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1. Introduction

Publications are available on the transverse vibration of uniform beams carrying rigid bodies of
negligible axial dimension. Pan [1] presented a theoretical study on a simply supported beam
carrying thin disks but did not present any results. Kounadis [2] extended the work in Ref. [1] and
tabulated the first three frequencies of a uniform cantilever carrying up to three thin disks in-span.
Kim and Dickinson [3] used the Rayleigh—Ritz and the finite element method to study the
vibration of a uniform beam carrying thin disks at the ends and two disks in-span. Register [4]
considered a resiliently supported uniform beam with thin disks attached at the ends.

Bhat and Wagner [5] studied the transverse vibration of a cantilever carrying a rigid body at the
tip taking account of the axial dimension of the body. Liu and Huang [6] and Low [7] tackled
systems similar to that in Ref. [5]. Popplewell and Daqing Chang [8] treated the problem in Ref.
[5] by the Rayleigh—Ritz method.

Publications on vibration of beams with one-step change in cross-section include Taleb and
Suppiger [9] (simply supported), Balasubramanian and Subramanian [10] (cantilever by finite
element method), Krishnan et al. [11] (simply supported by finite difference). Jang and Bert [12]
considered several combinations of boundary conditions and expressed the frequency equations
as fourth order determinant equated to zero. Naguleswaran [13] expressed the frequency
equations as second order determinant equated to zero and presented vibratory details like mode
shape, position of nodes, etc. Bapat and Bapat [14] used the transfer matrix method to study the
transverse vibration of stepped beams carrying particles at the steps but presented results only for
uniform beams.

Kopmaz and Telli [15] considered a simply supported two part beam (stepped beam) carrying a
symmetrical rigid body, i.e. center of mass at the mid point of the axial width of the body. The
frequency equation was expressed as a fourth order determinant equated to zero and the natural

*Tel.: +64-3-364-2987; fax: + 64-3-364-2078.
E-mail address: s.naguleswaran@mech.canterbury.ac.nz (S. Naguleswaran).

0022-460X/03/$ - see front matter © 2003 Published by Elsevier Ltd.
doi:10.1016/S0022-460X(03)00574-1



1122 S. Naguleswaran | Journal of Sound and Vibration 271 (2004) 1121-1132

frequencies were presented in graphical form. The free body diagram of the rigid body in this
reference was shown to be incorrect by Naguleswaran [16]. The list of references in [15] was
incomplete and in the present paper several relevant references are listed.

Locations of the center of mass of the rigid body within or outside the axial dimension of the
body are considered in the present paper. The system parameters are: the step location parameter
R;, the normalized mass per unit length of the two beam portions u; and p,, the normalized
flexural rigidity ¢, and ¢,, the mass parameter 6, moment of inertia parameter 4 and the center of
mass offsets ¢; and & and combinations of classical clamped (c/), pinned (pn), sliding (s/) and free
(fr) boundary conditions. Following the method of analysis in Ref. [13], the frequency equations
are expressed as second order determinant equated to zero. A scheme to calculate the elements of
the determinant and a scheme to evaluate the roots of the frequency equation are presented.
Tables of the first three non-zero frequency parameters are presented for selected sets of the
system parameters and 16 combinations of classical boundary conditions. The tables demonstrate
the trend in the frequency parameter variation as one of the system parameter is varied. The
results may be used to judge frequency parameters obtained by numerical methods like Rayleigh—
Ritz, finite element method, etc.

2. Theory

Fig. 1a shows the stepped beam carrying a non-symmetrical rigid body at the step and the two
co-ordinate systems used in the analysis. The center of mass G of the rigid body is on the neutral
axis, its mass is Mg and its moment of inertia is Jg (about axis through G normal to co-ordinate
planes). The flexural rigidity, mass per unit length and the length of the portion 4, B; are EI;, my,
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Fig. 1. The stepped beam/rigid body at step and the co-ordinate systems.
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and L; and of the portion A, B, are El,,m, and L,. The center of mass G is offset ¢; from B; and
e, from A,. Offset e; is considered positive if By G is in the positive direction of x; and e, is positive
if A,G is in the positive direction of x,. The center of mass offsets shown in Fig. 1la are both
positive. Combinations of e; and e, of opposite signs are shown in Fig. 2a. The rigid body of
negligible axial width shown in Fig. 2b is the type considered in Refs. [1-4]. The axial width of the
rigid body is w = (e; — e>). In practical engineering systems e¢; > ¢,. Mathematically e; <e, is valid
but such cases were not considered. The origins O; and O, of the two co-ordinate systems used in
the analysis coincide with 4; and A, when the beam is at rest.

Consider the free vibration of the system at frequency w. If the amplitude of vibration at
abscissa x; (k = 1 for portion A;B; and k = 2 for portion A;B>) is yr(x), then based on Euler—
Bernoulli theory of bending the bending moment Mj(x;), shearing force O(x;) and the mode
shape equation are

d2 X d3 X,
x? dx;
d*y(x
EI} % — mo?yi(xr) = 0. e
Xk

Egs. (1) are normalized relative to a uniform beam of flexural rigidity E1,, mass per unit length
and length L. Introduce the dimensionless abscissa X}, co-ordinate Y;(X}), operators D} (n =
1,2,3,4), mass per unit length ratio y,, flexural rigidity ratio ¢,, dimensionless bending moment
M. (X)), shearing force Q(Xj;) and dimensionless frequency 2 and frequency parameter oy
defined as follows:

Xk yelxe) o, d" iy El, M (xx)L
X =—, Yi(Xp)= D =— =— =— MXy)=——
k La k( k) L 5 k Xm?’ My mO’ d)k EI(), k( k) EIO )
Or(xi)L ) 4 mow*L? . mo’Lt ot
X g Q = = = = . 2
Qk( k) EI[) ) 0 O(0 EI() B O(k EIk ¢k ( )
The nth frequency parameter is denoted o ,. Eqs. (1) in dimensionless form are
Mi(Xi) = gDl V(XL Ou(Xi) = —d DRl Yi(Xil,
G DELYi(X] = 1 Yie(Xie) = 0. (3)
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Fig. 2. Center of mass offset combinations.
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The dimensionless mode shape of the portion 4B is
Yi(X1) = Ciysinay Xy + Ciacoso Xy + Cy3sinh oy X; + Cj 4 cosh o X7, 4)
where C;; through to C;4 are constants of integration. Two of the constants may be eliminated
when the boundary conditions at 4, are considered. The mode shape takes the form
Yi(Xh) = AUI(X1) + BVi(Xy), (5)
where 4 and B are constants. In this paper classical clamped (c/), pinned (pn), sliding (s/) or free
(fr) boundary conditions at A; are considered. The functions U;(X;) and V(X)) are
if Ayiscl: Up(Xy) =sino;X; —sinho Xy, V(X)) = cosaiX; — cosh oy X,
if Ay is pn: Uy(X)) = sina; X, V1(X1) = sinh a1 X7,
if Ay is sl Up(Xy) = coso Xy, Vi(X1) = cosh oy X7,
if Ay is frr  Up(X)) =sino; X +sinh o X7, V(X)) = cosa;X| + cosh o Xj.

(6)

In the subsequent analysis, the following dimensionless parameters are introduced: center of mass
offset parameters ¢; and &, beam portion length parameters R; and R, rigid body mass and
moment of inertia parameters é and 4 defined as follows:

81:%, 82:%, Rlz%, R2:%, 5:%} Azﬁ. (7)
Without loss of generality one may choose
R +R =1 (®)
The dimensionless mode shape of the portion 4,B; is
Y2(X2) = Gy sinap Xs + Cop cos n Xy + Co 3 sinh op X + Co 4 cosh oo Xo. 9)

Continuity of deflection and of slope at 4, and compatibility of forces/moments acting on the
rigid body (shown in Fig. 1b) results in the following equations in dimensionless form:

Y2(0) = Y1(Ry) + (e1 — &2)D1[Y1(R1)], D[ Y2(0)] = Di[Y1(Ry)],

¢ DA Y2(0)] = ¢ { DI V1(R)] + (61 — e2) D[ Yi(R))]} — Ao* Di[Yi(R))]
— 5820(4{ Yl(Rl) + 81D1[Y1(R1)]},

¢, D3[Y2(0)] = ¢, D[ Y1(R))] + 6o* { Y1(Ry) + e1 D1 [Yi(R))]}. (10)

From the equations which result when Eqgs. (5) and (9) are substituted into Eqs. (10), C5; through
to C,4 may be eliminated and the dimensionless mode shape of 4,B, expressed as

Y2(X2) = AUx(X2) + BV(X2). (11)
The functions U,(X3) and V5(X>) are
U>(X») = Gy sin o Xy + Gy cos ap Xo + Gy sinh ap X5 + Gy cosh o X5,

Vo(X3) = Hy sinoy Xo + Hy cos oap Xy + Hy sinh oy X + Hy cosh o Xo (12)
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in which the coefficients Gy, G», G; and G4 are

G - DilUiRY] ¢ DI[UL(R)] + 00 {Ui(R1) + &1 Di[Ui(R)]}
b 200 2¢,03 ’

1 {DIUI(RD] + (1 — e2)DI[UI(R)]}
_ UiR) + (1 — e2)Di[Ur(R1)] —(e1820 + M)o* Di[U1(R))] — 200 Uy (Ry)

62 2 2¢,03 ’
Ge — Di[Ui(R)] . ¢ D[UI(R))] + 620 {Ui(Ry) + & Di[Uy(R))]}
3T 20 + Zd) o ’
205
1 {DIUI(R)] + (1 — &2)DI[UI(R)]}
Ul(Rl) + (81 — 82)D1[U1(R1)] _(81625 + A)O‘4D1[U1 (Rl)] - 325054 U (Rl)
Gy = + (13)

2 2¢)20(%
The coefficients H,, H>, H3 and H, are obtained by substituting } for U in above expressions.

3. The frequency equation

Eq. (11) must satisfy the boundary conditions at B, and the frequency equation results from
this requirement. For classical boundary conditions at B,, the frequency equations are

if Byis cl:  Us(Ro)Day[V2(Ry)] — Da[Us(R)IV2(Ry) = 0,
ift By is pn: Us(Ro)D3[Va(Ro)] — D3[Ur(R)IV2(Rs) = 0,
if By is sl: Dao[Ux(Ro)ID3[V2(R2)] — D3[Us(Ro)ID:[V2(R2)] = 0,
ift By is fri  DI[Ua(Ro)ID3[Va(R2)] — D3[Ua(Ro)ID3[Va(Rs)] = 0.

(14)

The frequency parameters for the selected set of system parameters R, (R, = 1 — R)), &1, &, 9, 4,
Ui, &1, Wy, ¢, and the boundary conditions at 4; and B, are the roots of the relevant frequency
equation (14).

3.1. The system parameters

The ‘reference’ beam was chosen with flexural rigidity, mass per unit length and length EI;, m;,
L and hence u; = 1 and ¢, = 1. The center of mass offsets were chosen so that (¢; — &) >0. For
sample calculations the system parameters were chosen from the following list: 6 = 0.5, 4 = 0.1,
e1=02,6=-0.1,Ri=04,R,=1—R;,d, =1.0,d, = 0.5. Three types of step change in cross-
section were considered. In Type 1 change in cross-section, both portions are of the same depth
but the breadth of 4, B, is d> while that of 4B is d; and hence u, = d» and ¢, = d>. In Type 2,
both portions are of the same breadth but the depth of 4, B; is d> and that of A B; is d; and hence
U, = dr and ¢, = d23. In Type 3, the breadth and depth of 4, B, are d> and those of A, B is d; and
S0 u, = d3 and ¢, = ds.
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3.2. Frequency parameter calculations

The functions U;(X;) and V(X;) were chosen from the equation set (6) taking account of the
boundary conditions at A4;. The derivatives of U;(X;) and Vi(X;) were obtained by straight
forward differentiation. For the selected set of system parameters, a trial value of o ; = 0.1 (say)
was assumed. The coefficients G through to H4 were calculated from Eq. (13) to establish U,(X>)
and V,(X,) from Eq. (12). The frequency equation was chosen from equations set (14) taking
account of the boundary conditions at B, and its right hand side was calculated. The procedure
was repeated with increase in the trial o in steps of 0.1, till a sign change in the value of the
frequency equation was observed. This indicates a ‘range’ in which a root lies. The procedure was
repeated in this ‘range’ with change in o ; of 0.01 to narrow the ‘range’. An iterative procedure
based on linear interpolation was now invoked to obtain the root to a pre-set accuracy. The search
was continued from here for the next root and so on.

The first three frequency parameters oy, o2, and o3 were calculated for 16 combinations of
classical boundary conditions and presented in tabular form. The system parameters listed in
Section 3.1 were not chosen by design.

Table 1 has the frequency parameters of Type 1, 2 and 3 stepped beams. The system parameters
were chosen from the list in Section 3.1. The center of mass of the rigid body was within the axial
width of the body, i.e., ¢; > 0, &, <0. The frequency parameters of Type 1 beam are greater than
those of Type 2 beams. Except for ¢/\fr and s/\fr the frequency parameters of Type 2 beams are
greater than those of Type 3 beams.

Table 1

The first three non-zero frequency parameters of systems with three types of step change in cross-section

BC Type 1 step change Type 2 step change Type 3 step change

ty =, by = db o =d, ¢y =d3 1o =d3, by =dy
%o,1 %o,2 %0,3 %o,1 %o,2 %0,3 %o,1 %o,2 %0,3

cl\cl 3.1164 4.7158 8.0902 2.3754 4.7048 5.7265 2.2024 4.7146 5.6564
ch\pn 2.5867 4.7145 6.8097 2.0851 4.6752 4.8506 2.0161 4.6647 4.7832
cl\sl 1.7594 4.4180 4.7159 1.6580 3.1516 4.7077 1.7540 3.0076 4.7170
cl\fr 1.5781 3.5935 4.7148 1.5417 2.6047 4.7029 1.6618 2.4762 4.7133
pn\cl 2.9200 3.7492 8.0842 2.0901 3.6919 5.7186 1.8041 3.6858 5.6512
pn\pn 2.2984 3.7304 6.8040 1.6432 3.6893 4.8122 1.4295 3.6848 4.7275
pn\sl 1.1039 3.6705 4.4225 0.7841 3.0892 3.6992 0.7033 2.9653 3.6883
pn\fr 3.3797 3.8451 8.0378 2.4873 3.6945 5.6858 2.3777 3.6869 5.6141
sl\cl 1.6147 3.1429 6.7404 1.3916 2.4481 5.7140 1.2627 2.3023 5.6485
sl\pn 1.2170 2.6968 6.6798 1.0302 2.2517 4.8128 0.9203 2.1893 4.7278
sh\sl 2.0835 4.4187 6.7445 1.9587 3.1556 6.5624 2.0065 3.0102 6.5254
s\fr 1.8558 3.6194 6.7385 1.7946 2.6464 5.6809 1.8741 2.5137 5.6113
fr\cl 1.1553 3.0175 5.4203 0.8172 2.1344 5.4144 0.6885 1.8366 5.4166
fr\pn 2.4489 5.4203 6.8064 1.7327 4.8122 5.4179 1.4976 4.7275 5.4198
fr\sl 1.4365 4.4027 5.4205 1.0162 3.1140 5.4163 0.8825 2.9768 5.4186
fr\fr 3.5735 5.4205 8.0422 2.5285 5.4134 5.6910 2.4002 5.4155 5.6186

System parameters listed in Section 3.1 (¢; = 1.0, ¢; = 1.0): u, and ¢, as shown in table.
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Table 2
As in Table 1, Type 3 beam (u, = d3, ¢, = d3) but for three different d» which are shown in table
BC d=1.0 d, =08 dy =0.25

00,1 %0,2 0,3 0,1 %0,2 0,3 %, 1 %0,2 0,3
cl\cl 3.4961 4.7166 8.2501 2.9472 4.7091 7.2813 1.9271 3.9555 4.7268
cl\pn 2.8207 4.7166 7.0013 2.4521 4.7075 6.1464 1.9061 3.2926 4.7258
cl\sl 1.6907 4.6500 4.7473 1.6857 4.0372 4.7095 1.7973 2.0875 4.5868
c\fr 1.4221 3.8024 4.7223 1.5194 3.2974 4.7075 1.5313 1.9379 3.9265
pn\cl 3.2344 3.8676 8.2415 2.7526 3.7316 7.2754 0.9215 3.6805 3.9560
pn\pn 2.5455 3.7892 6.9947 2.1570 3.7187 6.1391 0.7355 3.2909 3.6806
pn\sl 1.1895 3.6737 4.6984 1.0206 3.6372 4.0630 0.3742 2.0077 3.6806
pn\fr 34111 4.0337 8.2038 3.1474 3.7664 7.2364 1.5985 3.6806 3.9271
sl\cl 1.7288 3.5345 6.7277 1.5804 2.9815 6.7253 0.6936 2.1172 3.9563
sh\pn 1.2486 2.9590 6.7026 1.1912 2.5782 6.1291 0.4911 2.1063 3.2927
sl\sl 2.1158 4.6909 6.7315 2.0279 4.0392 6.7377 1.9247 2.1710 4.5935
sh\fr 1.7586 3.8629 6.7256 1.8117 3.3286 6.7214 1.5584 2.1208 3.9274
fr\cl 1.3682 3.4448 5.4224 1.0980 2.8368 5.4182 0.3447 0.9358 3.9560
fr\pn 2.7810 5.4221 6.9974 2.2982 5.4181 6.1413 0.7665 3.2911 5.4207
fr\sl 1.6401 4.6659 5.4245 1.3482 4.0167 5.4182 0.4569 2.0091 4.5935
fr\fr 3.8068 5.4237 8.2104 3.2679 5.4181 7.2400 1.6024 3.9271 5.4210
Table 3
As in Table 2 but for three different R; which are shown in table
B C Ry =02 R =05 R, =038
%o,1 %o,2 %0,3 %o,1 %o,2 %0,3 o,1 %o,2 %0,3

cl\cl 2.4483 4.2642 6.9608 2.2593 4.0544 6.7633 3.0017 3.7388 6.3670
ch\pn 2.3528 3.5971 6.2845 1.9767 4.0540 5.6495 2.7308 3.0781 6.3612
cl\sl 1.8924 2.6135 4.9236 1.6512 3.5307 4.0545 1.4307 3.0133 6.3579
cl\fr 1.5754 2.4555 4.2377 1.5944 2.8415 4.0540 1.3578 2.9964 6.3544
pn\cl 1.5643 4.2618 5.7352 1.9906 3.2474 6.7606 2.4360 3.7360 5.4630
pn\pn 1.2897 3.5798 5.7267 1.5473 3.2430 5.6471 2.2587 2.9344 5.4542
pn\sl 0.7117 2.3080 4.9233 0.7044 3.2068 3.5424 0.7717 2.5281 5.4528
pn\fr 1.8850 4.2351 5.7353 2.7715 3.2641 6.7149 2.4948 5.4528 6.7437
sl\cl 1.1476 2.6229 4.2697 1.3099 2.3205 5.5654 1.3203 3.7360 3.8057
slh\pn 0.8104 2.5695 3.5986 0.9905 2.1210 5.5422 1.1605 2.8423 3.7982
sl\sl 2.0730 2.7101 4.9322 1.9021 3.5315 5.5668 1.6867 3.7997 7.2636
sl\fr 1.6711 2.6288 4.2438 1.8285 2.8548 5.5647 1.5938 3.7950 6.7372
fr\cl 0.6696 1.5734 4.2651 0.7043 2.0396 4.5108 0.8219 3.1418 3.7369
fr\pn 1.3284 3.5814 6.2998 1.6287 4.5107 5.6480 2.6940 3.2344 6.3406
fr\sl 0.8511 2.3087 4.9307 0.9020 3.5193 4.5109 1.0364 3.1807 6.3370
fr\fr 1.8954 4.2388 6.9882 2.8179 4.5109 6.7170 3.1689 6.3335 6.7496

The beams in Table 2 are of circular cross-section but with step change in diameter, i.e., Type 3.
The diameter of A, B, considered are d» = 1.0 (uniform beam) or 0.8 or 0.25 and the rest of the
system parameters are chosen from the list in Section 3.1. The frequency parameters for d» = 0.5
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is found in Table 1. The frequency parameters decrease with decrease in d5. This is to be expected
because there is an overall decrease in the system stiffness.

The beam in Table 3 is Type 3 but the rigid body location parameters are R; = 0.2 or 0.5 or 0.8.
The frequency parameters for location parameter R; = 0.4 are tabulated in Table 1.

Table 4 shows the variation in frequency parameters of Type 3 beam systems with ¢, = 0.2 or
0.0 or —0.2. Note that the axial width of the rigid body with ¢; = 0.2 and ¢, = 0.2 is zero but the
center of mass is offset from Bj.

Table 5 illustrates the effect of change in 6 on Type 3 beams and Table 6 the effect of change in
A and shows the expected trend of a decrease in the frequency parameters with an increase in ¢ or
A. The system is more sensitive to change in 4.

In Table 7 rigid bodies of constant width (¢ — &, = 0.3) but with ¢ = 0.5 or 0.7 or 1.0 are
considered. The frequency parameters decrease with increase in ¢;. In Table 8 rigid bodies of
width (¢ — & = 0.6 or 0.9 or 1.1) but with &, = —0.1 are considered.

3.3. ‘Conjugate’ systems

To reflect the dependence of the frequency parameter on the various system parameters, let it be
represented by a[(i, ), 0, 4, (¢1, &), (R, R»), (dy, d>)] in which i or j = 1,2, 3 or 4 represent classical
cl, pn, sl or fr boundary conditions. Clearly

a[(i,)),6,4,(e1 = a,ea = b),(Ri = R,Ry = 1 — R),(d1 = 1.0,d> = d)]
= OC[(f, i), 5,A,(81 = *b, &) = —a), (Rl =1- R, R2 = R),(d] = d, dz = 1)] (15)

Table 4
As in Table 2 but for three different ¢, which are shown in table
B C & =02 & =0.0 & =-02

do,1 0o,2 %o,3 %o,1 0o,2 %o,3 00,1 0o,2 %o,3
cl\cl 2.2467 4.7257 5.6734 2.1571 4.6966 5.6473 2.0677 4.6415 5.6531
cl\pn 2.0210 4.7197 4.7627 2.0098 4.6026 4.8108 1.9922 4.4777 4.8697
cl\sl 1.7173 3.0498 4.7258 1.7899 2.9648 4.7043 1.8560 2.8816 4.6685
cl\fr 1.6273 2.5058 4.7255 1.6967 2.4445 4.6933 1.7660 2.3761 4.6325
pn\cl 1.8746 3.6890 5.6717 1.7265 3.6781 5.6364 1.5477 3.6495 5.6263
pn\pn 1.4696 3.6832 4.7550 1.3852 3.6778 4.7082 1.2827 3.6365 4.6977
pn\sl 0.6920 2.9882 3.6986 0.7143 2.9390 3.6781 0.7344 2.8778 3.6591
pn\fr 2.3976 3.6906 5.6360 2.3571 3.6778 5.5985 2.3146 3.6438 5.5882
sl\cl 1.2297 2.3461 5.6716 1.2945 2.2588 5.6288 1.3489 2.1798 5.6014
sl\pn 0.9098 2.1918 4.7557 0.9301 2.1835 4.7044 0.9474 2.1617 4.6741
sl\s/ 1.9628 3.0580 6.5553 2.0466 2.9648 6.4961 2.1072 2.8913 6.4425
si\fr 1.8327 2.5501 5.6359 1.9154 2.4743 5.5904 1.9952 2.3892 5.5617
fr\cl 0.6515 1.9267 5.4219 0.7302 1.7416 5.4010 0.8261 1.5486 5.3470
fr\pn 1.5511 4.7527 5.4222 1.4383 4.7041 5.4180 1.3043 4.6659 5.4160
fr\sl 0.8658 3.0158 5.4221 0.8974 2.9410 5.4119 0.9187 2.8855 5.3892

Sr\fr 2.4315 5.4219 5.6360 2.3697 5.3965 5.6166 2.3154 5.3348 5.6465
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Table 5
As in Table 2 but for three different 6 which are shown in table
BC 0=0.1 0=1.0 60=20

0,1 00,2 20,3 0,1 00,2 0,3 20,1 00,2 0,3
cl\cl 2.4283 5.1797 5.8491 2.0188 4.4982 5.6270 1.7960 4.3437 5.6127
cl\pn 2.2142 4.6860 5.4150 1.8537 4.4947 4.7010 1.6542 4.3231 4.6955
ch\sl 1.8731 3.1092 5.2745 1.6424 2.9392 4.4990 1.4905 2.8752 4.3503
cl\fr 1.7398 2.6079 5.1613 1.5778 2.3909 4.4985 1.4503 2.3146 4.3441

pn\cl 2.0767 3.8894 5.7292 1.6175 3.6115 5.6270 1.4141 3.5617 5.6117
pn\pn 1.6347 3.8774 4.8280 1.2868 3.6044 4.6995 1.1288 3.5472 4.6826

pn\sl 0.7802 3.0876 3.8983 0.6437 2.8925 3.6237 0.5726 2.8311 3.5849
pn\fr 2.4898 3.8854 5.6977 2.3167 3.6138 5.5882 2.2658 3.5646 5.5718
sl\cl 1.3994 2.4325 5.6871 1.1538 2.2451 5.6270 1.0237 2.2033 5.6090
sh\pn 1.0383 2.2575 4.7921 0.8341 2.1582 4.6984 0.7358 2.1348 4.6761
sl\sl 2.0155 3.1236 6.5264 2.0016 2.9593 6.5221 1.9975 2.9209 6.4773
sh\fr 1.8744 2.6086 5.6532 1.8739 2.4699 5.5882 1.8737 2.4365 5.5690
fi\cl 0.7183 2.0768 5.5327 0.6580 1.7068 5.3346 0.6122 1.5938 5.2741
fr\pn 1.6438 4.7871 5.6955 1.4212 4.6949 5.3373 1.3569 4.6686 5.2876
fr\sl 0.8927 3.0916 5.6482 0.8774 2.9265 5.3363 0.8733 2.8892 5.2816
fr\fr 2.4905 5.5117 5.8535 2.3603 5.3345 5.5891 2.3305 5.2729 5.5786
Table 6
As in Table 2 but for three different A which are shown in table
B C A=02 A=1.0 A=20

do,1 0o,2 %o,3 do,1 0,2 %o,3 00,1 0o,2 %o,3
cl\cl 1.8466 4.4273 5.0396 1.3324 4.1381 5.0396 1.1327 4.0972 5.0396
cl\pn 1.7632 4.1439 4.4830 1.2773 3.9854 4.3395 1.0868 3.9527 4.3291
cl\sl 1.6492 2.5873 4.4411 1.2236 2.5090 4.1636 1.0449 2.4965 4.1249
cl\fr 1.5921 2.1113 4.4233 1.2124 2.0016 4.1317 1.0381 1.9876 4.0905
pn\cl 1.3638 3.3602 5.0238 1.0426 2.9756 5.0188 0.8965 2.9144 5.0182
pn\pn 1.0860 3.3575 4.1890 0.8352 2.9561 4.1847 0.7195 2.8898 4.1842
pn\sl 0.5459 2.5783 3.3618 0.4273 2.4916 3.0080 0.3699 2.4631 2.9604
pn\fr 2.0595 3.3591 4.9888 2.0016 2.9710 4.9836 1.9855 2.9093 4.9830
sl\cl 1.0649 1.9008 5.0187 1.0390 1.3394 5.0065 0.9828 1.1951 5.0047
slh\pn 0.7642 1.8559 4.1837 0.7620 1.2817 4.1685 0.7586 1.0869 4.1664
sl\sl 1.7868 2.5903 5.8190 1.2489 2.5458 5.8042 1.0560 2.5407 5.8019
sl\fr 1.7214 2.1160 4.9832 1.2394 2.0208 4.9704 1.0500 2.0134 4.9686
fr\cl 0.5257 1.3638 5.0102 0.4217 1.1833 4.9585 0.3672 1.1489 4.9470
fr\pn 1.0945 4.1835 5.2602 0.8895 4.1647 5.1124 0.8424 4.1617 5.0926
fr\sl 0.6355 2.5793 5.2531 0.4478 2.5458 5.0961 0.3793 2.5406 5.0747
fr\fr 2.0599 4.9756 5.2702 2.0195 4.9286 5.1551 2.0132 49183 5.1431

Eq. (15) and the tables may be used to obtain the frequency parameters of ‘conjugate’ systems. In
the present paper, Eq. (15) was used as a check on the calculations.
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Table 7
As in Table 2 but for bodies of constant axial width but different combinations of ¢; and & as shown in table
B C & = 0.5, &) = 0.2 & = 08, &) = 0.5 & = 1.0, & = 0.7

0,1 00,2 20,3 0,1 00,2 0,3 0,1 0,2 %0,3
cl\cl 1.7545 49718 5.2510 1.5368 4.9609 5.5463 1.4245 4.9516 5.6671
cl\pn 1.6763 4.1653 5.2157 1.4708 4.1468 5.5099 1.3642 4.1385 5.6243
cl\sl 1.5779 2.5687 5.1944 1.3996 2.5343 5.4345 1.3032 2.5220 5.4978
cl\fr 1.5360 2.0792 49374 1.3792 2.0288 4.9237 1.2887 2.0127 49137
pn\cl 1.2784 3.9332 5.0176 1.1410 4.0270 5.0247 1.0680 4.0439 5.0339
pn\pn 1.0191 3.9230 4.1880 09112 3.9644 4.2412 0.8536 3.9494 4.2786
pn\sl 0.5152 2.5599 3.9351 0.4640 2.5338 4.0376 0.4360 2.5219 4.0616
pn\fr 2.0414 3.9320 4.9823 2.0185 4.0231 4.9907 2.0087 4.0381 5.0010
sl\cl 1.0871 1.9483 5.0114 1.1018 1.7257 5.0047 1.1079 1.6034 5.0033
sh\pn 0.7704 1.9283 4.1735 0.7753 1.7216 4.1654 0.7780 1.6032 4.1643
sl\sl 1.8841 2.5687 5.8145 1.7091 2.5411 5.8070 1.5996 2.5364 5.8044
sh\fr 1.8072 2.1092 49754 1.6861 2.0296 4.9684 1.5877 2.0138 4.9670
fi\cl 0.5788 1.2795 5.0085 0.5761 1.1578 4.9960 0.5567 1.1221 4.9905
fr\pn 1.0425 4.1734 5.6608 0.9128 4.1633 5.8036 0.8551 4.1604 5.8558
fr\sl 0.6610 2.5600 5.6350 0.5996 2.5407 5.6918 0.5625 2.5363 5.6909
fr\fr 2.0433 49725 5.6663 2.0189 4.9595 5.8172 2.0116 4.9539 5.8753
Table 8
As in Table 2 but for three different axial width (g; — &) of body
B C & = 0.5, & = —0.1 & = 0.8, &) = —0.1 & = 1.0, & = —0.1

%o,1 0o,2 %o,3 00,1 0o,2 %o,3 00,1 0,2 %o,3
cl\cl 3.1164 4.7158 8.0902 1.9243 5.5326 5.6678 1.8725 5.6208 5.7066
cl\pn 2.5867 4.7145 6.8097 1.6261 4.7322 5.5439 1.5506 4.7301 5.6720
cl\sl 1.7594 4.4180 4.7159 1.3130 2.9751 5.5417 1.2188 2.9669 5.6689
cl\fr 1.5781 3.5935 4.7148 1.2780 2.3831 5.5296 1.1903 2.3688 5.5966
pn\cl 2.9200 3.7492 8.0842 1.7523 4.0646 5.6598 1.7368 4.0978 5.6594
pn\pn 2.2984 3.7304 6.8040 1.3337 4.0561 4.7409 1.3113 4.0890 4.7403
pn\sl 1.1039 3.6705 4.4225 0.5449 2.9524 4.0706 0.5102 2.9488 4.1035
pn\fr 3.3797 3.8451 8.0378 2.3513 4.0650 5.6235 2.3452 4.0980 5.6232
sl\cl 1.6147 3.1429 6.7404 1.1559 2.0253 5.6585 1.1183 1.9564 5.6576
sl\pn 1.2170 2.6968 6.6798 0.8886 1.8252 4.7351 0.8766 1.7293 4.7334
sl\s/ 2.0835 4.4187 6.7445 1.6302 2.9847 6.5523 1.5281 2.9753 6.5517
si\fr 1.8558 3.6194 6.7385 1.5742 2.4095 5.6223 1.4835 2.3894 5.6214
fr\cl 1.1553 3.0175 5.4203 0.5694 1.7922 5.6502 0.5394 1.7723 5.6499
fr\pn 2.4489 5.4203 6.8064 1.3974 4.7320 5.8260 1.3671 4.7304 5.8872
fr\sl 1.4365 4.4027 5.4205 0.7142 2.9693 5.8237 0.6703 2.9637 5.8841
fr\fr 3.5735 5.4205 8.0422 2.3723 5.6151 5.8312 2.3632 5.6145 5.8923

The three different offsets ¢, (with &, = —0.1) are shown in table
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3.4. Mode shares

The mode shape corresponding to a natural frequency will consist of three portions (portion
B A, is a straight line). One may choose 4 = 1 and normalize the mode shape with the choice
Y1(R;) =1 (say). To obtain mode shapes, interactive programs developed by Ilanko [17] are
available.

4. Concluding remarks

The transverse vibration of stepped Euler—Bernoulli beam carrying a non-symmetrical rigid
body in-span was considered in this paper. It was assumed that the center of mass of the body was
on the neutral axis of the beam and within or outside the axial length of the body. The system
parameters are: the step location parameter R;, the normalized mass per unit length of the two
beam portions yu; and p,, the normalized flexural rigidity ¢, and ¢,, the mass parameter o,
moment of inertia parameter 4 and the center of mass offsets ¢; and & and combinations of
classical clamped (c/), pinned (pn), sliding (s/) and free (fr) boundary conditions. Mathematically
no restriction need be placed on the center of mass offset parameters but in usual engineering
applications, (g; — &)=0. The first three frequency parameters are tabulated for 16 combinations
of boundary conditions and several sets of system parameters. In each table, one of the system
parameter was varied and the trends in frequency parameter changes are commented. The results
may be used to judge frequencies of the system obtained by numerical methods.
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