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Abstract

The paper addresses wave motions in an unbounded sandwich plate with and without heavy fluid loading
in a plane problem formulation. A sandwich plate is composed of two identical isotropic skin plies and an
isotropic core ply. Several alternative theories for stationary dynamics of such a plate or a beam are
derived, including a formulation in the framework of a theory of elasticity applied for a core ply. ‘In-phase’
and ‘anti-phase’ wave motions (with respect to transverse deflections of skins) of a sandwich beam are
analyzed independently of each other. Dispersion curves obtained by the use of ‘elementary’ theories are
compared with those obtained by the use of an ‘exact’ theory (which involves the theory of elasticity in a
description of wave motion in a core ply) for a plate without fluid loading. It is shown that these simplified
models are capable of giving a complete and accurate description of all propagating waves in not too high-
frequency range, which is sufficient in practical naval and aerospace engineering. In the case of heavy fluid
loading, similar analysis is performed for ‘anti-phase’ wave motions of a beam. Two simplified theories as
well as an ‘exact’ one are extended to capture fluid loading effects. A good agreement between results
obtained in ‘elementary’ and ‘exact’ problem formulations is demonstrated. The role of fluid’s
compressibility in the generation of propagating waves in a sandwich plate is explored. It is shown that,
whereas analysis of wave motions in the case of an incompressible fluid predicts an existence of two
propagating waves, only one such wave exists when a fluid is sufficiently compressible. The threshold
magnitude of the ratio of a sound speed in an acoustic medium to a sound speed in a skin’s material is
found, which separates these two regimes of wave motions for a given set of parameters of sandwich plate
composition.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Sandwich plates and shells are widely used in many technical applications, e.g., naval
architecture, aerospace or chemical industries, etc. because this composition of a thin-walled
structure conveniently combines the properties of a high strength and a low weight. The
issues of strength and reliability of such structures have been thoroughly studied in many
publications, see, for example Refs. [1,2]. The stability and dynamics of sandwich beams and
plates have also been explored in recent publications [3–10]. Since naval sandwich structures
are typically exposed to heavy fluid loading, wave propagation and vibrations of sandwich
plates in contact with fluid (either at rest or with a mean flow) have been analyzed in the papers
[7,9,10].
As discussed in Ref. [10], there are two possibilities to describe dynamics of sandwich

plates. Equations of motions of each ply may be formulated in the framework of a
theory of elasticity, which should be solved with continuity conditions at the interfaces
between plies, see, for example Refs. [3,4]. Alternatively, some hypotheses may be adopted
concerning the deformation of an arbitrary cross-section of the whole package of plies and
reduced equations are then derived [5–7]. If fluid loading is included, then additional
continuity conditions are formulated at fluid–structure interfaces and a wave equation is
introduced for an acoustic medium in both the ‘exact’ and the ‘simplified’ theories. Naturally,
the reduced formulation does not permit the capture of short-wave, high-frequency
motions in sandwich plates, but the essential ( from the practical viewpoint) features of
wave propagation in these structures are related to the audio frequency range. In this range,
the length of a propagating wave exceeds the thickness of the whole package of plies by at least
3–4 times. Thus, for low and intermediate frequencies, it is expedient to estimate the
actual validity of the simplified theories in describing wave motions in a sandwich plate.
In the present paper, the dispersion equations are derived for wave motions in a plane
problem formulation, when the dynamics of a plate are reduced to the dynamics of a
beam. However, since the analysis involves solutions of homogeneous equations, the results
obtained here are entirely applicable for other types of wave motions in a sandwich plate
considered in the framework of a spatial problem formulation (e.g., cylindrical waves in polar
co-ordinates).
The paper is structured as follows. In Section 2, propagation of waves in sandwich beams

without fluid loading is considered in the framework of a theory of elasticity. Due to the natural
symmetry of a sandwich plate composition, two classes of wave motions (‘in-phase’ and
‘anti-phase’ ones) are analyzed separately and two dispersion equations are derived. Elementary
modelling of wave propagation for the same two classes of motions is presented in Section 3.
The dispersion curves, which are obtained for a sandwich beam without fluid loading in the
framework of these theories, are compared in Section 4. Section 5 addresses an ‘exact’ theory of
‘anti-phase’ wave motions of a sandwich beam with heavy fluid loading, whereas in Section 6
two ‘elementary’ theories for this type of motions are suggested. These ‘exact’ and
‘elementary’ theories are formulated for a compressible and for an incompressible fluid. Results
of analysis of dispersion equations, derived in Sections 5 and 6 are discussed in Section 7 with
special attention paid to the role of the compressibility of a fluid. Finally, in Section 8 conclusions
are presented.
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2. Formulation of the problem within the framework of a theory of elasticity

Consider an infinitely long sandwich plate consisting of two thin and relatively stiff plies (skins)
and a soft core ply between them as is shown in Fig. 1. To investigate wave propagation in such a
structure, it is sufficient to use the plane problem formulation (i.e., to consider its cylindrical
bending).
As is well known [1,2], mechanical properties of skin and core plies of sandwich plates used, for

example, in naval or aerospace structures are very different. Specifically, elastic and geometry
parameters of skin plies considered individually are normally those of conventional thin plates, so
that their dynamics are adequately described by a standard Kirchhoff theory. However, due to the
interaction between skin and core plies, it is not sufficient to take into account only their flexural
wave motions. The longitudinal components of displacements should also be included in the
analysis of the wave propagation

D1w
ð4Þ
1 þ r1h1 .w1 ¼ qw1 þ m0

1; ð1aÞ

E1h1u
00
1 � r1h1 .u1 ¼ �qu1; ð1bÞ

D3w
ð4Þ
3 þ r3h3 .w3 ¼ qw3 þ m0

3; ð1cÞ

E3h3u
00
3 � r3h3 .u3 ¼ �qu3: ð1dÞ

Here, ukðx; tÞ and wkðx; tÞ; k ¼ 1; 3; are the longitudinal and the flexural displacements of the mid-
surfaces of skin plies, positive if codirected with the co-ordinate axes in Fig. 1. qwkðx; tÞ and
qukðx; tÞ; k ¼ 1; 3 are the distributed longitudinal and transverse forces acting at skin plies,
respectively. The distributed moments, mkðx; tÞ; k ¼ 1; 3; are also taken into account. Dk ¼
Ekh3k=12ð1� n2Þ; k ¼ 1; 3 is the conventional formulation of cylindrical stiffness, primes and
dots denote derivatives on spatial and temporal co-ordinates x and t; respectively. Elastic
properties of material of each ply are specified by densities rk; k ¼ 1; 3; Young’s moduli Ek; k ¼
1; 3; the Poisson coefficients n1 ¼ n3 ¼ n: Right sides of Eq. (1) are composed of stresses acting at
the interfaces between skin and core plies. In general, they may also contain external driving
forces and moments, but as far as propagation of free waves is concerned an external loading is
omitted.
As has been discussed in the Introduction, the core ply of a sandwich plate is much thicker and

it is composed of material, which is much softer than the skin plies. Thus, an elementary theory of
plates is not applicable and dynamics of a core ply should be described by the standard dynamic
theory of elasticity, see for example Ref. [11]. In the plane problem formulation, Lam!e equations

ARTICLE IN PRESS

z

1

3

2

h3

h x

h1

Fig. 1. Sandwich plate composition.

S.V. Sorokin / Journal of Sound and Vibration 271 (2004) 1039–1062 1041



are reduced as follows

@2f
@x2

þ
@2f
@z2

�
1

c21

@2f
@t2

¼ 0; ð2aÞ

@2c
@x2

þ
@2c
@z2

�
1

c22

@2c
@t2

¼ 0: ð2bÞ

Here c21 ¼ Eð1� nÞ=rð1þ nÞð1� 2nÞ and c22 ¼ E=2ð1þ nÞr are velocities of acoustic and shear
waves in the material, respectively. Material density of a core ply, its Young’s module and the
Poisson coefficient are denoted as r; E and n; respectively. Potentials f and c are introduced to
formulate displacements in the following way:

u2 ¼
@f
@x

�
@c
@z

; w2 ¼
@c
@x

þ
@f
@z

: ð3Þ

Then stresses are defined as [11]

sx ¼ lDfþ 2m
@2f
@x2

�
@2c
@x@z

� �
;

sz ¼ lDfþ 2m
@2f
@z2

þ
@2c
@x@z

� �
;

txz ¼ m 2
@2f
@x@z

þ
@2c
@x2

�
@2c
@z2

� �
: ð4Þ

In these equations, l and m are Lam!e elastic moduli, defined as

l ¼
nE

ð1þ nÞð1� 2nÞ
; m ¼

E

2ð1þ nÞ
:

The system of differential equations (2) should be solved with the following compatibility
conditions at the interfaces

z ¼
h

2
: w2ðx; z; tÞ ¼ w1ðx; tÞ; u2ðx; z; tÞ ¼ u1ðx; tÞ þ

h1

2

@w1ðx; tÞ
@x

; ð5aÞ

z ¼ �
h

2
: w2ðx; z; tÞ ¼ w3ðx; tÞ; u2ðx; z; tÞ ¼ u3ðx; tÞ �

h1

2

@w3ðx; tÞ
@x

: ð5bÞ

Since the functions, ukðx; tÞ; wkðx; tÞ; k ¼ 1; 3; are defined for the mid-surfaces of skin plies, the
continuity conditions at the interfaces for the longitudinal displacements are formulated with the
components 7ðhk=2Þ@wkðx; tÞ=@x; k ¼ 1; 3 (i.e., the angles of rotation due to the flexural motion)
taken into account. It is consistent with the governing equations (1) for the skin plies, where
distributed moments are also included. This formulation is valid as long as the elementary
Kirchhoff theory is applicable to describe wave motion in the skins.
The interfacial distributed forces and moments are formulated as

qw3ðx; tÞ ¼ sz x;�
h

2
; t

� �
; qu3ðx; tÞ ¼ �txz x;�

h

2
; t

� �
; m3ðx; tÞ ¼

h3

2
txz x;�

h

2
; t

� �
; ð6aÞ
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qw1ðx; tÞ ¼ �sz x;
h

2
; t

� �
; qu1ðx; tÞ ¼ txz x;

h

2
; t

� �
; m1ðx; tÞ ¼

h1

2
txz x;

h

2
; t

� �
: ð6bÞ

The following scaling is introduced: x ¼ %xh; z ¼ %zh; uj ¼ %ujh; wj ¼ %wjh; j ¼ 1; 2; 3:
Propagation of a harmonic elastic wave in an infinitely long plate is considered, so that

%uj ¼ Uj expðk %x � iotÞ; %wj ¼ Wj expðk %x � iotÞ; j ¼ 1; 2; 3;

f ¼ Fð%zÞ expðk %x � iotÞ; c ¼ Cð%zÞ expðk %x � iotÞ: ð7Þ

Hereafter bars over non-dimensional variables are omitted, o is a positive excitation frequency
and k is, a priori, a complex wave number. Eqs. (7) are substituted to Eqs. (3), (5) and the problem
in elasticity for the core ply is formulated as

d2F
dz2

þ k2 þ
oh

c1

� �2
" #

F ¼ 0; ð8aÞ

d2C
dz2

þ k2 þ
oh

c2

� �2
" #

C ¼ 0; ð8bÞ

z ¼
1

2
:

dF
dz

þ kC ¼ h2W1; kF�
dC
dz

¼ h2U1 þ
hh1

2
kW1; ð8cÞ

z ¼ �
1

2
:

dF
dz

þ kC ¼ h2W3; kF�
dC
dz

¼ h2U3 �
hh1

2
kW3: ð8dÞ

The symmetric composition of a sandwich plate ðh1 ¼ h3;E1 ¼ E3;r1 ¼ r3Þ is considered and
therefore it is convenient to identify two uncoupled classes of linear wave motions and analyze
them separately. One of them is related to flexural and shear vibrations, which preserve overall
thickness of the whole structure, i.e., W1 ¼ W3; U1 ¼ �U3: Since lateral displacements of skins
are assumed to be the same, this class of waves is referred to as ‘in-phase’ modes in the present
paper. In opposition, by letting W1 ¼ �W3; U1 ¼ U3; a kind of ‘thickness-changing’ motion of a
plate is specified. This class of motions may also be called ‘anti-phase’ modes. It is clear that from
the practical viewpoint the ‘anti-phase’ motions become important only when a core ply is much
softer than skin plies.
Consider the case of ‘in-phase’ wave motions and let W1 ¼ W3;U1 ¼ �U3: A general solution

of Eqs. (8a) and (8b) is formulated as

FðzÞ ¼ A sinhðg1zÞ; g21 ¼ �k2 �
oh

c1

� �2

;

CðzÞ ¼ B coshðg2zÞ; g22 ¼ �k2 �
oh

c2

� �2

: ð9Þ

The boundary conditions (8c) and (8d) are reduced to

Ag1 cosh
g1
2

� �
þ Bk cosh

g2
2

� �
¼ W1h

2;
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Ak sinh
g1
2

� �
þ Bg2 sinh

g2
2

� �
¼ U1h

2 þ
hh1

2
kW1;

respectively. Solution of this system of algebraic equations is elementary

A ¼
h2kU1 cosh

g2
2

� �
þ hh1

2
k2W1 cosh

g2
2

� �
þ h2g2W1 sinh

g2
2

� �
k2 sinh g1

2

� �
cosh g2

2

� �
þ g1g2 cosh

g1
2

� �
sinh g2

2

� � ; ð10aÞ

B ¼
�h2g1U1 cosh

g1
2

� �
� hh1

2
g1kW1 cosh

g1
2

� �
þ h2kW1 sinh

g1
2

� �
k2 sinh g1

2

� �
cosh g2

2

� �
þ g1g2 cosh

g1
2

� �
sinh g2

2

� � : ð10bÞ

Two sets of the differential equations of motions of skin plies (1) are reduced to the following two
algebraic equations with respect to amplitudes ðU1;W1Þ:

E1h
3
1

12ð1� n2Þh3
k4 � r1hh1o2

	 

W1 þ �l

oh

c1

� �2

sinh
g1
2

� �
þ 2mg21 sinh

g1
2

� �
þ mk2g1

h1

h
cosh

g1
2

� �" #
A

þ 2mkg2 sinh
g2
2

� �
þ
1

2

h1

h
mk3 cosh

g2
2

� �
�
1

2

h1

h
mkg22 cosh

g2
2

� �	 

B ¼ 0;

E1h1

h
k2 þ r1hh1o2

	 

U1 þ 2mg1 cosh

g1
2

� �
A þ mk2 cosh

g2
2

� �
� mg22 cosh

g2
2

� �h i
B ¼ 0: ð11Þ

Putting to zero the characteristic determinant of these equations gives a dispersion equation for
the ‘in-phase’ set of modes.
A solution in the case of ‘anti-phase’ motions ðW1 ¼ �W3; U1 ¼ U3Þ is obtained in a similar

way. Elastic potentials are defined as

FðzÞ ¼ *A coshðg1zÞ;

CðzÞ ¼ *B sinhðg2zÞ:

Their amplitudes are

*A ¼
h2kU1 sinh

g2
2

� �
þ hh1

2
k2W1 sinh

g2
2

� �
þ h2g2W1 cosh

g2
2

� �
k2 cosh g1

2

� �
sinh g2

2

� �
þ g1g2 sinh

g1
2

� �
cosh g2

2

� � ; ð12aÞ

*B ¼
�h2g1U1 sinh

g1
2

� �
� hh1

2
g1kW1 sinh

g1
2

� �
þ h2kW1 cosh

g1
2

� �
k2 cosh g1

2

� �
sinh g2

2

� �
þ g1g2 sinh

g1
2

� �
cosh g2

2

� � : ð12bÞ
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Then differential equations of motions of skin plies are reduced to the following algebraic
equations with respect to amplitudes ðU1;W1Þ

E1h
3
1

12ð1� n2Þh3
k4 � r1hh1o2

	 

W1 þ l

oh

c1

� �2

cosh
g1
2

� �
þ 2mg21 cosh

g1
2

� �
� mk2g1

h1

h
sinh

g1
2

� �" #
*A

þ 2mkg2 cosh
g2
2

� �
�
1

2

h1

h
mk3 sinh

g2
2

� �
þ
1

2

h1

h
mkg22 sinh

g2
2

� �	 

*B ¼ 0;

E1h1

h
k2 þ r1hh1o2

	 

U1 � 2mg1 sinh

g1
2

� �
*A � mk2 sinh

g2
2

� �
� mg22 sinh

g2
2

� �h i
*B ¼ 0: ð13Þ

Putting to zero its determinant, a dispersion equation is obtained for the ‘anti-phase’ set of modes.
The characteristic equations obtained from Eqs. (11) and (13) in both these cases have an

infinitely large number of roots, which are either purely real, purely imaginary or complex. In
principle, various methods may be used to find these roots, depending on available software and
computing facilities. In this paper, the propagation of waves in the sandwich structures used in
shipbuilding or aerospace industries is addressed. From the practical viewpoint, it is most
important to find the roots, which define propagating wave in the frequency range up to about
10–15 kHz: Then the first roots are not too large and the transcendent dispersion equations may
conveniently be transformed to a simple polynomial in k2 form by expanding hyper-trigonometric
functions into power series and elementary algebraic manipulations. The order of this dispersion
equation is controlled by a number of terms retained in power series. For each particular value of
a frequency parameter, all roots of this approximate polynomial equation are readily found
numerically by the use of, for example, the symbolic manipulator Mathematica [12]. They are then
used one by one as an ‘initial guess’ to search numerically for the roots of the original dispersion
equations. This procedure gives ‘refined’ values of wave numbers and the accuracy of a
polynomial approximation of dispersion equations is readily accessed.
This ‘exact’ or ‘refined’ solution of the problem of wave propagation in a sandwich plate is used

hereafter to check the validity of simplified models. A set of simplified theories, which may be used
to describe several first branches of dispersion curves, is formulated in the following section.

3. Elementary modelling of propagation of waves in sandwich plates

In a number of papers [7–10], an elementary theory of flexural and shear vibrations of sandwich
plates has been used. In a certain way, this theory is a generalization of classic Timoshenko theory
developed for homogeneous beams in Ref. [13] with a shear angle y between skin plies introduced
as an independent variable in addition to a lateral deflection of the whole package of three plies w
(see Ref. [8] for details).

2
E1h

3
1

12ð1� n2Þ
þ

Eh3

12ð�1� n2Þ

	 

wð4Þ �

Eh

2ð1þ nÞ
1þ

h

h1

� �2

ðy0 þ w00Þ þ ð2r1h1 þ rhÞ .w

� 2
r1h

3
1

12
þ

rh3

12

� �
.w00 ¼ 0;
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E1h
3
1

2ð1� n2Þ
y00 �

Eh

2ð1þ nÞ
ðyþ w0Þ �

r1h
3
1

2
.y ¼ 0: ð14Þ

A solution of system (14) is sought in the form

w ¼ A expðkx � iotÞ; ð15aÞ

y ¼ B expðkx � iotÞ: ð15bÞ

Then dispersion equation becomes

1

12
2þ

g
e3

� �
k6 � �

1

12
2þ

g
e3

� �
O2
1 þ

1

12
2þ

g
e3

� �
ð1� nÞeg�

1

12
2þ

d
e3

� �
O2
1

"

þ
1� n
2

1þ
1

e

� �2

eg

#
k4 þ � 2þ

d
e

� �
O2
1 þ

1

12
2þ

d
e3

� �
O4
1 �

1

12
2þ

d
e3

� �
ð1� nÞegO2

1

"

�
1� n
2

1þ
1

e

� �2

egO2
1

#
k2 � 2þ

d
e

� �
O4
1 þ 2þ

d
e3

� �
ð1� nÞegO2

1 ¼ 0: ð16Þ

This is a bicubic equation and its roots are available in an explicit analytical form. For
convenience, the following non-dimensional parameters are introduced in Eq. (16) to describe the
internal structure of a sandwich plate: e ¼ h1=h as a thickness parameter, d ¼ r=r1 as a density
parameter, g ¼ E=E1 as a stiffness parameter, and O1 ¼ oh1=cskin as a frequency parameter.
Sound speed in the material of a skin ply is cskin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=r1ð1� n2Þ

p
:

In this theory, only ‘in-phase’ motions of skin plies in transverse direction are considered and
this dispersion equation is expected to have the roots, which are reasonably close to the first two
roots of the transcendent ‘exact’ equation, which follows from Eq. (11) in the practically
meaningful range of parameters. This aspect will be considered in Section 4.
If a core ply is sufficiently soft, then another type of motions should also be considered, which

involves ‘anti-phase’ wave motions of skin plies in the transverse direction and their simultaneous
‘in-phase’ motions in the longitudinal direction. This class of wave motions has already been
introduced in the previous section in the framework of a theory of elasticity. Similarly to the
elementary theory of a sandwich plate, which models its ‘in-phase’ motions, two separate simple
models may be suggested to describe the low branches of dispersion curves in the case of
‘anti-phase’ wave motions.
If propagation of a dominantly longitudinal wave is modelled, then the lateral components of

displacements in all three plies may be put to zero and the longitudinal components of
displacements are assumed to be the same in all plies. Then the equation of motion is

Dequ000 � meq .u0 ¼ 0: ð17Þ

Here an equivalent axial stiffness and an equivalent axial inertia are defined as

Deq ¼ 2E1h1 þ Eh; meq ¼ 2r1h1 þ rh:
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A solution of Eq. (17) is sought as

u0ðx; tÞ ¼ U0 expðkx � iotÞ:

Then the roots of dispersion equation are defined as

k2 ¼ �
r1o

2h2

E1

1þ1
2
r
r1

h
h1

� �
1þ1

2
E
E1

h
h1

� �: ð18Þ

In contrast to the previous case, to model ‘anti-phase’ dominantly lateral wave motions the
longitudinal displacements in all plies and the core’s inertia are ignored. Then the behaviour of a
core ply may be reduced to an equivalent distributed spring, which has stiffness Keq ¼ E=h:
Motions of skin plies are then governed by elementary equations

D1w
ð4Þ
1 þ r1h1 .w1 þ Keqðw1 � w3Þ ¼ 0;

D1w
ð4Þ
3 þ r1h1 .w3 þ Keqðw3 � w1Þ ¼ 0:

In the ‘anti-phase’ motions, the skin plies have the same displacements in opposite directions at
each instant of time, w3ðx; tÞ ¼ �w1ðx; tÞ and these two equations are reduced as

D1w
ð4Þ
1 þ r1h1 .w1 þ 2Keqw1 ¼ 0: ð19Þ

The third term in this equation mimics the response of well-known Winckler elastic foundation.
As a solution of Eq. (19) is w1ðx; tÞ ¼ W10 expðkx � iotÞ; the following elementary formula is
readily obtained for a wave number:

k4 ¼ �24ð1� n2Þ
h

h1

� �3
E

E1
þ 12

h

h1

� �4ð1� n2Þr1h
2
1o

2

E1
: ð20Þ

This equation, as well as Eq. (18), defines branches of dispersion curves, which should
qualitatively and quantitatively agree with those obtained from Eqs. (13) formulated by an exact
solution of the theory of elasticity.
Summing up these three elementary simplified models, it should be noted that they predict two

purely propagating modes, two purely decaying modes and two modes, which cut on at some
threshold excitation frequency (wave propagation in one direction, say, from the left to the right is
discussed). In particular, a theory for ‘in-phase’ modes predicts an existence of a dominantly
flexural propagating wave, a purely decaying flexural wave and a dominantly shear wave. Their
wave numbers are defined by Eq. (16). A theory for ‘anti-phase’ modes predicts an existence of
propagating purely longitudinal wave defined by Eq. (18) and two ‘breathing’ modes of flexural
vibrations with wave numbers given by Eq. (20), respectively. One of them is always evanescent,
whereas another one has a cut-on frequency. Now, it should be shown that these theories give a
good approximation of all low branches of dispersion curves obtained from a theory of elasticity,
i.e., obtained from Eqs. (11) and (13).

ARTICLE IN PRESS

S.V. Sorokin / Journal of Sound and Vibration 271 (2004) 1039–1062 1047



4. Dispersion curves for a plate without fluid loading

4.1. ‘In-phase’ waves

Compare the results obtained for ‘in-phase’ wave motions of skin plies. In Fig. 2, the roots of
dispersion equations (11) and (16) are shown versus frequency parameter O � oh=cskin for e ¼
0:1; g ¼ 0:01; d ¼ 0:1: Curves 1, 3 and 2, 4 are plotted after ‘refined’ and ‘elementary’ theories,
respectively. In Fig. 2a, purely imaginary roots are shown. Results attributed here to the ‘refined’
theory are obtained when transcendent functions are expanded into normal series with 12 terms
retained. At low frequencies, there is no mismatch between two curves in describing a purely
propagating flexural wave. When O > 0:15; curve 1 deviates from curve 2, predicted by an
elementary solution. However, it does not mean that an elementary solution loses its accuracy. On
the contrary, it means that the polynomial approximation for an exact dispersion equation needs
to be refined. Indeed, when the roots of the ‘refined’ dispersion equation in this polynomial
approximation presented by curve 1 are used as an input to find the roots of the original
transcendent dispersion equation, which follows from Eq. (11), these exact roots appear to follow
curve 2 very closely in the frequency range 0:15oOo0:3: Also, if the computations within the
framework of the ‘refined’ theory are repeated when transcendent functions are expanded into
normal series with 20 terms retained, then curve 1 is located much closer to curve 2 than in Fig. 2a.
Another two branches (curve 3 is plotted after an ‘exact’ theory, curve 4 is plotted after an
‘elementary’ theory) in this figure display a dependence of the purely imaginary wave numbers on
frequency parameter for a shear wave. Since this wave is relatively long and has a small wave
number, the roots of the dispersion equation obtained in the polynomial approximation do not
deviate much from those of the exact dispersion equation, which is derived from Eq. (11). As
discussed in Refs. [7,8], this wave has a ‘cut-on’ frequency and its purely real negative wave
number is shown in Fig. 2b with the same notations (e.g., curve 3 is plotted after an ‘exact’ theory,
curve 4 is plotted after an ‘elementary’ theory). The magnitude of a ‘cut-on’ frequency predicted
by an elementary theory is slightly larger than its magnitude found from a refined theory.
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If a sandwich plate with thinner core ply (e.g., e ¼ 0:2; g ¼ 0:01; d ¼ 0:1) is considered, then
predictions given by these two theories are in better agreement, as is seen in Fig. 3. The same
notations are used. In Fig. 3a, two branches of dispersion curves are plotted, which are relevant to
flexural (curves 1 and 2) and shear (curves 3 and 4) propagating waves. In Fig. 3b, a dependence
of the purely real negative wave number on frequency parameter is shown for a shear wave below
‘cut-on’ frequency. The agreement between these theories is also very good in the case when a core
ply is getting softer. In Fig. 4, dispersion curves are plotted for a plate with e ¼ 0:1; g ¼
0:001; d ¼ 0:1 in the same way as before. In the whole range of the magnitudes of the frequency
parameter O; the pairs of curves 1, 2 and 3, 4 almost merge with each other. The elementary
theory has been derived provided that the shear deformation is uniform in any cross-section of the
core ply. Apparently, this assumption becomes more realistic as the core ply is getting thinner and
softer.
As discussed in Section 3, the refined theory actually describes an infinitely large number of

branches of dispersion curves. The curves shown in Figs. 2–4 display a dependence of the first two
wave numbers (those with the minimal magnitudes) on a frequency parameter. As the next branch
predicted by the refined theory is considered, then it appears that in the low-frequency range this
curve describes an attenuated wave with a high decay rate. Besides, it cuts on at a frequency,
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which is much higher than the first cut on one. Thus, it should be concluded that the elementary
theory suggested in Refs. [7,8] is entirely sufficient to modelling wave propagation in sandwich
structures—at least, when a sandwich plate has a set of parameters typical for applications in
naval and aerospace industries. To support this statement, consider a sandwich plate with the
following dimensional parameters: the skins are of r1 ¼ 1580 kg=m3; E1 ¼ 9:8� 109 Pa; h1 ¼
0:0025 m; n ¼ 0:3 and the core is of r ¼ 101 kg=m3; E ¼ 94� 106 Pa; h ¼ 0:05 m; n ¼ 0:3: The
dimensional wave numbers of a flexural propagating wave K � kh�1 in m�1 are plotted in Fig. 5
versus excitation frequency in Hz. As before, curves 1 and 2 present results obtained by a use of
‘exact’ and ‘elementary’ theories, respectively. This particular set of parameters of a sandwich
plate composition is taken from Ref. [14] and the results reported in this reference match these
curves very well. The elementary theory of sandwich plates is derived provided that Lwavebh and
it is not aimed at describing short waves. For example (as is seen from Fig. 5), the wave number of
K ¼ 20 m�1 is relevant to the length of Lwave ¼ p=KE0:15 mE3ð2h1 þ hÞ for this set of
parameters. Thus, the elementary theory [7,8] is applicable for analysis of ‘in-phase’ wave
propagation in sandwich plates.
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4.2. ‘Anti-phase’ waves

Now consider propagation of ‘anti-phase’ waves. In Fig. 6, dispersion curves showing a
dependence of the non-dimensional wave number k on the frequency parameter O � oh=cskin are
plotted for e ¼ 0:2; g ¼ 0:01; d ¼ 0:1: Imaginary parts of wave numbers are plotted in Fig. 6a. As
before, curves 1, 3 and 2, 4 are plotted after the ‘exact’ theory and the ‘elementary’ theories,
respectively. The lower straight line (designated by indices 3 and 4) is given by both theories
almost identically in the whole frequency range. This is a dominantly longitudinal propagating
wave described by the elementary equation (18). The ‘breathing’ dominantly flexural ‘anti-phase’
wave has the ‘cut-on’ non-dimensional frequency parameter of about OE0:3; see Fig. 6b. The
elementary theory suggests that the evanescent wave is transformed into a purely propagating
one, when the imaginary and the real parts of the relevant wave number simultaneously cross the
frequency axis and the real part vanishes. As is seen from Fig. 6, the ‘refined’ theory predicts a
more complicated behaviour of dispersion curves in the vicinity of the cut-on frequency.
The similar graphs are plotted in Fig. 7 for e ¼ 0:1; g ¼ 0:01; d ¼ 0:1: The imaginary parts of

wave numbers versus the frequency parameter are shown in Fig. 7a. The real negative parts of
wave numbers are shown in Fig. 7b. As is seen, the ‘elementary’ theory gives results, which are in a
good agreement with the ‘exact’ theory in the whole frequency range except for 0:39oOo0:46:
This part of the picture is zoomed in Fig. 8. The elementary theory suggests a simple continuous
dependence of the both wave numbers on the parameter O; see curves 2, 4 in Fig. 8a (the
imaginary parts of wave numbers) and curve 2 in Fig. 8b (the real parts of wave numbers). Since
these two ‘elementary’ theories are derived independently, the relevant dispersion curves cross
each other. However, such an intersection is impossible when a consistent coupled formulation for
both these wave motions is used. Thus, dispersion curves predicted by the ‘exact’ theory behave in
a more complicated way. In particular, two complex-valued wave numbers (their imaginary part is
given by curve 11 in Fig. 8a and the real part of one of them is shown by curve 11 in Fig. 8b,
another one has the real part with an opposite sign) are split at OE0:4: Curve 12, which presents
one of two purely imaginary roots matches curve 2 predicted by the elementary theory (see also
Fig. 7a). Another branch presented by curve 14 approaches curve 13, which follows very closely
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the elementary solution (curve 4), but deviates rather sharply at OE0:4: As curves 13 and 14
merge at OE0:41; they transform into a pair of complex-valued roots, describing non-
propagating waves. Their imaginary part is given by curve 15 in Fig. 8a. The real part of one of
them is given by curve 15 in Fig. 8b, another one has the positive real part of the same magnitude.
These complex-valued roots are in turn split into two purely imaginary roots at OE0:455; see
curves 16 and 17 in Fig. 8a. Curve 16 matches curve 4 (see also Fig. 7a, where it is designated as
curve 3) and therefore recovers the validity of the simplified theory. Curve 17 crosses zero at
OE0:46 (the cut-off frequency parameter) and this wave transforms to an evanescent type. Thus,
the ‘refined’ theory suggests the existence of a relatively narrow band gap 0:41oOo0:455; where
the dominantly longitudinal wave cannot propagate. This ‘stop band’ is not captured by the
‘elementary’ theories. On the other hand, there are three propagating waves in frequency bands
0:4oOo0:41 and 0:455oOo0:457: This aspect of wave motions is also not described by the
‘elementary’ theories. However, ‘globally’ the elementary dispersion equations (18) and (20)
adequately describe propagation of ‘anti-phase’ waves in a sandwich plate.
Similarly to the case of ‘in-phase’ wave motions, curves shown in Figs. 6–8 display a

dependence of the first two wave numbers (those with the minimal magnitudes) on the frequency
parameter O: The next branch predicted by the ‘exact’ theory describes an attenuated wave with a
high decay rate and it cuts on at a frequency, which is much higher, that the first cut on one. Thus,
‘elementary’ theories suggested in this Section adequately model propagation of ‘anti-phase’
waves in a sandwich plate.

5. Propagation of ‘anti-phase’ waves in sandwich plates with heavy fluid loading

In papers [7,9,10], propagation of flexural and shear waves in sandwich plates in heavy fluid
loading conditions has been thoroughly studied for the ‘in-phase’ motions of skin plies. As is
shown in the previous section, propagation of dominantly longitudinal waves in a sandwich plate
with a sufficiently soft core ply may occur at the same frequencies as propagation of flexural
waves. Since to the best of the author’s knowledge, no work has so far been done on ‘anti-phase’
motions of a sandwich plate with heavy fluid loading, this case is considered here in detail. To
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employ the symmetry properties of solution it is assumed that a plate is loaded by an acoustic
medium of density rfl and sound speed cfl at both sides. Thus, a sandwich plate separates two
semi-infinite volumes occupied by the same acoustic medium. Such a problem may be relevant to
vibrations of submerged elements of, for example, off-shore structures.
The formulation given in the framework of an elasticity theory is then extended by adding fluid

loading terms

D1w
ð4Þ
1 þ r1h1 .w1 ¼ qw1 þ m0

1 � pþ x; t;
h

2
þ h1

� �
;

E1h1u
00
1 � r1h1 .u1 ¼ �qu1;

D3w
ð4Þ
3 þ r3h3 .w3 ¼ qw3 þ m0

3 þ p� x; t;�
h

2
� h3

� �
;

E3h3u
00
3 � r3h3 .u3 ¼ �qu3: ð21Þ

An acoustic pressure is defined as

p7ðx; t; zÞ ¼ �rfl ’j7ðx; t; zÞ: ð22Þ

Velocity potentials in an acoustic medium are governed by wave equation

Dj7 �
1

c2fl
.j7 ¼ 0: ð23Þ

The continuity conditions and the fluid–structure interfaces are formulated as

z ¼ �
h

2
� h1 : ’w3ðx; tÞ ¼

@j�ðx; t; zÞ
@n�

¼
@j�ðx; t; zÞ

@z
;

z ¼
h

2
þ h1 : ’w1ðx; tÞ ¼ �

@jþðx; t; zÞ
@nþ

¼
@jþðx; t; zÞ

@z
: ð24Þ

The displacements and elastic potentials are presented in form (7). Velocity potentials in acoustic
medium are sought in the form

j7ðx; t; zÞ ¼ jð0Þ
7 ðzÞ expðkx � iotÞ:

Then the wave equation (23) is reduced to a one-dimensional Helmholtz equation

d2jð0Þ
7

dz2
þ k2 þ

oh

cfl

� �2
" #

jð0Þ
7 ¼ 0: ð25Þ

Solution of this equation is sought as

jð0Þ
7 ðzÞ ¼ Aþ expðigflzÞ þ A� expð�igflzÞ; gfl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

oh

cfl

� �2
s

:
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The parameters A7 should be selected to satisfy compatibility condition (24) at fluid–structure
interface and the radiation condition, which is formulated at infinity for the upper and the lower
half-spaces occupied by an acoustic medium. Elementary algebra gives the following expressions
for velocity potentials

jð0Þ
þ ðzÞ ¼

oh2

gfl

W1 expðigflzÞ; z > 0; ð26aÞ

jð0Þ
� ðzÞ ¼

oh2

gfl

W3 expð�igflzÞ; zo0: ð26bÞ

Then the amplitudes of a contact acoustic pressure at the surfaces of skin plies are formulated via
the amplitudes of displacements as

pþ ¼ �
irflo

2h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ oh

cfl

� �2r W1; p� ¼
irflo

2h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ oh

cfl

� �2r W3; z ¼ 0: ð27Þ

The anti-phase motions are considered, W1 ¼ �W3; U1 ¼ U3: Then the characteristic
determinant becomes

E1h
3
1

12ð1� n2Þh3
k4 � r1hh1o2 � irflo

2h2 k2 þ
oh

cfl

� �2
 !�1=2

2
4

3
5W1

þ l
oh

c1

� �2

cosh
g1
2

� �
þ 2mg21 cosh

g1
2

� �
� mk2g1

h1

h
sinh

g1
2

� �" #
*A

þ 2mkg2 cosh
g2
2

� �
�
1

2

h1

h
mk3 sinh

g2
2

� �
þ
1

2

h1

h
mkg22 sinh

g2
2

� �	 

*B ¼ 0;

E1h1

h
k2 þ r1hh1o2

	 

U1 � 2mg1 sinh

g1
2

� �
*A � mk2 sinh

g2
2

� �
� mg22 sinh

g2
2

� �h i
*B ¼ 0: ð28Þ

The ‘elastic’ part of the solution is not affected by the presence of fluid loading, so that parameters
*A; *B are defined by formulae (12). Similarly to the case of a sandwich plate without fluid loading,
the determinant of these algebraic equations should be put to zero, which yields a transcendent
dispersion equation. For each particular value of a frequency parameter, wave numbers should be
found as roots of this equation. It is also conveniently transformed to a polynomial form by
employing expansions in normal series and each root of the resulting approximate equation is
used as an ‘initial guess’ to find a root of the original dispersion equation numerically. Besides,
parameters gfl related to each root should be checked whether they obey the condition

Im gfl � Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

oh

cfl

� �2
s0

@
1
A > 0: ð29aÞ

This condition implies the exponential decay of an acoustic wave at infinity, i.e., at z-7N for
the upper and the lower half-spaces, respectively. If gfl is purely real (e.g., Im gfl ¼ 0), then
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Sommerfeld condition holds

Re gfl � Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

oh

cfl

� �2
s0

@
1
A > 0: ð29bÞ

It implies propagation of acoustic waves from the surface of a plate.

6. An elementary theory for ‘anti-phase’ wave propagation in fluid-loaded sandwich beam

An elementary theory for propagation of anti-phase waves obtained in Section 3 is readily
generalized for the case of heavy fluid loading. The equation for flexural waves is modified as the
fluid loading term is added as

D1w
ð4Þ
1 þ r1h1 .w1 þ 2Keqw1 ¼ p x; t;

h

2
þ h1

� �
: ð30Þ

Its solution is sought in form (7), and formula (27) for a contact pressure is substituted into this
equation. After elementary algebraic manipulations the following simple polynomial dispersion
equation is obtained

k2 þ
oh

cskin

� �2
cskin

cfl

� �2
" #

1

12

h1

h

� �3

k4 þ 2ð1� n2Þ
E

E1
�

h1

h

oh

cskin

� �2
" #2

þ
rfl

r1

� �2 oh

cskin

� �4

¼ 0: ð31Þ

This transformed equation has 10 roots, which should be sorted out depending whether they
satisfy the original equation

1

12

h1

h

� �3

k4 þ 2ð1� n2Þ
E

E1
�

h1

h

oh

cskin

� �2

¼ i
rfl

r1

� �
oh

cskin

� �2

k2 þ
oh

cskin

� �2
cskin

cfl

� �2
" #�1=2

; ð32Þ

and whether the condition

Im
i

rfl

r1

� �
oh
cskin

� �2
1
12

h1
h

� �3
k4 þ 2ð1� n2Þ E

E1
� h1

h
oh
cskin

� �2
2
64

3
75 > 0; ð33Þ

is held.
In the case of a purely longitudinal propagating wave (which is defined by Eq. (17) for a plate

without fluid loading), incorporation of the fluid loading term is not so straightforward.
Extension of skin plies in the longitudinal direction is not affected by the presence of an acoustic
medium, ex ¼ u0: Since the dependence of all functions on axial and temporal co-ordinates is taken
as expðkx � iotÞ; see Eq. (7), this formula is reduced to ex ¼ ku: Then normal longitudinal stresses
acting on skin plies in the longitudinal direction are sx ¼ E1ex ¼ kE1u: In the core ply, it is
necessary to take into account transverse normal stresses generated by fluid loading, so that
Hooke’s law is formulated as

ex ¼
1

E
score

x þ
n
E

p; ð34aÞ
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ez ¼ �
1

E
p �

n
E
score

x : ð34bÞ

In these formulae, it is already taken into account that a positive contact pressure is directly
transmitted onto a core ply and it produces transverse compression.
Since ‘anti-phase’ motions of skin plies are considered, w3 ¼ �w1 ¼ � *w (here the dimensional

amplitudes of displacements are introduced), the deformation of a core ply in transverse direction
is easily found as

ez ¼ �
2 *w

h
: ð35Þ

Then the following relation between a contact pressure p and the dimensional amplitudes of
displacements *u � hu; *w is readily obtained from Eq. (34b)

2 *w ¼ vk *u þ
1� n2

E
ph: ð36Þ

Contact pressure p is defined by the formula, which is similar to Eq. (27)

p ¼
irflo

2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðoh=cflÞ

2
q *w: ð37Þ

If *w is excluded from Eq. (36) by using this formula, then the following expression is obtained for
a contact pressure:

p ¼ �nku
1� n2

E
þ 2

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðoh=cflÞ

2
q

rflðohÞ2

2
4

3
5
�1

: ð38Þ

Then longitudinal stresses in the material of a core ply are found to be

score
x ¼ Eku 1þ

n2

1� n2
rfl

r1

E1

E
oh
cskin

� �2
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ cskin

cfl

� �2
oh
cskin

� �2
þ

rfl

r1
E1

E
oh

cskin

� �2r
2
664

3
775: ð39Þ

As fluid’s density vanishes ðrfl-0Þ; this formula merges formula score
x ¼ Eku used in Section 3.

Apparently, the axial force resultant is defined as Nx ¼ Nskin
x þ Ncore

x ¼ 2h1sskin
x þ hscore

x : Then
the dispersion equation becomes

E1h1 þ
1

2
Eh 1þ

n2

1� n2
rfl

r1

E1

E
oh
cskin

� �2
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ cskin

cfl

� �2
oh
cskin

� �2r
þ

rfl

r1
E1

E
oh
cskin

� �2
2
664

3
775

8>><
>>:

9>>=
>>;k2

¼ � r1h1 þ
1

2
rh

� �
ðohÞ2: ð40Þ
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To ensure the absence of a growth of an acoustic wave in the fluid’s volume, condition (29) must
be held. This equation naturally merges the dispersion equation (18) as soon as the fluid loading
term disappears, rfl-0:

7. Dispersion curves for ‘anti-phase’ wave motions in a sandwich plate with heavy fluid loading

Consider a sandwich plate with the following parameters: e ¼ 0:1; g ¼ 0:01; d ¼ 0:1: This plate
is loaded at both sides by an acoustic medium specified by the density ratio rr � rfl=r1 ¼ 0:128
and the sound speed ratio cr � cfl=cp ¼ 3:4: This set of fluid loading parameters is relevant to
vibrations of a sandwich plate with steel skin plies in water. In Fig. 9, curve 1 presents a
dependence of the magnitude of the purely imaginary wave number of a propagating wave on the
frequency parameter O given by the ‘exact’ dispersion equation derived in Section 5. Curves 2 and
3 are plotted after formulae (40) and (32), which are derived from simplified theories. These roots
of dispersion equations satisfy conditions (29). Besides, curve 4 is the dispersion curve (18) for a
propagating, dominantly longitudinal wave in a plate without fluid loading. This curve lies well
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beyond those plotted for a plate with fluid loading, so that wave motions are strongly affected by
the presence of an acoustic medium in this case. It should be noted that there is only one
propagating wave in the frequency range Oo0:35; see also Fig. 7. At low frequencies, dispersion
curves obtained by the use of both the ‘elementary’ theories merge with the dispersion curve given
by an ‘exact’ theory. When the frequency parameter becomes larger (e.g., O > 0:2), the elementary
formula (40) derived from the theory of purely longitudinal wave motions of a fluid loaded plate
becomes incorrect, whereas formula (32) is still in a perfect agreement with the refined theory.
To present the location of dispersion curves 1, 2, 3 more clearly, it is convenient to consider

wave propagation in a plate, which has a softer core ply, e.g., e ¼ 0:1; g ¼ 0:001; d ¼ 0:1: As it is
seen in Fig. 10, curve 2, which displays the solution given by formula (40), follows the exact
solution (curve 1) closer than the solution presented by curve 3 for a flexural wave (32) up to
OE0:08: However, when O > 0:1; curve 3 matches the exact solution (curve 1), while curve 2
markedly deviates from them both. It is interesting to note that the longitudinal wave appears to
be damped by the presence of an acoustic medium. It has a complex valued wave number
�kr þ iki: The magnitude of its imaginary part ki is fairly close to the magnitude of the imaginary
part of a wave number, which describes propagation of a wave in a plate without fluid loading (see
curve 4). The magnitude of the negative real part �kro0 of this wave number is much smaller,
kr5ki and damping is proportional to the magnitude of a sound speed in a fluid.
In the case of an incompressible fluid (i.e., cr ¼ 0), there are two propagating waves in the low-

frequency region, rather than only one wave of this type in the case of an acoustic medium of the
same density (i.e., cr ¼ 3:4). In Fig. 11a and b, curves 1a, b (sandwich plate parameters are
e ¼ 0:1; g ¼ 0:01; d ¼ 0:1; a fluid is incompressible, cr ¼ 0) present wave numbers predicted by
the exact solution (28). Curves 2a, b are plotted after formula (40). Curve 3 in Fig. 11a is plotted
after the elementary theory of flexural motions of a fluid-loaded plate, which gives the dispersion
equation (32). Curve 4 in Fig. 11b presents the longitudinal wave in a plate without fluid loading,
see formula (18). Comparison of curves 1a, b and 2a, b (they are identical in Figs. 11a and b)
suggests that the elementary theory resulting in the dispersion equation (40) is capable of
accurately predicting the dynamic properties of a sandwich plate in its ‘anti-phase’ motions for
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not too high frequencies. As is seen, curve 2a matches curve 1a in the whole frequency region and
curve 2b matches curve 1b up to OE0:22:
Curve 3 in Fig. 11a matches curve 1a (the lower branch of the exact solution) only up to OE0:08:

This elementary theory becomes fairly inaccurate in the frequency band 0:08oOo0:28: However,
for O > 0:28; its accuracy is recovered and curve 3 gradually matches another branch of the exact
solution, curve 1b. On the other hand, roots of the elementary dispersion equation (18) for a plate
without fluid loading fit very well the exact solution for a plate with fluid loading at almost any
frequency, see Fig. 11b. Curves 1a and 2a asymptotically tend to the straight line 4 when Oo0:16:
Respectively, curves 1b and 2b tend to curve 3 when O > 0:21: Summing up these results it should be
pointed out that elementary approximate solutions given by dispersion curves 3 and 4 are
inadequate in the zone (approximately, around OE0:17), where they actually cross each other (as it
may be seen by combining Fig. 11a and b). As is well known, dispersion curves can never intersect,
so it is rather natural that in this ‘overlapped’ region both simplified theories are incorrect.
To clarify the role of fluid’s compressibility, computations have been performed for various

values of compressibility parameter cr: Comparison of graphs plotted in Figs. 9–11 and some
additional computations show that curve 3 gradually shifts upwards with the growth in
compressibility parameter cr from cr ¼ 0 to 3.4. At some critical magnitude of this parameter,
curve 3 becomes tangent to curve 4. Simultaneously, the relevant roots of the dispersion equation
(28) or (40) acquire real parts and the longitudinal wave (which ‘originates’ from a purely
longitudinal propagating wave in a plate without fluid loading) becomes non-propagating. This
phenomenon (an existence of the threshold sound speed ratio) has a simple physical explanation.
In the case of an incompressible fluid, there is no energy flow from a plate to infinity through an
acoustic medium, i.e., in the direction perpendicular to the surface of a vibrating plate. As soon as
the fluid becomes sufficiently compressible, the energy transmission (‘leakage’) from the plate into
two semi-infinite volumes of surrounding acoustic medium is developed. Respectively, the
structural energy flow disappears and the free dominantly longitudinal wave cannot be supported
in a plate with such a fluid loading. Since this energy leakage into an unbounded volume of an
acoustic medium increases with the further growth in the magnitude of a compressibility
parameter (sound speed ratio) cr; propagation of a trapped wave is getting suppressed more and
more heavily. This explanation is illustrated by the graphs shown in Fig. 12.
In Fig. 12a and b three dispersion curves kðcrÞ are plotted presenting wave numbers versus the

compressibility parameter for the fixed excitation frequency O ¼ 0:05: The parameters of sandwich plate
composition are the same as before, i.e., e ¼ 0:1; g ¼ 0:01; d ¼ 0:1: As is seen from Fig. 12a, there are
three purely imaginary roots of the exact dispersion equation (28) for cro1:25: Two of them fulfil
condition (29a) and are designated here by curves 1 and 2. The third root (curve 3) is located very
closely to the first root, so that in Fig. 12a the points of this curve almost merge with the points of
curve 1. However, this root does not satisfy the decay condition. In the bifurcation region, curve 1
actually deviates from curve 3, whereas curve 2 tends to curve 3. However, as the imaginary parts of
these two wave numbers merge, they acquire the real parts. The second propagating wave is
transformed then into the attenuated wave with a complex-valued wave number and its real part is
designated by curve 2 in Fig. 12b. The third root, which does not satisfy the decay condition (29a)
when cro1:25; acquires a positive real part (curve 3) and remains unacceptable, since for cr > 1:25 it
presents a wave, which grows exponentially along the plate. Finally, curve 1 in Fig. 12b displays the
zero real part of the wave number relevant to a propagating wave.
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The dependence of parameter gfl (which describes propagation of a trapped wave in a fluid) on
compressibility parameter cr is illustrated in Fig. 12c and d for each root of the dispersion
equation (28). Curves are labelled in the same order. In Fig. 12c, the imaginary part of the
parameter gfl relevant to the first wave number in Fig. 12a and b is shown by curve 1. As is seen,
this is a continuous curve and the decay condition (29a) holds true for any value of cr:
Respectively, as is seen in Fig. 12d, the real part of this parameter is absent at any frequency, so
this is always a wave, which decays into an acoustic medium (wave motions of an acoustic
medium are trapped in vicinity of a plate). The second propagating wave exists only as long as
cro1:25: The third root (curve 3) in this region is irrelevant, since it has the negative imaginary
part and does not obey the decay condition. Curves 2 and 3 merge at cr ¼ 1:25: For cr > 1:25;
parameter gfl relevant to the second wave number becomes purely real and positive (curve 2).
Thus, the acoustic wave propagates into an acoustic medium, whereas propagation of the trapped
wave in a plate becomes suppressed, as is shown in Fig. 12b. Respectively, the parameter gfl

calculated for the third root becomes purely negative, see curve 3. In fact, curves 3 in Fig. 12a–d
represents the root of the dispersion equation, which is always irrelevant, and they may not be
displayed. However, if these curves are omitted, then the transformation of a propagating trapped
wave into a decaying one (due to the bifurcation of dispersion curves) becomes less clear.
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Summing up the role of the compressibility parameter, it should be noted that the sound speed in
the material of skin plies may vary in a rather wide range, depending on the material stiffness. Thus,
the inspection into the role of this parameter is relevant, since it controls the energy transportation
in a plate with heavy fluid loading. Anyway, at least one propagating trapped wave in a fluid-loaded
sandwich plate exists at any excitation frequency independently of the sound speed ratio cr:

8. Conclusions

Three ‘elementary’ theories are suggested to describe wave propagation phenomena in
sandwich plates without fluid loading. Comparison of dispersion curves obtained by solving
characteristic equations derived from these theories with dispersion curves obtained in the ‘exact’
problem formulation shows that these three theories adequately predict wave motions of a
sandwich plate in the whole frequency range of practical interest. In the case of ‘anti-phase’
motions of a plate with heavy fluid loading, two ‘elementary’ theories are also suggested and
checked against the ‘exact’ solution. Thus, these simplified theories are proven to be valid for
analysis of wave propagation in sandwich plates. In the case of heavy fluid loading, it is shown
that a dominantly longitudinal wave may either be propagating or decaying depending on the
magnitude of the compressibility parameter (the ratio of a sound speed in a fluid to a sound speed
in skin’s material). A simple explanation of this transition is given.
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