring that for small values of ¢, the previous case is
recovered. Fig. 4(c) can be thought of as a transition case. Other simulations show that plots such
as Fig. 4(c) are obtained for any value of &N, within [-10~* +107°]. This confirms that
eNo~1073 is indeed a critical value, a conclusion from the order-of-magnitude analysis in the
previous section.

(4) As Ny becomes relatively large, either positive or negative (e.g., Fig. 4(a)(d)), it appears that
the dependence of the surface with w3 is somehow obliterated, so that the surface plots show
hardly any variation along the frequency axis. Other simulation results confirm this observation
although the reason why this should be the case is not clear.

(5) Interestingly, even for relatively large values of ¢Ny (e.g., Fig. 4(a)(d)), the magnitude of the
minimum imaginary part is still of the order of a typical damping factor 6. This does not seem to
support the argument from the previous section, according to which large values of ¢ make the
odd power coefficients of P, significantly bigger, so that the imaginary parts of the roots should
become larger too. Inspection of the individual behaviour of the roots shows that one of them has
indeed a comparatively large imaginary part. However, this is not apparent on the surface plot
because the corresponding real part is outside the range of validity. Interestingly, the magnitude
of the imaginary part of the other roots is still governed by the damping factors. This is a reminder
of the fact that the relationship between the odd-power coefficients of a polynomial and the
imaginary part of its roots is not straightforward.

4.4. Influence of a complex ¢

Although this section has been phrased in terms of a coefficient of friction varying with sliding
speed, a friction law such as Eq. (12) can actually describe a much broader class of constitutive
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friction laws, provided they can be linearized. Then, ¢ can no longer be interpreted as the slope of
the friction—velocity curve, but it is simply the coefficient of proportionality accounting for the
linear variation of F' with N around a given operating point. If ¢ is real, as has been assumed so
far, then F and N are always in phase or out of phase. This is not always the case. For example,
with different contacting materials, it is possible that the interfacial temperature becomes the key
parameter governing the relation between F and N [20]. In this case, thermal inertia of the
contacting material creates a phase lag between the variations of F and N. This behaviour
characteristically appears as a hysteresis loop in a F — N plot. Such a feature could be included
within our present formulation by allowing ¢ to be complex. The F — N plot would then describe
an ellipse. Simulation results not shown here suggest that, for the system studied in this section
and |g = 5 x 1073 (Fig. 4(d)), the system becomes more unstable for phase angle between 160°
and 170°.

4.5. Conclusion on the influence of a varying coefficient of friction

In this section, the theory presented in the companion paper [1] was modified by coupling
the two linear subsystems through a friction law featuring a coefficient of friction varying
linearly with the sliding speed. This proved to modify significantly the conclusions reached with a
constant coefficient of friction. To allow comparison with previous results, the influence of the
new law was investigated by simulating the behaviour of the same three-mode system as before.
Two modes were fixed, while the third, originating from the brake, was allowed to vary in natural
frequency and tangential mode shape. The main conclusions from this study are that with such a
constitutive law, this system can exhibit three different kinds of behaviour according to the
magnitude and sign of the product eNj. If this product is negative, this investigation confirms that
the system tends to be stabilized, the more so, the larger |eNy|. If |eNy| is lower than some critical
value, which can be estimated by a simple order-of-magnitude analysis, the system behaves as if
the coefficient of friction were constant. Therefore, in this case, the observations made in the
companion paper [1] apply. If ¢Ny is larger than the critical value, the system behaviour changes
and becomes unstable within regions previously stable. In particular, the system can even be
unstable for positive values of the brake tangential mode shape, y/(x). This was shown to be
impossible with a constant coefficient of friction. However, previously unstable regions can
be stabilised too, so that the influence is non-systematic and hard to predict without detailed
calculations. The critical value for ¢N, turns out to be very small for the system investigated,
suggesting that a slightly varying coefficient of friction can have drastic consequences on the
stability. However, this small value is partly due to the chosen frequency normalisation. Finally,
note that introducing a varying coefficient of friction makes the system stability depend on the
operating value of the normal load Ny. In effect, increasing the value of Ny has the same effect as
increasing &.

5. Conclusion

In this paper the modelling presented in a companion paper [1] was generalized by extending
the initial formulation in three different directions. Together with [1], this paper presents an
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exhaustive study of all possible routes to instability of systems comprising a single contact point,
within the scope of linear theory.

First, the influence of contact springs at the interface point was studied. The reason for
introducing this feature is mainly that it is a common computational device, used by researchers
working with the finite element method. The results suggest that, to a good approximation, a
contact compliance has a similar influence to that of a remote mode. An order of magnitude
analysis showed that a compliant contact is expected to have a perceivable influence on stability if
the contact spring stiffness is of the order of magnitude or below the average contact stiffness of
the system.

Second, the influence of non-proportional damping was investigated. To our knowledge this is
the first time this effect is mentioned in the literature as a route to instability for systems with
friction. Formulating the problem in terms of transfer functions makes the study of the effect
particularly simple. It was shown that a very small amount of non-proportionality can have
drastic consequences on the stability. In particular, it can cause the system variables to undergo a
(real) exponential growth.

Finally, the coefficient of friction was allowed to vary linearly with the sliding speed. This also
proved to have a strong effect on the system stability. The well-known result that a coefficient of
friction decreasing with sliding speed can destabilize a system, whereas a coefficient of friction
increasing with sliding speed can only stabilize it, is certainly valid for a single-degree-of-freedom
system. However, simulation results shown in this paper suggest that the effect of a varying
coefficient of friction is no longer systematic for a multiple-degree-of-freedom systems. The effect
is entangled with the specific pattern of sign that the mode shapes exhibit. Making the coefficient
of proportionality between the coefficient of friction and the sliding velocity complex actually
includes many other linearized friction laws, such as thermal or rate dependencies.

It is often argued that brake noise is an intrinsically non-linear phenomenon. It is possible that
some routes to instability cannot be tackled by linear theory, but before including non-linear
features in the modelling of a braking system, it seems sensible to investigate how many observed
phenomena can be predicted by linear theory. By providing an exhaustive catalogue of the
possible instabilities predicted by linear theory, it becomes possible to test its predictive power.

Acknowledgements

The authors thank Bosch Braking Systems for financial support and Professor K.L. Johnson
for valuable discussions.

Appendix A. Nomenclature

Ui displacement at the contact point on the ““disc” in the normal/tangential direction
12 displacement of the contact point on the “brake” in the normal/tangential direction
F/N  total friction/normal force

Fy/Ny average value of the friction/normal force

F'/N' fluctuating component of the friction/normal force
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G,H (2 x 2) receptance matrices at the contact point for the ““disc”” and the “brake”

o constant coefficient of friction

w frequency

w; natural frequency of mode ‘i

@; positive-frequency pole associated with mode ““i”
0; damping factor of mode ‘i

¢,(x/y) mass normalized ith mode shape coefficient of the disc in the normal/tangential direction
W;(x/y) mass normalized ith mode shape coefficient of the brake in the normal/tangential

direction
¢ residue associated with pole @;
g slope of the coefficient of friction curve as a function of the sliding speed
ki stiffnesses of the contact springs in the normal/tangential directions
ke equivalent contact stiffness
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