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Abstract

The rotating vibration behaviors of full cycle of 60 blades are studied in this report. The dynamic analysis
of two different structures in one of which there are 10 groups of 6 blades and in the other 5 groups of 12
blades, is performed to investigate behavior deviation. In this research, the following jobs are considered:
(1) collect the geometric dimensions and material properties of a single blade, (2) create the finite element
model of a single blade, a group of 6 blades and 12 blades, and full cycle of 60 blades, (3) perform the
vibration analyses of a single blade, a group of blades and a full circle of 60 blades, (4) perform the steady
state stress analysis of the blade with different rotating speed; (5) get the Campbell diagram for the full
circle of blades, and (6) make comparisons between a group of 6 blades and a group of 12 blades.
The conclusions from the analyses are the following: (1) the contact elements are applied to groups of 6

and 12 blades systems and the highest stresses are observed at the location of the first neck of the blade root.
These results completely agree very well with in-site observations. (2) The big differences were present in the
Campbell diagram: resonant frequencies are observed in the first vibration group for the full system
comprising the group of 6 blades and resonant frequencies are not found in the first vibration group of the
full blade system made of the group of 12 blades. (3) The dynamic behavior of the full blade system
comprised of a group of 6 blades was found much different from that of the full blade system made is of a
group of 12 blades. (4) Excellent agreements for the vibration frequencies and mode shapes of a single blade
and a full circle of blades are obtained between the FEA results and experimental data.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Failures of blades of the turbine (see Fig. 1) are observed sometimes in power plants. The blade
failure will shoot down the electricity plane and affect the power supply. Generally, stopping
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supplying electricity causes economic loss for the power plant, because operation of the turbine
engine has to be terminated and the cover of the engine has to be opened to check the turbine
blade. Failure of blades may have different causes, such as the corrosion from the environmental
pollution, deteriorated material properties, incorrect operation, resonant vibration, etc. In the
dynamic analysis, the resonant vibration behavior can be analyzed and can be avoided based on
the analytical results.
Generally, research on the turbine blades focus on vibration frequencies and mode shapes. For

simplifying the analytical difficulties, a slender beam is used to replace the turbine blade. A single
freestanding blade can be considered as a pre-twisted cantilever beam with an asymmetric aerofoil
cross-section mounted at a stagger angle on a rotating disk. The starting solution for a simple
stationary blade is obtained from the classical Euler–Bernoulli beam [1] with cantilever boundary
conditions for bending vibration and non-circular rod for torsion vibration [1,2]. Coupled
bending–torsion vibrations occur when the center of flexure does not coincide with the centroid as
in the aerofoil blade cross-section and the vibrations are coupled between the two bending modes
because of pre-twist. The problem becomes further complicated because of second order effects
such as shear deflections, rotary inertia, fiber bending in torsion, warping of the cross-section, root
fixing and Coriolis accelerations. In general the equations of motion will be six coupled partial
differential equations coupled between the two bending deflections, the two shearing deflections,
the torsion deflection and the longitudinal deflection. Further the warping function will be
obtained by a modified Poisson equation, taking into account the dynamic conditions of the
blade. Thus, theoretically it is an uphill task to determine the natural frequencies of an actual
turbine blade with all the effects mentioned. Thus various researchers have derived solutions to
the problem by considering individual aspects such as taper, pre-twist, asymmetry of cross-section
centrifugal forces and making simplified assumptions with regard to second order effects. Broadly
speaking, this work was carried through two different approaches, viz., continuous system and
discrete modelling of the blade [3].
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Fig. 1. The blade failure in the rotating blade.
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The continuum approach for a freestanding blade requires much analytical work before a
numerical procedure can be adopted. Discretizing the blade and using appropriate element
relations is simpler than the analytical work that goes with continuum methods and thus many
researchers favor discrete methods. Other distinct advantages of discrete models are their
compatibility to complicated problems like laced, shrouded and packeted blades, and the
availability of well-tested finite element programs to model any complicated blade group. The
discrete analysis techniques can be broadly classified into the following methods as applied to
turbine blade problems: (1) Holzer’s method [4], (2) The Myklestad/Prohl method [5], (3) matrix
methods [6], (4) finite difference method [7–9], and (5) finite element method [10,11]. The finite
element method [10] has become popular in many research fields. Dokumaci [10] used the matrix
displacement method to determine natural frequencies of pre-twisted tapered blades. The matrix
displacement method was extended to determine coupled bending–bending–torsion vibration
characteristics of a rotating blade. Later the finite element method was applied to study the
coupled bending–bending–torsion vibration modes taking into account the effect of root
flexibility. Murthy and Murthy [12] developed a finite element formulation of rotating pre-twisted
tapered beams with five degrees of freedom for each element. Gupta and Rao [13] extended
tapered twisted elements to Timoshenko beam elements. Abbas [14] developed simple finite
elements for thick pre-twisted blades accounting for shear and rotary inertia; Putter and Manor
[15] included the effect of tip mass and also presented a high precision rotating beam element
based on the fifth-degree polynomial. Singh and Rawtani [16] solved the classical wave equation
for torsion vibration of a blade including root stiffness at the fixed boundary. Nagaraj considered
the effect of attachment flexibility and Sahu [17] determined the torsion vibrations of pre-twisted
rotating blades by finite element method based on Rayleigh–Ritz and Galerkin procedures. The
finite element method was extended to determine the natural frequencies of packeted blades in
coupled bending–bending–torsion modes. Rieger and Nowak [18] have developed a three-
dimensional (3D) finite element model of the blade root and wheel root that incorporates gap
elements at the root interface. The so-called super element can be used to generate automatically
the mesh for the remaining blades of a group so that natural frequencies and mode shapes can be
determined. A finite element model of a group of blades with rectangular cross-section has been
presented in the tangential mode [19]. Salama and Petyt [20] used the finite element method and
periodic structural analysis for the tangential vibration of packeted blades; both the positions of
the lacing wire and rotation were taken into account. Eight node iso-parametric solid elements
were used by Sagendorph [21] to model a fan blade with a tie-wire. Calculations were made for
free and for locked configurations. Comparison of the free shroud condition with experimental
data gave agreement to within 10% for the first 10 modes. Holography was used to verify mode
shapes, which compared favorably with the finite element method results. In [22], 2D and 3D finite
element technologies were applied to investigate the cracking of the SSME HPFTP first and
second stage turbine blades. The 2D model that was comprised of 3500 plane strain elements was
used to perform a number of parametric studies in order to reduce the computer runs using the
large 3D model. The loading on the models stems form spin, pressure, and thermal that
corresponded to the full power level. Only one blade model was created and analyzed. A finite
beam element for vibration analysis of a rotating tapered beam including shear deformations, and
rotary inertia is proposed [23]. The finite element has four degrees of freedom, and accounts for
linear tapering in two planes. Explicit expressions for the finite element mass and stiffness matrices
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are derived using the consistent mass approach, while accounting for the centrifugal stiffness
effects. The new element is applied to calculate the first 10 free vibration modes for both fired and
hinged and conditions of rotating tapered Timoshenko beam. The finite element method is also
applied to predict the life of a created disk attachment region for a low-pressure steam turbine
stage operating in a wet steam environment [24]. The strategy is based on a ‘drop-notch’ approach
to remove the existing stress corrosion cracking. In [24], the fracture mechanical concepts
combined with the finite elements are used to predict the crack growth life. The drop-notch
procedure is to remove the top hook of the disk attachment and machine new grooves on the
existing rim. In 1994, Rand applied a Galerkin-type approach to investigate the free vibration
behavior of thin walled blades made by the composite materials [25]. Shiau et al. [26] studied the
vibration behavior of blades made by the composite laminate, and the orientation of layup was
also considered. Liew et al. [27–31] developed an energy approach with the Ritz minimization
procedure to arrive at a governing eigenvalue equation. The admissible pb-2 shape functions
which comprise sets of mathematically complete 2D orthogonal polynominals and a basic
function are introduced to account for the boundary constraints. The effects of angle of twist,
thickness variation and geometric parameters on the vibration frequencies and modes are
examined. These theories can get accurate results for the pre-twisted cantilever trapezoidal plate,
unsymmetric laminate blade and composite shallow conical shells. Eight-node element for the
laminated blade was presented in [32]. Effects of radius of the disk, aspect ratio and rotating speed
on the system dynamic behaviors and/or the optimum design are studied. In their studies, they
found most of the bending modes of rotating laminated blade could be significantly affected by
the rotating speed and the radius of the disk. In Ref. [32], Lin applied the finite element method to
investigate the non-linear hydro-elastic behavior of composite propellers. The formulation used
displacements as unknowns in the structural part and the strength of the vortex as unknowns in
the fluid part. A coupled matrix derived from the Bernoulli equation and hydrostatic pressure in
terms of the strength of the vortex enforced compiling between the fluid and structure. Finite
element method is applied to investigate the vibration behaviors of mistuned bladed diesel
assemblies [33]. The modelling technique employs a component mode synthesis approach to
systematically generate a reduced order model of the rotor. The approach makes it feasible to
predict the forced response statistics of mistuned bladed disk using Monte Carlo simulations. The
above developments can verify that the finite element method can perform many analyses in many
fields and different structures. But the systematic dynamic analyses for the blade–disk assemblies
are not found. In this paper, the modal analysis of a single blade, the dynamic behavior of a group
of blades, and the vibration analysis of fan system of a circle of blades are carried out and finally
the harmonic analysis for the system of blade–disk assembly were performed to investigate the
stress distribution and find the safety factor of the system.
In this research, the geometric dimension of a single blade is measured by using 3D accuracy

measurement system and combined with the mathematical equations to obtain the complicated
and exact geometric data of the blade. Combination of the blade geometry with the dimensions of
disk, the solid model of a single blade and full circle blade model can be generated. After creating
the solid model of a single blade and full circle of blades, the finite element model can be created
by using the mapped mesh method. After creating the blade model and a circle of blades, the
model analysis for the blade system with different rotating speeds will be performed. Based on the
modal analysis, the Campbell diagram of a circle of blade system will be plotted and the resonant
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frequencies will be obtained. Next, the harmonic analysis will be performed to check the stress
distribution as the modal frequencies met the resonant frequencies. The excellent agreements for
the vibration frequencies and mode shapes of a single blade and a full circle of blades are obtained
between the FEA results and experimental data.

2. Background of theory

Because of the nature of blade geometry and loading, structural analysis of the blade is possible
only by means of numerical methods. The main advantage of the finite element method is
generally applied to complicated blade geometry. The blade is fixed with the setting angle on the
rotating rigid disk of radius. The Coriolis effects are neglected, but the damping effects, the effects
of pre-twist, as well as taper, are considered. In addition, the external forces are calculated from
the thermodynamics and functions of frequency only.
To analyze the dynamic behaviors of the blade system, a finite element method using eight node

iso-parametric solid elements is applied. The displacement field ~uu which include the pre-vibration
deformation in each element can be expressed in terms of nodal translation and rotational
displacements (ui; vi;wi) and (Fxi; Fyi; Fzi), respectively. It can be expressed as

~uu ¼ ½D�~qq; ð1Þ

where the displacement field vector ~uu ¼ ½u; v;w�T; the nodal displacement vector

~qq ¼ ½u1; v1;w1;Fx1;Fy1;Fz1;y; u9; v9;w9;Fx9;Fy9;Fz9�;

and ½D� is the displacement functions of position

feg ¼ ½B�fqg; ð2Þ

where the strains

feg ¼ fex; ey; ez; gxy; gyz; gzxg
T;

and ½B� are the strain functions of position.
The finite element equation for a geometrically non-linear 3-D solid element is written as

½M�f .ug þ ð½kD� þ ½kL� þ ½kG�Þfug ¼ fFextg; ð3Þ

in which ½kD�; ½kL� and ½kG� are the linear stiffness matrix, initial displacement matrix, and
geometric matrix, respectively, fFextg are the external forces, the matrices are defined as

½M� ¼ r
Z

vol

½D�T½D� dv; ð4Þ

½KD� ¼
Z

vol

½B�T½D�½B� dv; ð5Þ

½KL� ¼
Z

vol

ð½B�T½D�½BL� þ ½BL�T½D�½BL� þ ½BL�T½D�½B�Þ dv; ð6Þ
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½KG� ¼
Z

vol

½T �T
sx txy

txy sy

" #
½T � dv: ð7Þ

In these equations, ½B� and ½BL� are linear and non-linear strain–displacement transformation
matrices, ½D� is the material property matrix, and ½T � is a matrix defined purely in terms of co-
ordinates. The equation is formed on the basis of an updated Lagrangian description [34] and is
solved according to the Newton–Raphson procedures [35].
The expression of the rotating blade includes rotational effects, i.e., the rotational stiffness

matrix and the centrifugal load. The Lagrange equation and the kinetic energy of the rotating
blade are derived [36]. The expression for the rotational stiffness matrix is

½kR� ¼ r
Z

vol

½Gs�T½A�½Gs� dv; ð8Þ

½A� ¼

X2
y þ X2

z 	OxOy 	OxOz

	OxOy X2
x þ X2

z 	OzOy

	OxOz 	OzOy 	X2
x þ X2

y

2
664

3
775: ð9Þ

In Eq. (8), ½Gs� is the displacement interpolation matrix, ½A� is the angular velocity matrix, and r is
the density of the blade. The expression of the centrifugal load is

fFRg ¼ r
Z

vol

½Gs�T½A�

x

y

z

8><
>:

9>=
>; dv: ð10Þ

Then equations of motion for an element for the rotating blade subjected to a centrifugal force is
obtained by combining the above equations

½M�ef .ug þ ð½KD�e þ ½KL�e þ ½KG�e 	 ½KR�eÞfug ¼ fFextge þ fFRge: ð11Þ

The equations of motion for the system of the rotating blade in global co-ordinate system can be
obtained by assembling all the governing equations of each element as follows:

½M�gf.dg þ K½ �gfdg ¼ fFgg; ð12Þ

where fdg denotes the displacement vector including the total number of degree of freedom of the
system.

3. Experimental procedure

The experimental set-up for measuring the natural frequencies and mode shapes of the blade–
disk assemblies are plotted in Fig. 2. Ten Kistler acceleration meters are stocked on the blade–disk
assemblies that the finite element model is generated. The MB 50 type 409 20Kgf shaker is used to
excite the blade–disk assemblies. The Kistler acceleration meters will be connected to the Sig-Lab
20–42 FFT machine, the data recollected from the FFT machine, then MEscope software will be
applied to perform the analysis to get the mode shapes and frequencies. The experimental results

ARTICLE IN PRESS

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575552



will be used to compare with that obtained from the finite element analysis. Based on
these comparisons, the results observed from the finite element analysis can be adjudged to
be correct.

4. Modal analysis of a single blade

The finite element model of a single blade is plotted in Fig. 3. ANSYS [37] finite element
package would be used to perform the finite element analysis. The element used in the model is
Solid45 eight node structural element. In this single blade finite element, there were 322 elements
and 641 nodes. The material properties of blade is listed in Table 1.
The free–free vibration of single blade is analyzed without any constraints and the results are

shown in Table 2 and the mode shapes are plotted in Figs. 4–7.
Using hammer to strike and Mescope software to perform the free–free vibration experiments

also obtain the test data. In Table 3 the comparison between the finite element results and the
experimental data is shown.
The results obtained from finite element analysis agree very well with that of the experimental

data. From these comparisons, the finite element model created in Fig. 1 can be used to investigate
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Fig. 2. Vibration equipment set-up.
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the dynamic behavior of the real blade. The mass measured from the finite element model and
weighted using the weight meter is listed in Table 4.
The deviation for both values is only 0.678%; therefore, the finite element model of the blade

can be reliable to simulate the real blade behavior completely.
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Fig. 3. Finite element model of a single blade without disk.

Table 1

Material properties of blade

Young’s modulus Poisson ratio Density syield

2:127E8 kgmm=s2=mm2 0.27 7:77
 10	6 kg=mm3 6:66
 105 kg mm=s2=mm2
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Fig. 4. Mode 1 of a single blade.

Table 2

Free–free vibration natural frequencies and modes

Mode Frequencies (Hz) Modes

1 766.1 Bend

2 1821.5 Twist

3 2243.7 Bend

4 3411.3 Bend+twist
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5. Rotating vibration analysis of a circle of 60 blades with different groups of blades

In this section, the finite element model of a circle of 60 blades comprised of 10 groups of blades
(each group has 6 blades) and 5 groups of blades (each group has 12 blades) and the supported
disk are created. For 10 groups of blades, it was shown in Fig. 8 that each group would have 6
blades. For 6 group of blades, it was shown in Fig. 9 that each group would have 12 blades.
It is hard to see from these finite element models to perceive their differences. It is because these

differences exist only at the connection between the 6th blade and 7th blade in each group. For the
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Fig. 5. Mode 2 of a single blade.
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group of 6 blades it makes sure that there is no connection between the 6th blade and 7th blade.
But for the group of 12 blades, complete connection exists at the location of the shroud of 6th
blade and 7th blade. The other considerations are that material properties and boundary
conditions remain the same. An important consideration with the bottom of the disk is that we
must be sure that the locations of the fixed boundary conditions are at the connection surface
between the disk and major shaft. If the fixed boundary conditions are not at the location of the
connection surface between the disk and major shaft, one gets different nature frequencies and an
erroneous Campbell diagram. Another key point for these models is that the contact element
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Fig. 6. Mode 3 of a single blade.
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Fig. 7. Mode 4 of a single blade.

Table 3

Free–free vibration results

Mode f (Hz) (experiment) f (Hz) FEM Error (%)

1 802.3 766.1 4.47

2 1823.1 1821.5 0.01

3 2212.4 2243.7 	1.43
4 3423.3 3411.3 0.03
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Fig. 8. The finite element model of full circle of 10 groups of 6 blades.

Fig. 9. The finite element model of full circle of 5 groups of 12 blades.

Table 4

Mass comparison

Real measurement (g) Calculation from FEM (g) Error (%)

1043 1049.41 0.678

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575 559



between the blade root and disk used in the static analysis must be deleted and the nodes between
the blade roots and disk must be merged together to perform the dynamic analysis. And based on the
static analysis, the blade root will rise up during the rotating motion and cause the top part of
the neck of each blade root to contact the disk and the bottom part of the neck of each blade
would depart away from the disk. Therefore, the merge of the nodes must be selected carefully to
completely reflect the system’s contact conditions.
The rotating speed of a circle of 60 blades is from 0 to 6000 r.p.m. For getting the accurate

Campbell diagram, the dynamic analysis for full system of 60 blades must be performed with an
increment of 500 r.p.m. The vibration results are shown in Table 5.
From these results, the first vibration group for a circle of blades comprised of a group of 6

blades has 10 modal shapes (frequencies from 331.9 to 336.20Hz) and the range of frequencies is
only about 5Hz. The second vibration group will have 20 modal shapes and frequencies are from
699.70 to 806.66Hz. The third vibration group can get 20 modal shapes. For a circle of 60 blades
comprised of a group of 12 blades, their vibration modes and frequencies are summarized in the
following. The first vibration group only has five modal shapes (frequencies from 339.53 to
343.98Hz), the second vibration group can get 15 modal shapes (frequencies from 714.28 to
900.79Hz), and the third vibration group can get 30 modal shapes. These results indicated that the
first vibration group for a group of 6 blades has 6 five more modal shapes compared with that for
a group of 12 blades. Also the modal shape of the 2nd vibration group and 3rd vibration group of
a group of 12 blades are always less than those of the group of 6 blades. The differences between
these two structures are not so many; their differences can also be shown in the Campbell diagram
plotted in Figs. 10 and 11. In Fig. 10, the Campbell diagram for a group of 12 blades is plotted
and that for a group of 6 blades is plotted in Fig. 11.
In Figs. 10 and 11, the straight line plotted from (0,0) point to the right of the vertical line on

the top line represents the nth harmonics line. The almost horizontal straight line from left side to
the right side is the frequencies line of the blade system as a function of rotating speed. The values
of cross-points of the nth harmonics line with the vibration frequencies line are possible values of
the resonant frequencies. But the possible resonant frequencies must be double checked with the
nodal diameter from the mode shapes, and the nth harmonics line number must be coincident with
the same nodal diameter. Then the frequencies at the cross-point are the exact resonant
frequencies that the structure will get the higher amplitude of vibrations and may cause the
catastrophic failure of blades. From these two Campbell diagrams, the range of the 1st frequency
group for the group of 12 blades is smaller than that of the group of 6 blades. The range of the 2nd
frequency group for the group of 12 blades is larger than that of the group of 6 blades. The range
of the 3rd frequency group for the group of 12 blades is also larger than that of the group of 6
blades. The cross-point for the 1st group of both groups of blades are very closed from the
Campbell diagram. The nodal diameter for both groups of blades is also listed in Table 5. The
very interesting thing is that the system with the group of 6 blades has the nodal diameter number
from 0 to 5 and the nodal diameter is only 0, 1 or 2 for the blade system with the group of 12
blades. The higher nodal diameters number (3, 4, and 5) appeared in the system with the group of
6 blades are not found in the first vibration group of the blade system comprised of the group of
12 blades. For completely distinguishing these differences, the vibration mode shape is shown in
Figs. 12–15 for the system with a group of 6 blades. In Fig. 12, it is obvious that there is no any
nodal diameter are shown in the figure and the concave shape is observed. The symbols A, B,y,I

ARTICLE IN PRESS

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575560



ARTICLE IN PRESS

Table 5

Vibration results of full circle of 10 and 5 groups blade

Vibration frequencies and nodal diameter

Mode 5 groups of 12 blades 10 groups of 6 blades

Frequency (Hz) Nodal diameter Frequency (Hz) Nodal diameter

(Mode 1–37)

1 339.53 T1ND 0 337.09 T1ND 0

2 343.53 T1ND 1 340.96 T1ND 1

3 343.53 T1ND 1 340.96 T1ND 1

4 343.97 T1ND 2 341.16 T1ND 5

5 343.98 T1ND 2 341.20 T1ND 4

6 714.28 B2ND 1 341.20 T1ND 4

7 714.29 B2ND 1 341.32 T1ND 3

8 730.48 B2ND 0 341.32 T1ND 3

9 733.64 B2ND 2 341.43 T1ND 2

10 733.65 B2ND 2 341.43 T1ND 2

11 776.94 B2ND 3 709.88 B2ND 1

12 776.95 B2ND 3 709.88 B2ND 1

13 796.88 B2ND 4 724.17 B2ND 0

14 796.90 B2ND 4 729.92 B2ND 2

15 803.75 B2ND 5 729.93 B2ND 2

16 889.63 B2ND 5 769.09 B2ND 3

17 894.17 B2ND 6 769.11 B2ND 3

18 894.19 B2ND 6 783.83 B2ND 4

19 900.77 B2ND 7 783.85 B2ND 4

20 900.79 B2ND 7 787.73 B2ND 5

21 1318.11 T3ND 4 811.23 B2ND 5

22 1321.03 T3ND 4 811.92 B2ND 6

23 1321.12 T3ND 4 811.93 B2ND 6

24 1321.21 T3ND 5 813.33 B2ND 7

25 1321.21 T3ND 5 813.34 B2ND 7

26 1329.22 B3ND 5 814.69

27 1369.93 B3ND 8 814.70

28 1370.02 B3ND 8 816.27

29 1375.11 B3ND 10 816.28

30 1375.21 B3ND 10 817.19

31 1382.82 B3ND 10 1301.01

32 1387.03 B3ND 12 1341.02

33 1387.12 B3ND 10 1341.02

34 1390.14 B3ND 10 1344.71

35 1390.23 B3ND 10 1344.71

36 1397.21 1347.04

37 1415.62 1347.04

(Mode 38–74)

38 1415.62 1347.33

39 1416.04 1347.33

40 1416.04 1347.33

41 1417.81 1356.41

42 1430.52 1370.62
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at the right side of the figure represent the displacement values. In Fig. 12, all of the displacements
are positive and that indicates all of the blades are deformed in the positive z-direction and the
supported disk does not undergo any displacement. In Fig. 13, one nodal diameter is shown in this
mode. It is clear that the upper left part of the model has F, G, H, and I which represent the
positive displacement and the lower right part of the model has A, B, C, D, and E which represent
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43 1430.52 1370.74

44 1433.04 1373.82

45 1433.04 1373.82

46 1433.12 1375.01

47 1435.62 1375.13

48 1435.62 1375.22

49 1440.61 1375.22

50 1440.61 1375.64

51 1452.71

52 1459.58

53 1458.59

54 1464.53

55 1464.53

56 1473.41

57 1473.56

58 1473.57

59 1473.60

60 1473.62

61 1481.89

62 1496.82

63 1496.83

64 1498.33

65 1498.33

66 1500.21

67 1506.17

68 1506.18

69 1506.33

70 1506.34

71 1506.38

72 1513.61 T1ND4

73 1513.62 T1ND4

74 1518.45 T1ND4

(Mode 75–78)

75 1518.45 T1ND5

76 1520.23 T1ND5

77 1523.66 T1ND5

78 1523.71 T1ND6

Table 5 (continued )

Vibration frequencies and nodal diameter

Mode 5 groups of 12 blades 10 groups of 6 blades

Frequency (Hz) Nodal diameter Frequency (Hz) Nodal diameter
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the negative displacement. Between the positive and negative displacements there exists one line
that there is no displacement value. The above explanations can be used in Figs. 14–19 to
understand the number of nodal diameters. Four nodal diameters are shown in Fig. 14, and three
nodal diameters are plotted in Fig. 15. For comparison, the mode shape for the other blade system
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Fig. 11. The Campbell diagram of the model of 10 groups of 6 blades.
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Fig. 10. The Campbell diagram of the full model of 5 groups of 12 blades.
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with 12 blades groups is shown in Figs. 16–19. In Fig. 16, no nodal diameter is shown because the
concave shape is observed as in Fig. 12. Two nodal diameters are observed in Fig. 17, and 3 are
observed in Figs. 18 and 19.
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Fig. 12. The first mode of the model with 10 groups of 6 blades (Nodal diameter=0).

Fig. 13. The 2nd mode of the model with 10 groups of 6 blades (Nodal diameter=1).

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575564



From these eight mode shapes, we see that for the same cycle of 60 blades the grouping of
blades is different, then dynamic behaviors are also significantly different. In Campbell diagram
for full circle of blades with 10 groups with 6 blades in each group (see Fig. 11), one sees rotating
speeds between 4000 and 4500 r.p.m., the cross-point between the natural frequency line and 5th
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Fig. 14. The 3rd mode of the model with 10 groups of 6 blades (Nodal diameter=4).

Fig. 15. The 4th mode of the model with 10 groups of 6 blades (Nodal diameter=3).

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575 565



harmonics line. The nodal diameter of 5 in the first vibration group of the model with 10 groups of
blades is also listed in Table 5. The other rotating speed around 5500 r.p.m., the cross-point
between the natural frequency line corresponding to the first vibration group and the 4th
harmonics line is obtained. Therein, two resonant rotating speeds appear between 4000 and
4500 r.p.m. and around 5500 r.p.m. could be obtained for the model of 10 groups of 6 blades.
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Fig. 16. The 1st mode of the model with 5 groups of 12 blades (Nodal diameter=0).

Fig. 17. The 2nd mode of the model with 5 groups of 12 blades (Nodal diameter=2).
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Based on the same analytical method, the resonant rotating speed for the model of 5 groups of 12
blades could not be found from Table 5 and Fig. 7. From the Campbell diagram shown in Fig. 10,
the cross-point for the first vibration group of the model with 5 groups of blades is still observed
at the 4th and 5th harmonics lines, but the nodal diameter number shown in Table 5 has no 4 and 5.
From these calculations, it is clear that there is no resonant rotating speed for the system with 5
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Fig. 18. The 3rd mode of the model with 5 groups of 12 blades (Nodal diameter=3).

Fig. 19. The 4th mode of the model with 5 groups of 12 blades (Nodal diameter=3).
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groups of 10 blades in the first vibration group. It means that the resonant vibration behavior
appear in the system of 10 groups of 6 blades and not in the system of 5 groups of 10 blades.
One more interesting thing found is that number of modes in the first vibration group of the

system with 5 groups of 12 blades is less than that found in the system with 10 groups of 6 blades,
in the higher mode listed in the mode numbers 71–77 listed in Table 5. The nodal diameters of 4
and 5 shown in the system of 10 groups of 6 blades right now are shifted to the higher mode
number in the third vibration group for the system of 5 groups of 12 blades. These results pointed
out that changing the blades number in a group cannot delete the original mode but shifts the
lower mode to be higher mode and can avoid the resonant vibration behavior to reduce the chance
of the blade failure.
Based on the above observations, we note that blade system of a group of 6 blades has

opportunity to get the resonant frequencies and the group of 12 blades has no resonant
phenomena in the 1st range of the frequency range. Due to the higher nth harmonics lines in the
range of 2nd and 3rd vibration frequencies, a system with 5 groups of 12 blades will not have any
change to get the resonant phenomena and more detailed analyses are not necessary.

6. Steady state stress analysis of systems of 10 group of 6 blades and 5 groups of 12 blades

The blades in turbine engine will be subjected to many external loads including the centrifugal
force due to the rotating speed, and the surface pressure due to the flowing steam. These loads
may have many interactions between the blades, blade shrouds, blade roots, and disk. The stress
analyses of a circle of 60 blades are performed in this section. The governing equation used in this
analysis is of a simple form: ½k�fug ¼ fFg; where ½k� is the stiffness matrix, fug is the displacement
vector and fFg is the centrifugal force. fFg ¼ ~ZZRIx2; where RI is the distance between any point
in the blade system and the rotating center, and o is the rotating speed.
In this section, the surface contact elements between the blade roots and disk are generated to

replace the merging nodes in the rotating vibration analysis. In Fig. 20, the contact elements for a
group of 6 blades are shown and the detailed contact elements are plotted in Fig. 21. The surface
contact elements for a group of 12 blades are shown in Fig. 22 and the detailed surface contact
elements are plotted in Fig. 23.
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Fig. 20. Surface contact elements created between blade root and disk.
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All these surface contact elements are only generated along the surface between the blade root
and disk contact area. The surface contact elements will have the advantages that the separation
or contact together of the blade root and disk during the blades are under the rotating inertia
loading can be observed clearly. The maximum average stresses at the blade root are functions of
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Fig. 21. Enlargement of the surface contact elements.

Fig. 22. Surface contact elements created between blade root and disk.

Fig. 23. Enlargement of the surface contact elements.
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the rotating speed and are summarized in Tables 6 and 7. The steady state stresses for the system
with different groups of blades are increasing as the rotating speed increases.
The rotating speeds calculated from the Campbell diagram are 4338 and 5650 r.p.m. and are

expected to have the resonant vibration behavior. Two rotating speeds are obtained from different
rotating speeds and multiple harmonic lines.
The stresses obtained here will be the mean stress that is described in the Goodman diagram.

The alternative stress will be calculated from the next section and the harmonic analysis would be
performed. Combination of the mean stresses and the alternative stresses will be used to calculate
the fatigue life.

7. Harmonic analysis of a circle of 60 blades

Harmonic response analysis is a technique used to determine the steady state response of a
linear structure to loads that vary sinusoidally (harmonically) with time. The idea is to calculate
the structure’s response at several frequencies and obtain a graph of some response (usually
displacements) versus frequency, and ‘‘peak frequencies’’. For the details of the procedure, please
see Ref. [37].
The harmonic force that is caused by non-uniform steam flow will apply to the blade system.

The frequency of the harmonic force is a multiple of the natural frequency of the blade system. If
the frequency of the harmonic force is very close or equal to the nature frequency of the blade
system, the resonant vibration will be observed and large vibration amplitude of the blade system
will be obtained and the fatigue life of the system will be reduced very much. The governing
equation for harmonic analysis is the following:

½M�f .ug þ ½C�f ’ug þ ½k�fUg ¼ Fne
inwt;

where ½M� is the mass matrix, ½C� is the damping matrix, ½k� is the stiffness matrix, fug is the
displacement vector, Fn is the amplitude of the harmonic force, and o is the rotating speed.
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Table 6

Static rotating analysis results for a group of 6 blades (contact element)

RPM 1000 2000 3000 4000 5000 6000

DMX (mm) 0.012318 0.03871 0.094371 1.19E	01 1.84E	01 2.49E	01
s eqv (mpa) (Ave.) 5.91 15.68 34.43 43.08 65.02 86.96

Table 7

Static rotating analysis results for a group of 12 blades (contact element)

RPM 1000 2000 3000 4000 5000 6000

DMX (mm) 0.013309 0.041824 0.10198 1.29E	01 1.99E	01 2.69E	01
s eqv (mpa) (Ave.) 6.29 16.68 36.61 45.71 69.08 92.47
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The exciting force is represented by sine function and is called harmonic exciting force. The
stiffness matrix is not only from the structure itself, but also from the rotating speed of the
structure.
The rotating speeds applied in this analysis were 4338 and 5650 r.p.m. obtained in the previous

section. The forces Fn applied to the airfoil of the blade are difficult to get, when computational
fluid dynamic (CFD) is applied to perform analyses and even then one may have to spend much
time. In this research, a simplified method is proposed in this analysis based on pressure and
temperature at inlet and outlet of turbine engine with the Mollier map of water that showed the
relationship between enthalpy (h), entropy (s), temperature and pressure. For one steam turbine
engine, the inlet pressure is 138 PSIG (gage pressure) and temperature is 680�F, the outlet
pressure is 2.6 in HgA (A=absolute pressure) and it is equal to 1.28 psi. The atmosphere pressure
is 14.7 psi, and hence, the inlet pressure will be 138 psi+14.7 psi=152.7 psi.
Combining all these data with the Mollier map one gets a pressure of 1.8 psi at pressure side and

1.277 psi at suction side of the blades. The damping ratio is 0.2% and it is the average values from
the modal tests. The mode superposition method is selected to perform the harmonic analysis.
Due to the high stress appearing near node 225, the harmonic responses are plotted at this node
number. The frequency response at node number of 225 is shown in Fig. 24 for the rotating speed
5650 r.p.m. and in Fig. 25 for the rotating speed 4338 r.p.m.
From both of these results, the resonant frequency is around 360Hz. The exact resonant

frequency ith a rotating speed of 5650 r.p.m. is 376.8Hz. The stress distributions for these
resonant conditions that corresponding to the rotating speed of 5650 r.p.m. are plotted in Fig. 26
and that corresponding to the rotating speed of 4338 r.p.m. in Fig. 27. Also the location of peak
stresses is at the location of initial crack. This initial crack location results in the failure of the
blade. The location of the peak stresses found here is exactly in the location shown in Fig. 1 in
which the in-site picture of the blade failure is provided.
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Fig. 24. The frequency response at node 225 for model with 10 groups of 6 blades (r.p.m.=5650).
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8. Conclusions

The free–free vibration of a single blade from the finite element analytical results can match
very well with the experimental data. The natural frequency of a single blade obtained from FEM
is only within 5% difference compared with the test results. The mode shapes from FEM agree
completely with the results observed in the experimental results. Therefore, the finite element
method is confirmed by the experimental tests to be a good method for performing dynamic
analysis of complicated geometric blades.

ARTICLE IN PRESS

Fig. 25. The frequency response at node 225 for model with 10 groups of 6 blades (r.p.m.=4338).

Fig. 26. Stress distribution of the blade root from the harmonic analysis (r.p.m.=5650).
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The Campbell diagram obtained from circles of 60 blades but having different number of
groups can be used to calculate their resonant rotating speed. Combination of the Campbell
diagram and mode shapes for the model with 5 groups of 10 blades are not found in the first
vibration group. The model with 10 groups of 6 blades resonant rotating speeds of 4338 and
5650 r.p.m. and their corresponding stresses are also obtained through the harmonic analysis. The
location of the maximum stresses is observed from the FEM and is completely matched with the
observation from in-site field as shown in Fig. 1.
The other interesting conclusion is that the nodal diameters 4 and 5 observed in the first

vibration group of the model with 10 groups of 6 blades are not observed in the same vibration
range of the model with 5 groups of 12 blades. Although all of these mode shapes for nodal
diameters of 4 and 5 for the model with 5 groups of 12 blades do not appear in the first vibration
group, they can be observed in the higher mode numbers such as 71–77 that belong to the higher
mode of the third vibration group. Therein, the mode shapes of the higher nodal diameter in the
first vibration group in the model with 10 groups of blades shifts to the third vibration group of
the model with 5 groups of 12 blades. And this shift has a significant effect in that the resonant
rotating speed disappears in the model with 5 groups of 12 blades but is found in the model with
10 groups of 6 blades. This means that a circle of 60 blades with 5 groups of 12 blades can avoid
resonant vibration and extend their fatigue life.

References

[1] S.P. Timoshenko, Vibration Problems in Engineering, Van Nostrand, Princeton, NJ, 1955.

[2] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1961.

[3] J.S. Rao, J.H. Wang, Lecture Notes on Rotor Dynamics, Unsteady Blade Loading, Blade Heat Transfer and Blade

Vibration of Turbomachines, Part II, Head Office of Taiwan Power Company, Taipei, Taiwan, ROC, August

1995.

ARTICLE IN PRESS

Fig. 27. Stress distribution of the blade root from the harmonic analysis (r.p.m.=4338).

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575 573



[4] N.O. Myklestad, New method of calculating natural modes of uncoupled bending vibration, Journal of Aerosol

Science 48 (1944) 153.

[5] M.A. Prohl, A general method of calculating critical speeds of flexible rotors, Journal of Applied Mechanics,

American Society of Mechanical Engineers 12 (1945) A–142.

[6] B. Downs, Vibration analysis of turbomachinery blades using dedicated discretization and twisted beam theory,

ASME, 79-DET-85.

[7] W. Carnegie, J. Thomas, The coupled bending-bending vibration of pre-twisted tapered blading, Journal of

Engineering for Industry Transactions, American Society of Mechanical Engineers 94 (1972) 255.

[8] W. Carnegie, J. Thomas, The effect of shear deformation and rotary inertia on the lateral frequencies of cantilever

beams in bending, Journal of Engineering for Industry Transactions, American Society of Mechanical Engineers

94 (1972) 267.

[9] O.C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.

[10] E. Dokumaci, Development and Application of the Finite Element Method to the Vibration Of Beams, Ph.D.

Thesis, University of Surrey, England, 1968.

[11] W. Carnegie, J. Thomas, E. Dokumaci, An improved method of matrix displacement analysis in vibration

problems, Aeronautical Quarterly 20 (1969) 321.

[12] A.V.K. Murthy, S.S. Murthy, Finite element analysis of rotor, Mechanism and Machine Theory 12 (4) (1977) 311.

[13] R.S. Gupta, S.S. Rao, Finite element eigen value analysis of tapered and twisted Timoshenko beams, Journal of

Sound and Vibration 56 (2) (1978) 187.

[14] B.A.H. Abbas, Simple finite elements for dynamic analysis of thick pre-twisted blades, Aeronautical Journal 83

(827) (1979) 450.

[15] S. Putter, H. Manor, Natural frequencies of radial rotating beams, Journal of Sound and Vibration 56 (2) (1978)

175.

[16] V.K. Singh, S. Rawtani, The effect of root flexibility on torsional vibration of uniform section blades, International

Journal Mechanical Science 21 (3) (1979) 141.

[17] V.T. Nagaraj, N. Sabu, Torsional vibrations of non-uniform rotating blades with attachment flexibility, Journal of

Sound and Vibration 80 (3) (1982) 401.

[18] N.F. Rieger, W.J. Nowak, Analysis of Fatigue Stresses in Steam Turbine Blade Groups, EPRI seminar on Steam

Turbine Availability, Palo Alto, CA, January 1977.

[19] J. Thomas, H.T. Belek, Free vibrations of blade packets, Journal of Mechanical Engineering Science 19 (1)

(1977) 13.

[20] A.L. Salama, M. Petyt, Dynamic response of packets of blades by the finite element method, Journal of

Mechanical Design Transactions, American Society of Mechanical Engineers 100 (4) (1978) 660.

[21] F.E. Sagendorph, Natural frequencies of mid-span shrouded fan blades, presented at ASME Vibration

Conference, 1977.

[22] H.M. Lee, G.C. Foile, L.B. Perkins, Finite Element Analysis of the Space Shuttle Main Engine (SSME) High

Pressure Full Turbo Pump Turbine Blade (HPEIP), Marshall Space Flight Center letter EHZE 137-28, Huntsville,

Albama, Harch, 1987.

[23] A. Bazoune, Y.A. Khulife, A finite element for vibration analysis of rotating tapered Timoshenko beams, Journal

of Sound and Vibration 156 (1) (1992) 141–164.

[24] V. Omparkash, T.C.T. Lam, D. Gruwell, T.H. McCloskey, Life extension strategies of cracked disk attachment for

the power generation Industry, American Society of Mechanical Engineers (1994) 139–164.

[25] O. Rand, Free vibration of thin-walled composite blades, Composite Structures 28 (1994) 169–180.

[26] T.N. Shiau, Y.D. Yu, E.P. Kuo, Vibration and optimum design of rotating laminated blades, Composites Part B

27 (1996) 173–183.

[27] K.M. Liew, C.W. Lim, A global continuum Ritz formulation for flexural vibration of pretwisted trapezoidal plates

with one edge built in, Computer Methods in Applied Mechanics and Engineering 114 (1994) 233–247.

[28] K.M. Liew, M.K. Lim, C.W. Lim, D.B. Li, Y.R. Zhang, Effects of initial twist and thickness variation on the

vibration behaviour of shallow conical shells, Journal of Sound and Vibration 180 (2) (1995) 271–296.

[29] C.W. Lim, K.M. Liew, Vibration of pretwisted cantilever trapezoidal symmetric laminate, Acta Mechanica 111

(1995) 193–208.

ARTICLE IN PRESS

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575574



[30] K.M. Liew, C.W. Lim, Vibratory characteristics of pretwisted cantilever trapezoids of unsymmetric laminates,

American Institute of Aeronautics and Astronautics Journal 34 (5) (1996) 1041–1050.

[31] C.W. Lim, K.M. Liew, S. Kitipornchai, Free vibration of pretwisted, cantilevered composite shallow conical shells,

American Institute of Aeronautics and Astronautics Journal 35 (2) (1997) 327–333.

[32] H.T. Lin, J.J. Lin, Nonlinear hydro elastic behavior of propellers using a finite-element method and lifting surface

theory, Journal of Marine Science and Technology 1 (1996) 114–124.

[33] R. Bladh, M.P. Castanier, C. Pieer, Reduced order modeling and vibration analysis of mistuned blade disk

assemblies with shrouds, Journal of Engineering for Gas Turbines and Power 121 (1999) 515–522.

[34] K.J. Bathe, S. Bolourchi, A geometrical and material nonlinear plate and shell element, Computers and Structures

11 (1980) 23–48.

[35] W.E. Haisler, J.A. Stricklin, Development and evaluation q solution procedures for geometrically nonlinear

structural analysis, Journal of American Institute of Aeronautics and Astronautics 10 (1972) 264–272.

[36] S. Sreenivasa marshy, V. Ramamurti, A parametric study of vibration of rotating pre-twisted and tapered low

aspect ratio cantilever plates, Journal of Sound and Vibration 76 (1981) 311–328.

[37] ANSYS 6.1 User’s Manual, ANSYS Inc., Canonsburg, PA, 2002.

ARTICLE IN PRESS

G.-C. Tsai / Journal of Sound and Vibration 271 (2004) 547–575 575


	Rotating vibration behavior of the turbine blades with different groups of blades
	Introduction
	Background of theory
	Experimental procedure
	Modal analysis of a single blade
	Rotating vibration analysis of a circle of 60 blades with different groups of blades
	Steady state stress analysis of systems of 10 group of 6 blades and 5 groups of 12 blades
	Harmonic analysis of a circle of 60 blades
	Conclusions
	References


