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Abstract

The aim of this paper is to provide a theoretical and experimental analysis of the response of an elastic
system carried on board a wedge-shaped body impacting the water surface. The wedge entering the water
has a sudden deceleration with shock characteristics, resulting in a short-time duration and a sharp peak
value. On the other hand, the carried system undergoes an oscillatory motion induced by the inertial load
generated by the impact. The study of this problem reveals the occurrence of special conditions in the
response of the on-board oscillator, depending on the parameters associated with the water entry problem,
that lead to large elastic forces. The experiments show that when varying the characteristic natural
frequency of the on-board oscillator, critical impact conditions occur characterized by very large
amplitudes of the structural response that confirm the theoretical predictions. The analysis, based on the
water shock spectral response developed by the authors in some previous papers, is generalized here and
validated experimentally.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The scientific interest in the entry of a rigid body into water originated in the 1930s with the
pioneer works of Von Karman [1] and Wagner [2], while the technical interest was initially
connected with hydrodynamic loads on seaplane floats. Twenty years later the attention was
addressed to ship design, especially when considering the hydrodynamic loads on the flat bottoms
of large ships, such as oil tankers [3]. During the seventies the water entry problem began to
account for the elasticity of the plunging structure following the general statements of the theory
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of hydro-elasticity given in the fundamental work by Bishop and Price [4]. More recently, a
renewed interest in this field was led by the design of fast ships where light structures impact at
high speed and on the rough sea [5,6] with in addition a high frequency of impacts emphasizing
the fatigue damage to the materials.

The phenomenon of a structure impacting on the water surface implies, in general, very large
forces, being a considerable mass of water displaced in a very short time. For purpose of
illustration, in Figs. 1(a—d) and 2(a—d) an impact photograph sequence of a test model is shown
from two different perspectives.

Most of the efforts addressed to the analysis of the slamming phenomena deal with the entry of
rigid bodies into water. Besides the analytical solutions available for two and three dimensional
simplified geometries, based on the Wagner linearized formulation [7,8], several analytical-
numerical models have been developed for two-dimensional and axisymmetric bodies [9-11].
However, it is well known that, for high-speed marine vehicles characterized by very light
materials, the global and local dynamic response of the structure to impact loads is an important
item to consider. In fact, in this case, the hydroelastic interaction introduces additional difficulties
and increases the computational time considerably when solving the coupled problem
numerically. Therefore classical formulations based on the finite element analysis of the structure
and boundary element method analysis of the fluid domain [12,13] allow very accurate solutions
for a given set of initial conditions but are unsuitable to perform parametric analysis. On the other
hand, existing experimental works, performed to evaluate the hydrodynamic force or the
hydrodynamic pressure and the stress in beams and plates [6], are mainly devoted to the validation
of numerical codes and to the reproduction of only particular impact conditions. Moreover, in
these cases the system presents a complexity that does not allow the formulation of simple rules
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Fig. 1. (a) (b) (c) (d) Photograph sequence of the falling wedge (side view).
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Fig. 2. (a) (b) (c) (d) Photograph sequence of the falling wedge (front view).

predicting how the hydroelastic response is affected by modifying the basic impact parameters
(such as the initial impact velocity, the mass of the plunging body, etc.).

A first attempt to provide a parametric analysis of the coupled hydroelastic problem is
presented in Ref. [14] where a model consisting of a rigid impacting body carrying a sprung mass
is considered. The hydrodynamic model used there is that given in Ref. [10], implying a
geometrical linearization of the problem (at the water-body interface) but fully considering the
hydrodynamic non-linearity (quadratic velocity contributions retained in the Bernoulli equation,
while they are absent in the Wagner formulation). In Ref. [14] an experimental set up for rigid-
body impact is also described and the results successfully compared with the theoretical ones. On
the basis of the introduced hydrodynamic model, numerical simulations of the response of the
two-mass model are performed leading to interesting statements concerning the influence of the
system parameters on the hydrodynamic force (or body acceleration) and sprung mass induced
motion.

More recently in Refs. [15,16] a similar system has been investigated providing a good
understanding of the influence of the fluid and structural parameters involved in the phenomenon,
leading to closed-form relationships for the maximum force (or acceleration) of the impacting
body, as well as for the elastic reaction between the two masses. Such an analysis is made possible
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by the introduction of the shock spectrum approach to the vibration induced by the slamming
phenomenon in combination with the use of the Wagner hydrodynamic model, producing simple
prediction formulas.

Analyses, such as those in Ref. [14] or Refs. [15,16], have practical implications on the
engineering ground when new devices for slamming effect attenuation have to be conceived as
shown in Refs. [17,18].

In the present work, a generalization of the theoretical approach developed in Refs. [15,16],
based on the use of the shock spectrum theory aimed to identify critical phenomena, is presented,
and a new type of experimental set up is designed, where besides a rigid impacting body an elastic
structure is fitted on board. The results of the experiments, shown in Section 4, show that critical
impact conditions exist and the theoretical analysis explains why and how these critical effects are
observed in practice.

Consider a rigid-body impacting the water surface with a given initial velocity. The
hydrodynamic force exhibits a characteristic time history. On one hand, the drop velocity decay
causes a reduction of the slamming pressure but, simultaneously, the wetted area increases. These
two effects act in opposite directions on the hydrodynamic force which is the product of the
average pressure times the wetted area. Initially, the latter effect dominates over the former and
the force increases from its initial zero value. At r* the two opposite phenomena find an
equilibrium leading to a maximum hydrodynamic force F*. Later, the velocity reduction effect
definitively prevails and the hydrodynamic force is progressively reduced to zero.

As it will be clear in the following, the existence of this typical trend of the force is crucial to
determine the response of the elastic system on board. In this frame it is in fact intuitive that a
relevant role is played by the ratio between t* and the natural period of the elastic oscillations.

The experimental investigation is performed on a wedge-shaped body supposed to be rigid and
on an elastic system carried on board. Thus, the first set of tests is devoted to the measurement of
the time history of the hydrodynamic force acting on the wedge. From these measurements the
quantity F* and ¢* are determined. The second set of experiments is used to validate the shock
spectrum approach.

In Section 2 an analytical model for the water entry of a wedge-shaped body is developed. This
model admits an analytical solution that allows calculation, in closed form, of the expressions of
F* and ¢*. This solution is used to predict the maximum acceleration of the elastic system carried
on board leading to the estimate of the peaks’ amplitude. In Section 3 the design of the
experimental apparatus is described. The attention is addressed to an experimental set up
reproducing as close as possible the conditions of the theoretical model. Finally, in Section 4 the
results of the tests are shown and the comparison between the theoretical and the experimental
data is discussed.

2. Theoretical modelling of the critical impact phenomenon

In this section the hydrodynamic impact force is determined on the basis of an analytical
approach. The advantage of this point of view, with respect to the numerical solutions, relies on
the chance of determining the hydrodynamic force in closed form. This is a crucial point when
performing a parametrical study of the structural response to water impact loads.
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For clarity, the analysis of the impact of a simple rigid wedge is developed in Section 2.1, while
in Section 2.2 the analysis of a rigid wedge carrying a simple spring—mass system is considered,
assuming the hypothesis that the elastic force is considerably lower than the hydrodynamic one
and thus its contribution in evaluating the hydrodynamic load is negligible (weak hydro-elastic
interaction).

2.1. Impact of the rigid wedge

Consider a two-dimensional rigid wedge (see Figs. 3(a) and (b)) of mass m per unit length,
impacting on the water surface with an initial drop velocity vy. The equation of motion simply
reads

m{ = —F,((, (0, (M
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Fig. 3. (a) Sketch of the rigid impacting section and definition of the principal parameters. (b) Photograph of the front
view of the wedge entering the free surface. Ideal contact surface, free surface and wedge sides. (c) Sketch of the ideal
elastic oscillator plunging the water surface and definition of the principal parameters.
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where Fj, and { are the hydrodynamic force (per unit length) and the depth (positive downward),
respectively.

First, a suitable form of the hydrodynamic force F,((, C, ) is obtained.

The problem of the impact looking at Figs. 3(a) and (b) is analyzed. The wedge is dropping
along the z-axis (origin at the water plane), the x-axis lies on the water plane and the y-axis is
orthogonal to the plane of the figure. Along this last direction the edge is supposed to have an
infinite length. Moreover, the problem is symmetrical with respect to the z-axis and in addition the
deadrise angle f is assumed to be small.

Two characteristic surfaces can be identified, the free water surface Sg and the water—body
interface Sg. The formulation of the hydrodynamic problem follows the linearized
Wagner approach [2]. In the pressure terms, derived by the Bernoulli equation, the
non-linear contribution related to the squared velocity is in fact neglected. The kinematic
conditions are also linearized, accounting for small perturbations of the surface Sg around
the initial unperturbed configuration z = 0. The linearization finally allows the reduction
of the contact surface to the segment [—c,c] (see Figs. 3(a) and (b)), consistently with the
hypothesis of f small.

However, in the present analysis, the Wagner model is generalized considering the variability of
the wedge velocity during the impact [15,16]. Thus this model accounts for Eq. (1), being ignored
in the original Wagner formulation. In fact, this is a crucial point to model the shock nature of the
hydrodynamic force. To make the paper self-contained, some elements of the original Wagner
theory are illustrated here.

When the fluid is supposed to be inviscid and an irrotational flow is assumed, a velocity
potential ¢(x, z, t) can be introduced, satisfying the well-known Laplace equation in the x, z plane.

The Laplace equation usually needs boundary values on the potential or on its normal
derivatives, as in the classical problems of Dirichlet and Neumann, respectively. However, the
present problem has moving boundaries: Sg is freely moving, while Sg is moving due to the side
wedge kinematic constraint. Therefore additional unknowns, describing the surface configura-
tions, must be introduced. Sg and Sy are described by the Cartesian equations z = 5(x, t) and
z = |x[tan f§ — {(¥), respectively, being n and { the two further mentioned unknowns. Thus to solve
the Laplace equation in the fluid domain, two additional equations are needed in terms of #, { and
¢, besides the usual Neumann and Dirichlet conditions.

Moreover, the problem obeys the following initial conditions:

¢(x,0,0)=0, ¢=(x,0,00=0, (0)=0, 0)=uvo. (2)

A zero pressure value is imposed on the free surface Sg thus: p(x,#, f) = 0, that, when using a

linearized Bernoulli equation, leads to d¢(x,#,)/0t = 0. By using the initial conditions (2), this
last equation becomes

d(x,n,1) =0, )

that is a Dirichlet condition. However the surface z = 5(x, f) on which this condition must be
applied is unknown. A kinematic condition relating ¢ and z = #(x, f) can be obtained in linearized
form [19]

on(x, 1) _ 0P(x,0,1)

ot oz @)
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Now consider the boundary Sg. The kinematic constraint on the wedge sides implies the
following linearized relationship:

op(x,0,1) _

2ol - ¢ )

that is a Neumann condition. However {(¢) is unknown and must be determined by using the
wedge equation of motion (1). In fact, the hydrodynamic force appearing in Eq. (1) is given by the
integral of the pressure p over the water—body interface segment:

&&&@ZZPWQWMZ_[p%%#QM

c c

Therefore, the sought additional relationship is obtained:

. ¢ Ag(x,0,
m{ = /_C'Oigb();t 9 dx. (6)

Egs. (3)—(6) are the four linearized boundary conditions associated with the Laplace equation
with moving boundaries that, together with the given initial conditions (2), allow the
determination of the set of unknowns represented by c(7), ¢(x, z, 1), {(¢) and #5(x, 7).

In order to solve the posed problem, consider a Wagner-based solution generalized to the case
in which the entry velocity is time dependent. Considering the analytic function

Flx+i2) = ¢ + i = —i6y/(x + i) — () - £z, 7)

its real part ¢ has the properties:
it is harmonic, i.e., satisfies the Laplace equation in the x, z plane;

0 for |x| > c(?), i.e., on Sp,
P(x,0,1) =
c(1y> —x2 for |x|<c(1), ie., on Sp,
x { for |x| > c(?), ie., on S
a¢ I b e F’
s — 2 _ 2
aZ(x, 0,1) = \/.x c(f)
—{ for |x|<c(?), ie., on Sp.

The boundary condition (5) is directly satisfied by this solution, as well as the boundary
condition (3) in the frame of a linearized analysis, i.e., corresponding to the surface z = 0 instead
of the actual one z = 5(x, ¢). To give explicit form to Eq. (6), first express the time derivative of

¢(x,0,7) on Sg:
0(x,0,1) t)
= Ve cfjﬁ

By substituting this result into Eq. (6), and integrating with respect to x, one has
ml = —mpc [Z_,’ c/2+ Cc] )

(8)
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A further equation relating ¢(¢) and {(¢) is determined by integrating Eq. (4) with respect to time
[2]. After some mathematics, it follows:
()
) =y—~ 10
o0 =y (10)
where y = nt/2.
Egs. (9) and (10) can be solved in terms of ¢(¢) and {(¢). By substituting Eq. (10) into Eq. (9) a
differential equation in terms of {(¢) alone is determined:
2 2
(1+ %AC ) mtan?f}
This equation admits a closed-form solution. Since the time 7 does not appear explicitly, the
variable substitution { = ({) is made, leading to the first order equation:

dy R S
dC‘HA‘p (1+140) 0

(11)

By separating the variables { and , the solution /({) is obtained as
Y= Lz,
2/4+0)
being Cy = 2vy/ A, when using the initial conditions (2). Thus, the previous equation becomes
d¢ 20
At~ @+ A2

(12)

that is again solved by separating the variables 7 and {, i.e.,
1
(0) = (A0 + 60, (13)
Vo

where the initial conditions (2) have been used. By inverting the previous relationship, one obtains
three roots: two of them are complex and conjugate, while the third is real and has the following

form:
1/3
5 (3v/ 4wy + /8 + 94743

7T JA
\/Z<3\/Zlvo +4/8+ 9Atzv§) 4

that provides the sought after result.

Once {(¢) is known, the time history of the hydrodynamic force is provided by Eq. (1).

In the original Wagner analysis, assuming ((¢) = vot, only the set of Egs. (3)—(5) is solved
leading to the simpler expression F, = (ny’*p/tan® B)vgt for the hydrodynamic force, that is a
monotonically increasing function of the time .

The mentioned characteristic value of the maximum hydrodynamic force F* and the time ¢*
at which it occurs, can be also estimated in closed form. Since { = (dy/d0)y, from Eq. (11)

(1) =
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one obtains
y ¢
= —Avv—=
TNy

and considering the equation of motion (1):

y ¢
Fy(O))=ml = —mAvgm. (14)
When solving the algebraic equation dF;,/d{ = 0, it follows
— A = <§)3 2 e, (15
6/ tanf
where (* is the depth at which the maximum occurs. Moreover, by using Eq. (13), one has
) = 16 | 2m tanﬁ,
15\ 5mpy vy

and
4 * = % U()l*.
Finally, simple mathematics leads to F*r* = 23 muy ~0.247mu.

Even though the determined equations could be directly employed to provide the shock
hydrodynamic force, a more general and even simpler result can be obtained by introducing a
suitable non-dimensional form of the hydrodynamic load, useful in the following. If Eq. (14) is
rewritten in terms of non-dimensional variables: 7 = t/¢*,{ = {/{*, F), = F;,/F*, the hydrody-
namic force takes the form below:

2 3~ 3 2 Q‘/3
Fi) = ﬁ TR {(n =
+2/b V2y/ Ql/3 V2y/5

O(f) = 3ai\/8 + (3al)’, a=/2y/51, bz%(%) . (16)

Eqgs. (16) show that the slamming force is invariant with respect to the impact parameters when
this particular non-dimensional form is chosen. This allows an analysis that is not case dependent.
Actually, a single time history of the hydrodynamic force is determined, being each possible
impact case determined by suitably scaling the force and time axes. The curve given by Eq. (16) is
represented in Fig. 4.

In the previous analysis y is constant. However, more accurate investigations of this point [20]
show that this is accurate only when the deadrise angle tends to zero. When the above assumption
does not strictly hold, a dependency of y on  must be assumed. In the following it is implicitly
considered y = y(f) assuming the correlation given in Ref. [15].

Some comments and comparisons with the method presented in Ref. [14] are needed. In fact in
that work, the analysis of the impact of a rigid body is made following the Vorus approach [10] to
describe the hydrodynamic load. The model, as mentioned in the introduction, retains non-linear
terms in the Bernoulli equations and includes two impact phases: chine dry and chine wet; this last
stage is not considered in the present investigation. However, in the frame of an analysis limited to
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Fig. 4. Non-dimensional time history of the hydrodynamic force.

the chine dry phase, the results are in satisfactory agreement with those obtained by experiments
(see Section 5) even by considering the simplified Wagner model. The advantage relies on the
closed-form results given by Egs. (16). In more depth, a direct comparison between the numerical
results in Ref. [14] and the equations obtained in the present work is possible. In Ref. [14] the
dimensionless parameters are introduced: o = m/pB? and § = {B/4gH; B is the wedge beam at the
chine and H is the drop height (vg = +/2¢gH). On the basis of numerical simulations it is argued in
Ref. [14] that when the mass is small the maximum acceleration is large. This result finds a strict
foundation (neglecting the buoyancy force) on the basis of Eq. (15): by substituting into it m =
apB? and Pax = CnaxB/4gH = F*B/4gHm, one has

L
tan f\ 10o

j}max = (2)3

disclosing the analytical dependence between the peak acceleration and the beam loading
parameters. It appears that J,,..(x) depends only on the deadrise angle p.

Finally in Ref. [14] the relationship between the non-dimensional time 7,,,, = vot*/(B/2),
corresponding to the maximum acceleration, and the beam loading « is numerically investigated
concluding that 7,,, increases when o increases. Eq. (16) provides a strict support to this
statement. After some mathematics 7,,,.(x) is determined as

3 1,2 tan B
e = () (§) Gr) v/
Again, it appears that 7,,,.(2) depends only on the deadrise angle.
Of course, these comparisons are valid in the limit of the chine dry condition that means
{<Btan f3/2.

2.2. Elastic response to the hydrodynamic shock

In the following two sections the response of an elastic system carried on-board the impacting
wedge is analyzed. In Section 2.2.1 a single-d.o.f. oscillator is considered, while in Section 2.2.2 the
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case of an elastic free—clamped beam is investigated. The second case is examined in view of a
better understanding of the experimental analysis presented in Section 4, where, for the sake of
simplicity of the experimental set up, the actual elastic system on board is realized by a variable
length beam.

2.2.1. The single-d.o.f. system response to the hydrodynamic shock

A simple system, consisting of two elastically coupled bodies of mass m; and m, is investigated
here. The lower one, a rigid wedge with mass m, directly impacts the water, while the upper is
suspended over the first one by a spring of stiffness k& (Fig. 3c).

Although this is an elementary structure, it can be investigated as a prototype system whose
behaviour reveals of important characteristics of the structural water shock response.

The equations of motion of the system are

mlg = _F}l(C: é: C) + F€(5):
my(C +0) = —F.(0),

where 0 is the relative displacement between the two masses and F,.(d) = k¢ is the elastic force due
to the spring. Since in the previous section the evaluation of the hydrodynamic force was
obtained, it is interesting to study under which conditions this force is almost independent of the
elastic force, i.e., when the motion of 1 is substantially independent of the motion of . In such
a case the hydrodynamic force analysis, developed in Section 2.1, is still valid.

A very simple criterion to identify when this hypothesis holds can be given. The maximum
elastic force in the spring should be much smaller than the maximum hydrodynamic force. The
former can be estimated by considering the limit case in which the whole impact kinetic energy

(17)

%mzv% of the suspended mass is completely converted into elastic energy %mzéz (corresponding to
consideration of an instantaneous stop of the wedge due to the impact). The latter force is

naturally estimated by F* given in Eq. (15). When the elastic force F, = |/myujk, evaluated with

the previous criterion, satisfies the condition F, < F*, the following inequality holds:
1 k
— tan? Bu—<1.
» PYy

Under this hypothesis the suspended mass behaves reasonably like a mass on a foundation that
receives a known shock acceleration of the form Fj(7)/m;. In this case system (17) reduces to the
simpler form

mlﬂC = —F(C, C,"C), (18)
o+ w2 = -,
being w, the natural frequency of the carried mass m, when m; is blocked. Thus the first equation
is independent of the second and it is solved as shown in Section 2.1. Once the depth { of the
wedge is determined, the second equation can be solved, being { a known force term.
Now examine the problem of finding a critical value of the stiffness &, i.e., the value that leads
to the maximum amplitude of the spring elastic force, once all the other impact parameters are
given. The maximum of this last quantity also corresponds to the maximum of the absolute
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acceleration of the carried mass, since elastic force and absolute acceleration are obviously
proportional.

Since the hydrodynamic force has a pulse nature and the maximum elastic force response of the
system is of interest, the shock spectrum technique can be profitably used. The following analyzes
this point in detail.

Using the equation of motion, the response of the carried mass is described by the convolution
integral as

5(f) = — /0 té’(r)wisin wu(t — 1) d1.

The interest of this study is to evaluate the residual elastic response, i.e., the response for large
values of ¢. Since the hydrodynamic force has a transient nature, for ¢ large the hydrodynamic
force is almost zero. This means

&)—»0 for t— 0.

In practice, this condition holds for > 8-10¢*. After this time the carried mass behaves as a
freely oscillating system whose residual motion can be described by (f) = Aes sin (w,f + V),
where A is the amplitude of the residual elastic vibration and s a suitable phase angle. Under
the hypothesis t— oo, the previous convolution integral becomes:

o, 1
Aves SIn (wut + ) = —/ C(r)w—sin wy,(t — 1)dr,

where the lower integral limit 7 =0 is replaced by 7 = — oo, because for 7<0, the wedge has a
uniform motion characterized by {(r) = 0. By using the previous relationship and its time
derivative, the following complex equation is easily obtained:

. 1 [© . .
e G
On J_ o

providing the vibration response A.se" (amplitude and phase) of the carried mass. Thus the
complex elastic force is

Fose = kAo = —mrm,, /OO {(r)e 1 dr.
The integral on the right side is the Fourier transform F of the wedge acceleration during the
impact, being its argument equal to the circular natural frequency of the elastic system, i.e.,
Freg(n) = mon|[F{{} o, |
or by introducing the hydrodynamic force
Fres(wn) = poon|F{Fp}lo0,], (19)

Looking at the dependency of the force on w,, critical impact conditions can be defined on the

basis of a relative maximum in the previous function, i.e.,

diF (o)
dw,

Thus the critical natural frequency of the elastic system is the solution of the previous equation.

@n|F(wn)| + 0.
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By using the non-dimensional variables 7, and Fj, introduced in Section 2.1 combined with
Eq. (19), one obtains

Fres((ﬁn) = ,Ud)n ) i-e-,ﬁres(d)n) = Nd)n|F{Fh(f)}|a~) = d)l (20)

0 ~ o~ o~
/ Fy(®)e 1 dz

o0

It is apparent by Eqs. (16) that F,(7) is a function of 7 only and that its Fourier transform,
appearing in Eq. (20), is just a function of @,. Thus, it can be concluded that, whatever the
physical parameters of the impact problem, the intensity of the elastic residual force is only
function of @, and u. Moreover, this functional dependency is easily determined by simply
computing the Fourier transform of F,(7) given by Eq. (16), i.e., by evaluating the function
F{F;(%)} that can be determined, irrespectively of the particular analysed impact case.

As a consequence, all the possible elastic residual forces can be represented by a simple family
of curves having their relative maximum at the same dimensionless frequency, being the maximum
amplitude proportional to u. More simply, the single function Fye(d,)/u is represented versus the
non dimensional frequency f, = f,* = w,t* /2m. This curve, represented in Fig. 5 (dotted line), is
the residual shock spectrum of the elastic force (or, equivalently, the residual shock spectrum of
the absolute acceleration of the carried mass). The actual elastic force can be determined by
multiplying the residual force by the maximum hydrodynamic force F* and by the mass factor
u = my/m;. By direct inspection of the shock spectrum curve, it appears that the relative
maximum occurs at f,~0.2 and, hence, the critical frequency can be estimated as

J;Cf = (fnt*)cr ~0.2.

Although simplification hypotheses are introduced, this is a general result. In fact, since * has
been determined analytically in Section 2.1, a simple and effective expression holds:

. 3 [Smpy v
er X — 21
/ 16V 2m; tan f§ @l

providing the critical natural frequency—and also the desired value of the critical stiffness k—of
the carried elastic system when all the impact parameters are given. Looking at Fig. 5, it appears

2
f=0.34 Overall
15 —_
; T~
g 41 /) f=0.2 |~ Residual
@ / ~
% / S
2 ~
» / N
05t / ~—
/
0
0 02 0.4 06 08 1

Non Dimensional Frequency

Fig. 5. Non-dimensional residual and overall shock spectra.
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that, corresponding to this frequency, the amplitude of the elastic force has the maximum residual

value:
5\° 02 21
F~1. F*=1. - O /== oy2my. 22
3u 3u<6>tanﬁ\/spvml (22)

It should be added that the asymptotic residual response does not necessarily provide the
maximum vibrational amplitude of the system during the transient excitation, but only the
asymptotic one. To this aim the overall shock spectrum must be determined. This requires
the direct evaluation of the absolute maximum of the elastic response. The solution of the second
of Egs. (18), since 6(0) = 0, (0) = 0, is simply expressed by using the Fourier transform

Fol = o 0=y [ e,

2 2n)_, wl—o?

n

By introducing the previously defined non-dimensional quantities, after simple mathematics,

the dimensionless elastic force F, = —kd/F* is obtained:
+o0 ” .
FAif) = / _Fh o g7 (23a)
—oo (L= (f/fn)]

Even in this case a single characteristic curve is determined, able to deal with any impact
condition. Thus, the slamming overall shock spectrum is determined as

max{F.(7,f,)}, 0<t<oo. (23b)

Again the actual elastic force is determined as a function of the amplitude factor F*u. This
characteristic function has been evaluated and plotted in Fig. 5. Its relative maximum
corresponds to

f~Cr = (fnl*)cr = 034>
and the maximum amplitude of the overall elastic force is
Four 1.8uF*.

Egs. (20)—(23b) represent the central theoretical result of this paper.

It is apparent that both the maximum residual and overall elastic forces have the same order of
magnitude as the hydrodynamic one, when the mass factor u is of unit order of magnitude, being
Fres~ 1 3uF*, Foy ~ 1.8uF™*. Since the initial assumption requires F), > F,, the developed analysis is
valid under the assumption that y is small.

A final remark concerns the presence of damping in the carried oscillator that has not been
considered in the previous analysis. This point has a certain importance since, in practice,
damping is always present, as in the experiments that will be presented later to validate the
theoretical analysis. While damping does not affect significantly the overall response of the
system, simply leading to a weak reduction of the predicted maximum peak (at least for small
damping), this must be explicitly considered when dealing with the residual response. Since
damping implies indeed an exponential reduction of the response amplitude, the concept of the
residual response, intended as the stationary amplitude vibration after the load vanishes, becomes
meaningless.
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In this case the residual force—obtained for 7 large—is a decaying signal Fese % e, where the
coefficient y accounts for the dissipation effects. Thus the force amplitude is not constant
anymore. Nevertheless, to obtain a significant estimate of the system’s excitation due to the
external shock, the new quantity can be considered:

1 T+AT
R=-_ / Fres()lds, (24)
T

AT
providing a measure of the average elastic force generated by the shock over a given time interval
AT once its energy vanishes (i.e., T~8-10¢*). On this basis, the previous procedure modifies
slightly. The residual response is now

Arese ™ sin (wnt + ),
leading to the elastic force in complex form:
Fres(t) = Frese_xtejwntejl// = kArese_Xrejw"tejl//.

Therefore, the sought integral is
T+AT —1T(1 _ a—)AT
R= [ Falar = S

T AAT
The last term Fies(w,,) = kA, 1s the residual amplitude force in absence of damping, i.¢., it can be
calculated as in Eq. (19). The obtained result shows that in presence of damping, by using
definition (24), the correction factor e %7 (1 — e #AT) /yAT must be introduced. This term depends,
in general, on the frequency (actually y is frequency dependent) affecting the trend of the residual
shock spectrum Fies(w,) = kA.s. However, at least assuming y linearly dependent on the
frequency (viscous damping), the correction factor introduces in the shock spectrum, besides an
obvious reduction of the amplitude, a decreasing trend as the frequency increases: this produces a
shifting of the shock spectrum peak towards the low frequencies. Thus, at least for light damping,
a small reduction of the critical frequency, in comparison with that given by Eq. (21), is expected

and Eq. (21) can be considered a good approximation of the desired results.

The numerical analysis proposed in Ref. [14] suggests that an appropriate selection of the mass/
stiffness parameters allows a reduction of the suspended body acceleration. In the present work
the problem of the general relationship between the body acceleration and mass/stiffness
parameters finds a closed form solution expressed by Eqgs. (20)—(23b). However, it is important to
recall that this is possible under the following hypotheses: (i) chine wet conditions are not reached;
(i1) the elastic force is small compared with the hydrodynamic one; (iii) the mass ratio p is small. In
Ref. [14] the numerical simulations refer to the values g = 1 and 10 that fall outside the admissible
range for u considered in the present paper: thus for this case direct comparisons are not possible.

kAres.

2.2.2. The beam response to the hydrodynamic shock

For the sake of simplicity in the experimental realization, the elastic system on board is a simple
free—clamped beam (see Section 4). In the previous section the absolute acceleration of the carried
mass—that is equal to the elastic force—has been investigated. Analogously, the absolute
acceleration response «(t) of the beam end is considered. The maximum value of a(¢), and the
natural frequency of the beam leading to this critical impact condition, is predicted by a shock-
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spectrum approach similar to that presented in the previous section. The main difference with
respect to the simpler single-d.o.f. model, is that the actual beam structure responds, in general,
with an infinite number of modes. Moreover the beam’s natural frequencies are modified by
varying its length, i.e., its total mass. Thus, a specific analysis of the beam’s shock spectrum
response is necessary.

Although a residual shock analysis could be developed accounting for the complete modal
expansion [15], more complex analysis is not necessary, because even the single-mode
approximation leads to a satisfactory agreement with the experimental measurements.

Considering only the first mode response w(x, t) = ¢,(x)q;(¢) of the beam, one has

4 2
BN = ps (6—% c) ~  EI$ g = —pS($1d1 + ), (25)
X ot

where ¢, q1, wu, p, S, E, I are the first mode shape, the Lagrangian co-ordinate, the first
natural frequency, the mass density, the cross sectional area, Young’s modulus and the moment of
inertia of the beam, respectively.

For convenience let ¢(x) = I'g(¢), where §(¢) is the dimensionless mode shape function and
& = x/I; since ¢,(x) satisfies an orthonormality condition, it follows

1 1
r= . (26)
VST [ (&) de
Moreover the mode §(&) satisfies the equation
d'g .,
—2 =%, 27
e 7] (27)

where, for the clamped—free beam, /4 = 1.875. The absolute acceleration a(¢) at the beam’s end is
a(t) = ¢, (D (1) + (o).

Thus, by combining Egs. (25) and (27), one obtains
a(t) = —g(Hap, Tqi (D). (28)

This demonstrates that the absolute acceleration at the beam’s end is proportional to the
Lagrangian co-ordinate.
First evaluate the residual response a.s. The Lagrangian co-ordinate satisfies the equation

/
G0+ X)) = 0, = —pS /0 ¢, dxt, (29)

that is formally equivalent to Eq. (18), o + w?d = —{, except for the value of the appearing
coefficient on the right side. In fact, in this case, the forcing term depends on the beam length /,
i.e., on the beam’s first natural frequency. Following an analysis identical to that shown in Section
2.2.1, one obtains

t— 00, Q1(f) = qresejwnltew/:

Il .
[F{CH e, »
Wnp1

qlres(wnl) = -
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where ¢jes(;,1) 1s the residual value of the Lagrangian co-ordinate and  a suitable phase angle.
On the basis of the last equation and of Eq. (28), the beam’s end residual acceleration is

1~
XA

Jo 7 d¢
that is identical to expression (19) when replacing the dimensionless factor p with the
dimensionless factor g(1)I'TI, that depends only on the chosen boundary conditions (free—
clamped), while it is at all independent of the beam’s natural frequency. Therefore, also in this
case, the maximum of a. is predicted at fo = (f,*),~0.2. It is remarked how the same

conclusion is drawn for the residual relative acceleration vi(/, ). In fact, since th; residual response
by definition is obtained when the exciting force vanishes, i.e., for F e, = m{es 0, it follows:

a([) = 1'4'1(1, t) + C(Z) - ares(wnl) = Wres(l: CUnl)-

Now analyze the overall response. The solution of Eq. (29), considering the initial conditions
¢1(0) =0, ¢1(0) =0, is obtained by the Fourier transform technique:

ares(wnl) = g(l)rna)n”l:{é.}”w:wnla i (30)

F{{} 1 /*” F{}
F =-—-I—— 1)=—I1— ———“"dw.
g1} 2 - q1(1) ) . @ —a @
When using Eq. (28), the overall shock spectrum of a is
- L FG .
a(t) = g(HIT — 0, 5% do, max{a()} 0<r< 0. (31)
2n) "ol —o?

These last expressions, turned to a dimensionless form, are identical to Egs. (23a) and (23b)
where u is substituted by g(1)I'11. Thus, also for the beam’s case, the overall acceleration response
is expected at fo = (f,t*)., = 0.34.

Finally, the presence of damping is dealt by Eq. (24) where the force is replaced by the absolute
acceleration.

3. Design of the experimental set up

An experimental apparatus was designed to perform slamming tests and to validate the
theoretical results shown in the previous sections.

The tests are aimed to measure the time history of the hydrodynamic force on the wedge and
the response of the elastic system on board. Moreover the experimental reproduction of the
residual and overall shock curves, given by the shock spectrum approach, is performed.

The theoretical model so far considered in Section 2.1 is based on the following main
assumptions:

(a) the fluid is incompressible and inviscid, the flow irrotational and the free surface is initially at
rest; no air entrapping effects are included in the theory;

(b) the wedge is assumed infinite along the y-axis (3D effects are not included in the theory);

(¢) the fluid domain is infinite along both x- and y-axis and an infinite depth is assumed;

(d) the problem is symmetrical with respect to the zy plane.
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The experimental set up was designed with the aim of meeting as closely as possible the
conditions mentioned.

Concerning point (a), the experiments are performed in still water that behaves incompressibly
at least for a deadrise angle which is not too small [21]. Moreover, the deadrise angle must be large
enough also to limit air entrapping effects and dangerous stress in the impacting structure. On the
other hand, the linearization of the body boundary conditions (Section 2.1) and the substitution
of the actual contact surface with the segment [—c, ¢], implies that the deadrise angle must be
small.

The choice of an angle 5 = 30° (see Fig. 3(b)) used in the experimental tests, is a compromise
between these opposite requirements.

To avoid three-dimensional effects mentioned in (b), some preliminary considerations about the
characteristic sizes of the impacting body are needed. The basic requirement is the design of a
wedge that can be considered almost infinite in the direction y parallel to the keel. This condition
is satisfied in practice when the ratio between the characteristic wetted lengths L and ¢(¢) of the
wedge along y and x, respectively, is large enough. It is shown in Ref. [16] that a ratio L/c(f) > 3
reduces largely undesired three-dimensional effects. This consideration is used for a correct choice
of the wedge length L. In fact, by considering expression (10) of ¢(¢) in correspondence of the
characteristic time ¥, i.e., c(r*) = y{* /tan f = \/2m/(5npy), it is possible to estimate the ratio
L/c(f) when the maximum hydrodynamic force is reached. While the force is independent of the
entry velocity, it depends on the mass per unit length of the wedge, m = 45 kg/m in the
experimental configuration. It follows that when the keel length is L = 160 cm, the ratio L/c(¢*) is
about 25. If the analysis is performed for a longer time, e.g., the time needed for the
hydrodynamic force to vanish (z > 8-107*), the length ratio goes down till a value of about 5.

About point (c), the experiments are performed in a towing tank with depth and width 3.5 and
12 m, respectively, and the side of the wedge is 2 m from by the tank wall. This configuration
allows the avoidance of significant surface wave reflections, at least in the time interval during
which the impact phenomenon is observed. Moreover with a depth of 3.5 m any disturbance effect
due to the tank floor is negligible.

The symmetry requirement (d), suggests the guidance of the wedge during the falling run by a
pair of rails. In fact, it is difficult to obtain a sharp trim control using a free falling device. This is
mainly due to the wedge release phase that can induce non-zero pitch and roll angles leading to a
non symmetrical impact. However, the guide rails can also introduce some errors on the measured
hydrodynamic force. Part is related to kinematic errors, due to the rail positioning and clearances
that can affect the roll and the pitch angles, part to dynamic effects due to the presence of rail
reactions.

The designed rig has a maximum vertical run of 3 m so that the wedge, made of wood, attached
to a supporting bar, can fall from variable heights leading to different entry velocities. The
maximum value of the entry velocity is related to the maximum acceleration, which in order to
keep the integrity of the structure and the instruments, cannot be higher than 25-30 g. The drop
height range used in the experiments is 0.25<Ah<2 m, roughly corresponding to an impact
velocity range 1.5<vy<5 m/s. In Fig. 6 the picture of the experimental apparatus is shown, and a
view of an impact is given in Figs. 1 and 2.

The design of the elastic structure on board is now discussed. The elastic system consists of a
clamped—free beam, where the clamped end is attached to the wedge. The shock spectral analysis
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Fig. 6. View of the experimental facility; the supporting frame and the wedge running on vertical rails.

Fig. 7. View of the elastic beam mounted on board of the wedge (note on the left the accelerometer attached to the
wedge).

needs to investigate the response of the elastic system when varying its natural frequency. Thus the
beam clamp is realized by a vice, so that the beam’s length can be varied (see Fig. 7) and the first
natural frequency of the beam can be modified within a suitable range.
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Looking at Fig. 5, the overall experiments must follow the trend of the shock spectrum curves
about the critical values of the non-dimensional frequency 0.34. Actually a non-dimensional
frequency range 0.05-0.8 has been selected for the experimental investigation. This implies that
0.05<f= f,r* <0.8. Given a characteristic time * = 0.024, corresponding to the test condition
mass = 46 kg/m, vp = 2.2 m/s, f =30° the first natural frequency of the beam must be
3.65 Hz<f = f,11*<73.5 Hz.

Finally, for the residual shock spectrum, the critical non-dimensional frequency is 0.24 and the
non-dimensional frequency range 0.0876-0.66 was investigated. The corresponding range for the
beam natural frequency is 5.2<f, <27.5 Hz. The analysis of the residual response is more difficult
compared with the overall response. In fact, as shown in Section 2.2, the residual response is more
sensitive to damping effects. When using an accelerometer to measure the beam end acceleration,

Laser vibrometer signal

Accelerometer signals

—

Fig. 8. Schematic of the experimental set up: (a) vibrometer laser head, at rest on the supporting frame—residual
response measurements; (b) view of the on board measurement set up al, accelerometer n.1, attached to the wedge
structure—hydrodynamic force measurement—a2, accelerometer n.2, attached to beam’s end—mounted only for
overall response measurements; (c) conditioning and acquisition signal station.
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the presence of the wire introduces a disturbance in the beam motion appearing essentially as a
heavy increase of damping. Moreover this disturbance depends largely on the way the wire is
fitted with respect to the beam (freely floating or attached to the beam itself). For these reasons a
laser vibrometer has been preferred to realize a non-intrusive measure of the elastic residual
response (see Fig. 8).

4. Experimental results

In the present section the results of the experimental tests are illustrated. More precisely, two
different sets of measurements are performed. In Section 4.1 the analysis of the rigid-body motion
of the wedge is considered focusing on the hydrodynamic force time history and its characteristic
parameters F* and r*. On the other hand, the response of the elastic beam on board is
investigated by a laser vibrometer technique. The analysis of both the residual and overall
acceleration response is performed by comparing the results with those given in Section 2.2.

4.1. Rigid-body impact

A systematic series of tests was performed to measure the time history of the hydrodynamic
force (special attention is addressed to F* and r*) and to compare the results with those given in
Section 2.1.

The test height, varying between 0.25 and 2.00 m, is chosen in order to explore the velocity
range between 1.5 and 5 m/s. The wedge is equipped with an accelerometer (see Table 1) that
simply provides the hydrodynamic force accordingly with Eq. (1). To keep the actual value of the
entry velocity, an integration of the free falling acceleration signal is performed.

The time history of the experimental acceleration signal is shown in Fig. 9(a) for the mass value
m = 46.8 kg/m and impact velocities of 1.5, 3 and 5 m/s, respectively. The same measurements
(Fig. 9(b)) have been performed with a wedge mass equal to 62.5 kg/m. The theoretical curves
given in Section 2.1, correspond very satisfactorily with the experimental trend all along the
impact stage, although some differences must be outlined and explained. For purpose of

Table 1

Experimental values of F* and r* for different entry velocities

Mass = 75 kg

Height (m) Vo (m/s) t* (s) F* (N)
0.14 1.650 0.0302 1000.5
0.25 2.129 0.0253 1772
0.39 2.62 0.0206 2742.6
0.56 3.11 0.0158 3899
0.77 3.61 0.0124 5332.1
1.00 4.09 0.0122 6890.2
1.26 4.62 0.0111 8570.8

1.56 5.07 0.0085 10622.1
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Fig. 9. Experimental time histories of the hydrodynamic forces for different entry velocities: (a) mass = 75 kg;
(b) mass = 100 kg.

illustration in Fig. 10(a) and (b) the experimental time history of the hydrodynamic force is
compared with the theoretical prediction given in Section 2.1.

Looking at the previous results, a first comment concerns the high-frequency disturbance
superimposed on the rigid-body acceleration. In fact, the wedge does not behave as a perfect rigid
body, as it is considered in the theoretical model, and responds with elastic vibrations when it is
excited by the violent impact on the water, thus polluting the measurement signals. However,
vibration noise is also observed in the first part of the signal before the water impact. This is in
part due to the sudden removal of the wedge constraints thus exciting its vibration response.
Moreover, during the free falling run, rail reactions, wheel-rail clearances and geometrical
misalignments lead to excitation forces causing wedge vibrations. However, the frequency range
of the mentioned disturbances is much higher than the frequency spectrum of the hydrodynamic
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Fig. 10. Comparison between the theoretical and experimental results. (a) Vo = 1.5 m/s, mass = 75 kg; (b) Vo =
3.5 m/s, mass = 75 kg; — experimental; ---- theoretical.

force, allowing an effective separation between the rigid-body acceleration and that due to elastic
vibrations.

Looking at the amplitude of the experimental maximum force, it is observed that it is always
slightly lower than that expected by the theory. This fact is quite reasonable if the hypotheses of
the theoretical model are kept in mind. In fact, although 3D effects have been reduced with the
actual choice of the wedge sizes, as clarified in the previous section, they are not included in the
theory so that some influence on the experimental measurements is expected because of the finite
length of the wedge. Moreover, part of the energy given to the fluid is converted into propagating
waves travelling along the water surface, while part is released to the water as a jet rising up along
the wedge sides (Figs. 1 and 2) and, finally, part is elastically stored in the wedge and converted
into elastic vibrations. All these effects are not modelled in Section 2.1.
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Table 2

Experimental values of F* and ¢* for different entry velocities

Mass = 100 kg

Height (m) Vo (m/s) * (s) F* (N)
0.14 1.660 0.0428 1138.4
0.25 2.140 0.0290 2054.2
0.39 2.670 0.0223 3193.3
0.56 3.140 0.0207 4660.3
0.77 3.670 0.0159 6313.0
1.00 4.20 0.0153 8051.5
1.26 4.74 0.0126 10100
1.56 5.25 0.0099 12268.1

A final remark concerns the later part of the curves that is affected by a low-frequency
disturbance; it is easily verified that this slow oscillation is due to the buoyancy force. This effect is
more evident when the impact velocity is smaller (1.5 m/s) but it is negligible for the higher
velocity (5 m/s) since, in this case, the hydrodynamic force is much higher with respect to the
buoyancy force. In Tables 1 and 2, the experimental values of the entry velocity, the characteristic
time 7* and the peak of the hydrodynamic force F* are given for the cases mass = 75 and 100 kg,
respectively. These values are obtained by filtering the vibration pollution in the force time history
and averaging the results obtained over a repeated sequence of 10 tests for each height.

The dependency of F* and * on vy and m can be investigated collecting the results of Tables 1
and 2 in Figs. 11(a) and (b). Both of them have the actual entry velocity on the x-axis, while on the
vertical axis F* and r* are given in Figs. 11(a) and (b), respectively. In the same graphs the
theoretical values of F* and r* are also represented. A good agreement between theory and
experiments is found. However, some differences arise and, more precisely, the theoretical
estimate of F™* is slightly higher than the experimental value, while the experimental r* slightly
exceeds the theoretical prediction. The previously mentioned arguments provide an explanation
about the discrepancy for F*. Moreover, since F** ~0.247mv, should be invariant (see Section
2.1), it is reasonably expected that when F* is overestimated, then ¢* is underestimated.

4.2. Overall and residual responses of the elastic system

As mentioned in Sections 2.2.2 and in 3, the elastic structure actually placed on board consists
of a variable length aluminum beam. In Table 3 the measured values of the overall absolute
acceleration spectrum, obtained by the experiments performed on the carried beam, are
summarized providing the maximum measured peak of the acceleration (averaged over a set of
five runs) and the first natural frequency of the beam (experimentally identified). In Fig. 12, the
overall shock spectrum, determined on the basis of Table 3, is shown as a function of the first
natural frequency of the beam. A harmonic modulation of the shock spectrum appears. This
effect is simply explained by the following consideration. In the experimental tests the wedge
experiences a free run before impacting the water. This means that the hydrodynamic force starts
after a delay interval corresponding to the falling time 7y = /25 /g, implying a time shift of the



A. Carcaterra, E. Ciappi | Journal of Sound and Vibration 271 (2004) 411-439 435

18000

16000

14000

12000

10000

F*[N]

8000

6000

4000

2000

O[TT T[T [T T[T T[T T T[T T[T T T[T T rrrT

0
1 25 35 4.5 55
(a) Vo[ mis]

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

t'[s]
IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

0.005"""""""""'
1. 25 35 4.5 55

(b) Vo[ m/s]

Fig. 11. (a) Comparison between the theoretical and experimental dependency of F* on Vj; A experimental mass =

75 kg; —— theoretical mass = 75 kg; B experimental mass = 100 kg; - - - theoretical mass = 100 kg. (b) Comparison
between the theoretical and experimental dependency of * on V,; A experimental mass = 75 kg; —— theoretical
mass = 75 kg; B experimental mass = 100 kg; - - - theoretical mass = 100 kg.

force waveform. This affects the shape of the shock spectrum, because the Fourier transform of
the force presents a harmonic modulation with periodicity 2m/¢y. This effect is simply introduced
in the theoretical model (both for the overall and residual spectrum) by replacing F(7) with
Fy(i — 1y), where 7y = to/1*.

The maximum of the experimental overall spectrum is found at f, = 14 Hz. In the same figure
the comparison with the theoretical overall shock spectrum (Section 2.2) is given, showing a good
agreement and an almost total super};)osition over the whole considered frequency range. The
largest amplitude difference, 94.3 m/s” vs 80.5 m/ sz, corresponds to the relative maximum, but
the critical corresponding frequencies are very close: 14 Hz for the experimental measurements
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Table 3
Overall and residual acceleration functions of the first natural frequency of the beam
Jat oy (m/sz) It oy (m/sz)
Overall acceleration
3.50 53.33 24.55 68.82
4.88 55.33 26.80 64.18
6.71 68.05 28.39 70.28
8.25 56.86 28.86 69.30
9.45 78.64 31.30 62.26
11.00 71.80 31.74 68.00
11.85 64.05 34.50 61.56
12.82 86.69 35.69 58.65
14.0 94.27 39.41 55.65
15.25 64.87 41.00 47.39
17.10 77.61 43.65 53.16
17.70 83.00 47.29 47.88
19.65 64.52 56.32 45.13
20.60 73.35 73.51 43.40
fnlsp res (m/sz) inlsp Ares (m/s2)
Residual acceleration
3.65 9.67 14.19 17.52
4.12 8.12 15.1 7.71
4.27 9.37 16.30 11.75
5.20 18.24 17.82 14.67
6.87 19 18.75 10.94
8.09 13.5 20.1 8.33
10.22 19.13 22.85 8.8
11.13 9.58 25.3 5.52
12.50 16.19 27.45 3.6

versus 13.3 Hz by using Eq. (31). These frequencies correspond to the dimensionless values 0.358
and 0.34, respectively, confirming the theoretical prediction of Section 2.2.2.

In Table 3 the measured values of the residual acceleration spectrum, following definition (24),
are given together with the values of the corresponding natural frequency of the beam. The
characteristic time appearing in Eq. (24) is T ~ 50¢* ~ 1.25 s, while the time interval is AT ~5 s. In
Fig. 13 the experimental curve corresponding to R given in Eq. (24) is plotted. Also in this case the
frequency modulation due to the hydrodynamic time shift #, is apparent. In this case the
comparison with the theoretical spectrum is not performed because, as has been explained in
Section 2, the shape of the spectrum is affected by the dependency of the damping on frequency.
As is well known, a procedure of damping identification is long and difficult, ultimately providing
uncertain results. Thus, the analysis is addressed to validate the prediction of the critical
frequency, i.e., the location of the maximum of the shock spectrum, rather than the evaluation of
the actual amplitude.

The absolute maximum of the oscillating curve is found at 10.22 Hz, while the theoretical
prediction provides, in absence of damping, 8.26 Hz corresponding to the dimensionless value 0.2.
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However, looking at Fig. 12 and Table 3, it is apparent that the peak at 6.87 Hz is very close to the
previous one, 19 m/ s> vs 19.13 m/ s%, the difference ranging in the interval of the possible
experimental errors. Moreover the frequency modulation effect may hide the exact location of the
maximum. Thus, also looking at the trend exhibited in Fig. 12, the peak frequency of the spectrum
can be reasonably estimated belonging to the interval 6.87—10.22 Hz. This is in good agreement
with the value 8.26 Hz, provided by the theoretical prediction.
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5. Conclusions

In this paper the impact of a freely falling wedge on the water surface is investigated. A first
contribution of the paper centres around the development of a model taking into account the
modification of the entry velocity of the wedge during the impact. In fact, the sudden deceleration
of the wedge leads to a vanishing hydrodynamic force, after a sharp peak value at the early impact
stage is reached. Two key parameters in the phenomenon have been identified: the rising time of
the hydrodynamic force and the characteristic maximum of it. Their theoretical evaluation is
provided by simple algebraic expressions in terms of the fundamental impact parameters, such as
the wedge mass, the initial entry velocity and the deadrise angle. This dependency has been
experimentally validated showing a fairly good agreement with the theoretical results.

The second contribution of the paper is concerned with the response of an elastic structure
carried on-board the wedge. The impulsive behaviour of the hydrodynamic force is used to
develop a model of the elastic response based on an effective tool such as the shock spectrum. By a
suitable combination of the hydrodynamic model and the shock spectrum analysis, the chance of
a simple a priori estimate of the worst suspension stiffness for a given mass on board is provided.
Corresponding to this value, the oscillations of the carried mass due to the impact of the wedge
lead to the most severe elastic force response.

The actual existence of such a “critical” phenomenon has been proven experimentally by a
systematic set of tests performed on a clamped—free beam with variable length, mounted on the
impacting wedge. The experimental results reveal that the maximum acceleration response of the
beam occurs corresponding to a particular beam frequency (or length), very close to that
predicted by the theoretical model.
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