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Abstract

This paper studies the dynamics and control of the Gough–Stewart platform for vibration control of a
flexible supporting structure. The problem arises from a large radio telescope in which the astronomical
equipment is mounted on a platform to be stabilized by a Gough–Stewart platform, while the base platform
of the mechanism itself is carried by a vibrating cable-car that moves along flexible cables. As the base
platform is not fixed on the ground, the reaction force caused by the motion of the stabilized platform will
lead to perturbation on the base platform, and will induce vibration of the whole system. To study the
feasibility for vibration control, this paper models the Stewart parallel mechanism as a multi-body systems
with an elastically restrained base platform by the Newton–Euler method and proposes a PD control law
based on the position prediction of the two platforms. Control simulations are carried out with the
simulated wind excitations. The control effects are evaluated by comparing the root-mean-square responses
of the stabilized platform.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The Gough–Stewart platform [1] has the capability to control the six degrees of freedom of its
payload platform, and has been proven to be of high positioning accuracy while maintaining high
force-to-weight ratio. So, it is chosen to stabilize the receivers of a 500m-aperture radio telescope
[2], which has a spherical focal surface with an aperture of 250m and the focal surface is 150m
above the reflector. To observe 5GHz radio waves, the astronomical receivers are required to
follow tracks on the focal surface with 4mm positioning precision. In the platformless-feed-
support concepts [3,4], the receivers are either driven by cables or carried by a cable car. The
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expected wind-induced vibration might be as high as 0.5m, much higher than the specifications.
The Gough–Stewart platform in this application has two movable platforms connected by six
extensible legs. One of the platforms is the stabilized platform, on which the astronomical
receivers are fixed, the other is the base platform that is mounted on the cable car. The objective is
to alleviate the vibration of the stabilized platform by adjusting the six actuators on the legs with
appropriate control laws when the base platform vibrates with the wind-induced cable car.

There are many publications on the dynamics and control of the Gough–Stewart platform
[5–9], but in most of these works, the base platform is fixed. Studies [10,11] have investigated the
use of Gough–Stewart platform for vibration isolation, but they are concentrated on vibrations of
small amplitude and as the inertia of the base is much higher than that of the payload, the couple
effect of the two platforms is not prominent.

In the application presented in this paper, the two platforms are dynamically coupled. The
reaction force caused by the motion of the stabilized platform will lead to perturbation on the
base platform, and will induce vibration of the whole system. This paper models the Gough–
Stewart parallel mechanism as a multi-body system with a flexible supported base platform and
proposes a PD control law based on the position prediction of the two platforms. Firstly, the
Gough–Stewart platform for active vibration reduction is briefly introduced and the system is
described as a standard control system. Then, the rigid multi-body modelling of the system is
carried out in terms of the Newton–Euler equations. Finally, a PD control law is proposed and
the control effects are simulated under the generated wind excitations. Conclusions regarding the
feasibility of the Gough–Stewart platform for active vibration reduction are tentatively drawn.

2. The description of the plant

The model of the radio telescope is shown in Fig. 1. As shown in Fig. 2, the flexible supporting
structure (including 8 suspension load cables and 4 pretension stabilized cables) supports the base
platform (including the cable car in the Fig. 1) of the Gough–Stewart platform. The two platforms
are connected by six extensible legs with spherical joints at the stabilized platform end and
universal joints at the base platform end. The payloads are installed on the stabilized platform.
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Fig. 1. Support structure of the radio telescope.
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The objective is to alleviate the vibration of the stabilized platform by adjusting the six
actuators when the base platform is disturbed by winds or other unknown excitations. The
controlled variables of the system are displacements of the stabilized platform and the controls are
the strokes of the six actuators on the legs. Assuming the position of the two platforms can be
observed, the control system can be illustrated by Fig. 3: through observing the responses of the
base platform #ra and the stabilized platform #rb; predict the position vector %ra of the base platform
and find the appropriate control uðtÞ; i.e., strokes for the six actuators so that the displacement
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Fig. 2. Working diagram of the flexible supported Stewart platform. 1–8: suspension cables; 9–12: pretension stabilized

cables.

Fig. 3. Schematic representation of the control system.
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xb ¼ #rb � %rb of the stabilized platform from its ideal position %rb is under the given root-mean-
square specification ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½xbiðtÞxbiðtÞ�
p

pdi; ð1Þ

where i ¼ 1; 2;y; 6 indicate the six components of xb: In Fig. 3, the top operator ‘‘
V

’’ gives
observed state, and ‘‘�’’ gives predicated valuable or ideal position.

3. The governing equations of the plant

In this section, the dynamic modelling of the multi-body system of the plant is carried out in
terms of the Newton–Euler equations with Lagrange multipliers.

3.1. The governing equations of the plant

The multi-body dynamics model of the Gough–Stewart platform mechanism shown in Fig. 2
includes 14 rigid bodies. Two of which represent the base and stabilized platforms, and every leg is
composed of two rigid bodies. Fig. 4 illustrates the base platform, stabilized platform and the ith
leg of the Gough–Stewart platform. In the following equations, the subscript ‘‘a’’ denotes the base
platform, ‘‘b’’ denotes the stabilized platform, ‘‘Ui’’ denotes the upper part of the ith leg and ‘‘Li’’
denotes the low part of the ith leg (i ¼ 1; 2;y; 6). Let X 0

kY 0
kZ0

k be the corresponding local
reference frame, let rk denote the position vector of center of mass of body k; and pk be the Euler
parameter orientation co-ordinates of the kth rigid body with reference to the global reference
frame XYZ: Let s0ai and s0bi; respectively, denote the position vector of point Pai in the frame
X 0

aY 0
aZ0

a; and that of point Pbi in X 0
bY 0

bZ0
b:
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Fig. 4. Diagrammatic representation of connecting the two platforms.
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To further simplify the notation, define

r ¼ rTa ; r
T
b ; r

T
U1; r

T
L1;y; rTU6; r

T
L6

� �
;

p ¼ pT
a ; p

T
b ; p

T
U1; p

T
L1;y; pT

U6; p
T
L6

� �
;

G ¼ diag ðGa;Gb;GU1;GL1;y;GU6;GL6Þ;

M ¼ diag ðmaI3;mbI3;mU1I3;mL1I3;y;mU6I3;mL6I3Þ;

J0 ¼ diagðJ0a;J
0
b; J

0
U1;J

0
L1;y;J0U6;J

0
L6Þ;

FA ¼ FAT
a ;FAT

b ;FAT
U1;F

AT
L1 ;y;FAT

U6;F
AT
L6

� �
;

n0A ¼ n0AT
a ; n0AT

b ; n0AT
U1 ; n

0AT
L1 ;y; n0AT

U6 ; n
0AT
L6

� �
: ð2Þ

where mk is the mass of the kth body. FA
k and n0Ak are the force and torque acting on the kth body,

including applied force and torque as well as and constraint force and torque. J0k is the moment of
inertia with respect to the origin of the centroidal reference frame of the ith body. The 3� 4
matrix Gk is defined in Eq. (A.5) (Appendix A) and I3 is the 3� 3 identity matrix.

The Newton–Euler formulation with Lagrange multipliers of the governing equations of the
Euler parameters of the system is given by [12]

M 0 UT
r 0

0 4GTJ0G UT
p UPT

p

Ur Up 0 0

0 UP
p 0 0

2
66664

3
77775

.r

.p

k

kp

2
6664

3
7775 ¼

FA

2 ’G
T
n0A þ 8 ’G

T
J0 ’Gp

c

cp

2
66664

3
77775; ð3Þ

where, k and kpare the vectors of Lagrange multipliers, and

Up
p ¼ 2

pT
a 0 ? 0

0 pT
b ? 0

^

0 0 ? pT
L6

2
6664

3
7775 ð4Þ

with

cp ¼ �2

’pT
a ’pa

’pT
b ’pb

’pT
L6 ’pL6

2
66664

3
77775: ð5Þ

Here Ur; Up and c are, respectively, the assembled constraint Jacobian and the acceleration
equation of the joints. In this paper the 6-TPS platform (6 Spherical joints, 6 Universal joints and
6 Cylindrical joints) is studied. The detailed derivation of the constraint equations for these joints
is given in Ref. [12].
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3.2. Driven force of the legs

The plant is controlled by adjusting the six actuators when the base platform is disturbed by
winds or other unknown excitations. Let uiðtÞ be the driven force of the ith leg, in this case

uiðtÞ ¼ ui liðtÞ; ’liðtÞ
� 


ði ¼ 1;y; 6Þ; ð6Þ

where liðtÞ and ’liðtÞ are, respectively, the length and sliding velocity of the ith leg.
For the ith actuator, the general driven force vector acted on the base and stabilized platforms

can be partitioned as

Fai

n0ai

" #
¼

uðtÞi
dUiLi

dUiLi

2GT
a *s

0
aiA

T
a dUiLi

" #
;

Fbi

n0bi

" #
¼ �

uðtÞi
dUiLi

dUiLi

2GT
b *s

0
biA

T
b dUiLi

" #
;

ð7Þ

where dUiLi is the length of vector dUiLi: Ai represents the transformation matrix of the ith rigid
body with respect to the global reference frame defined in Eq. (A.6) (see Appendix A). The top
operator ‘‘B’’ gives the skew matrix of a vectors. Thus in Eq. (7), *s is defined as

*s ¼

0 �sz sy

sz 0 �sx

�sy sx 0

2
64

3
75: ð8Þ

3.3. The supporting cable

In the analysis of the plant, the supporting cables are modelled with springs and dampers.
Consider the spring-damper model, shown in Fig. 5, which connects point Pi ði ¼ 1;y; 12Þ on the
base platform and Pj ðj ¼ 1;y; 12Þ on the fixed reference frame (in the radio telescope, Pj is on
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Fig. 5. Spring–damper model of cable.
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the stabilized tower or on the ground). The vector from Pi to Pj is

dij ¼ rj � ra � Aas
0
ai: ð9Þ

Thus, the square of the length of the cable is given by

l2ij ¼ dT
ijdij ð10Þ

and the time rate of the change of the length is

’lij ¼
dij

lij

� �T

ð’rj � ’raAa*s
0
aix

0
aÞ; ð11Þ

where x0 represents the relative angular velocity of the rigid body defined as

x0 ¼ 2G’p: ð12Þ

The magnitude of force acting on the base platform by the jth cable, with tension taken as
positive, is

fj ¼ kðlij � lij0Þ þ c’lij; ð13Þ

where k is the spring coefficient, c is the damping coefficient, and lij0 is the initial length of the jth
cable.

Thus, in term of Euler parameters of the general constrained force acted on the base platform is
given by

Faj

n0aj

" #
¼

fj

lij

dij

2GT
a *s

0
aiA

T
a dij

" #
: ð14Þ

The general control force vectors acting on the base platform by the 12 cables are

Fa

n0a

" #
¼

P12
i¼1 FajP12
i¼1 n

0
aj

" #
: ð15Þ

4. The PD control law based on the prediction

4.1. The prediction of the platform

Due to the large inertia of the base platform, the motion of the base platform can be predicted
in short time with the current states. Let T be the sample interval in seconds, xðkÞ be the value of x
at kT (k is an integer). The position of the base platform %raðk þ 1Þ can be predicted in the next T
with

%raðk þ 1Þ ¼ #raðkÞ þ #vaðkÞT þ 0:5#aaðkÞT2 ð16Þ

Here, #raðkÞ; #vaðkÞ and #aaðkÞ are, respectively, the current observed position vector, the velocity
vector and acceleration vector of the base platform. So the predicted position %rP

aiðk þ 1Þ of the
upper mounting point of the ith actuator Pai (see Fig. 4) is

%rP
aiðk þ 1Þ ¼ %raðk þ 1Þ þ Aaðk þ 1Þs0ai: ð17Þ
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Take the predicted position of the base platform as reference signals, a control for the next T is:
adjust the lengths of the legs making the stabilized platform at the ideal position while the base
platform at the predicted position. It is illustrated in Fig. 6, where %liðk þ 1Þ and liðkÞ are,
respectively, the predicted and current length of the ith actuator strut.

As shown in Fig. 4, denote %rP
bi ¼ %rb þ Abs

0
bi the ideal position vectors of point Pai of the

stabilized platform in the global reference frame. The predicted lengths of the legs can be
expressed as

%liðk þ 1Þ ¼ jj%rP
aiðk þ 1Þ � %rP

biðk þ 1Þjj ði ¼ 1;y; 6Þ: ð18Þ

By the same method of obtaining Eq. (11), the sliding velocities of the ith leg are

%’liðk þ 1Þ ¼
ð%rP

aiðk þ 1Þ � %rP
biðk þ 1ÞÞT

%liðk þ 1Þ
ð#vaðkÞ þ ’Aas

0
ai � %vbðkÞ � ’Abs0biÞ; ð19Þ

where %vb is the ideal velocity of the stabilized platform.
The position vector of the base platform can be sampled:

raðkÞ; raðk � 1Þ; raðk � 2Þ;y : ð20Þ

As the three-dimensional velocities and the accelerations of the base platform are difficult to
measure in such low frequency (about 0.2Hz), only the position responses of the base platform
are directly measured and the velocities and accelerations are estimated by the finite difference
method. For smoothing the velocity, the following equations can be used for the velocity:

#vaðkÞ ¼
1:5raðkÞ þ 0:5raðk � 2Þ � 2raðk � 1Þ

T
ð21Þ

and the accelerations can be obtained as

#aaðkÞ ¼
#vaðkÞ � #vaðk � 1Þ

T
: ð22Þ
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Fig. 6. Predicted lengths of the actuators.
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4.2. The PD control law

Since the objective of this application is to stabilize the stabilized platform, we assume it almost
still in the global frame. Thus, the control laws not considering dynamic coupling of the two
platforms can be used to see whether or not could the stabilized platform be controlled. Based on
above prediction of the two platforms, a PD control law is proposed to stabilize the lower
platform. The errors between the predicted and the present lengths and sliding velocities of the
legs are used to determine the required force of the six actuators. The control law of the ith leg can
be written in the following form:

uiðk þ 1Þ ¼ �ðKpÞið%liðk þ 1Þ � liðkÞÞ%iiðk þ 1Þ; i ¼ 1; 2;y; 6; ð23Þ

where ðKpÞi and ðKvÞi are, respectively, the position and velocity gains.

5. Simulation results

In this section, simulation results for the plant are computed via the model described in the
previous sections. The dimensions of the plant are shown in Fig. 7. The system includes: base
platform, the stabilized platform and the six actuators. The base platform is supported by 12
springs, including 8 suspension springs and 4 stabilized springs (see Fig. 2). The parameters of the
Gough–Stewart platform are given in Appendix B.

The Adaptive Adams methods with Runge–Kutta Starters [13] and the generalized co-ordinate
partitioning approach [12] are used to solve Eq. (3). The algorithms are implemented with the
object-oriented C++ language.

In the simulations, the assumed values of position and velocity gains of the Control Law (23)
are (arrived at by trail and error), respectively, ðKpÞi ¼ 20; 0000 and ðKvÞi ¼ 24; 500 for i ¼
1; 2;y; 6: The spring coefficient of the springs is 20,000N/m and the damping ratio x ¼ 0:05: The
selection of the parameters of the springs is to insure that the main frequency of the plant is about
0.2Hz. For the simulation model the stable control-updating period is 0.1 s and control lag is
0.02 s.
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Fig. 7. Dimensions of the plant.
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5.1. The simulation of wind load

According to the past records, the maximum horizontal wind velocity in the area where the
radio telescope will be set up is 8.2m/s. The wind load on the cable car is simplified as
concentrated forces applied at the center of the base platform. As the area of cable car is
15m� 8m, the maximum horizontal force acting on the cable car is about 10,000N. The area of
the 12 cables is about (300m� 8+150� 4)� 0.04m (assume the diameter of cables is 0.04m), the
maximum wind load on these cables is about 10,000N. Half the load is equivalent on the cable
car. So the equivalent wind load on the cable car is about 15,000N. Three random samples are
generated in three directions. Every sample includes a mean part of 15,000N and a pulsating part
of 1000N. One of the force samples is shown in Fig. 8.

The responses of the centers of mass of the base platform and the stabilized platform in X and
Z directions and the rotation of the platforms around the X -axis are compared in Fig. 9.

The time histories of stroking forces and the sliding velocity of a typical leg are depicted,
respectively, in Figs. 10 and 11.

The root-mean-square deviation in X ; Y and Z direction and around X -, Y - and Z-axis of the
base platform and the stabilized platform are compared in Table 1. It implies that the amplitude
of the vibration could be reduced more than 15 times by the PD control law.

According to the above simulating results, the request of the sliding velocity is 1m/s, the
maximum elongation of the legs is 1.5m and the maximum and minimum lengths of each leg are,
respectively, 8.6 and 7.1m.

5.2. The dynamic responses of step input

As the transfer function or frequency response data of the system is difficult to obtained, in
order to study the effect of the dynamic coupling between the two platforms, the responses of the
two platforms on a step position input to the stabilized platform are simulated.

The dynamic responses of the two platforms under a step position change of 0.5m on the
stabilized platform in X and Z directions in the global reference frame from zero initial velocity of
both platforms are shown, respectively, in Figs. 12 and 13. From the figures, one can see that the
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Fig. 8. Sample of wind loads.
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reaction forces caused by the motion of the stabilized platform leads to perturbation on the base
platform. The time history of stroking force of a typical leg with respect to a step position input of
0.5m on the stabilized platform in X direction is depicted on Fig. 14. It shows that the stroking
force of the leg is convergent after a step load is put on the system.

ARTICLE IN PRESS

Fig. 9. Time histories of the responses of the two platform (with PD control): (a) displacement in X direction,

(b) displacement in Z direction, (c) the angular responses around X -axis.
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6. Conclusions

This paper studies the feasibility of using the Gough–Stewart parallel mechanism to stabilize a
platform on a vibrating base platform. The stabilization problem is equivalent to a dynamics and
control problem of rigid multi-body system. The PD control law is proposed for the six actuators
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Fig. 10. Variation of the actuation forces.

Fig. 11. Elongation velocity of the typical leg.

Table 1

Response of root-mean-square deviation

X (m) Y (m) Z (m) yx (deg) yy (deg) yz (deg)

Base platform 0.094 0.122 0.279 1.68 1.32 0.004

Stabilized platform 0.0064 0.0067 0.0035 0.09 0.08 0.006
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Fig. 12. Step responses in X direction.

Fig. 13. Step responses in Z direction.

Fig. 14. The stroking force of a typical leg with respect to a step input of 0.5m in stabilized platform in X direction.
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of the system, in which the predicted inertial motion of the base platform is used as the reference
input for the control problem. The finite difference method is used to estimate the velocity and
acceleration of the base platform from the measured displacement. The simulations of the system
show that the Gough–Stewart platform, with the proposed control law, is effective for vibration
stabilization provided the control updating frequency is high enough.

The prediction and PD control law suggested in Section 4 can be used in real-time control. In
practical applications, the rigid body position and orientation of the base and stabilized platforms
can be determined by measuring the co-ordinates of three points with optical methods. In our
present experiment on a model system (1:10), the position of base platform is measured with three
Laser Automatic Total Stations (TPS1100), whose positioning accuracy is p1mm (for static
measure), and p3mm (for tracking).
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Appendix A. The generalized co-ordinate of Euler parameters

Euler parameters [12] are used as the orientation parameters of a body with the normalization
relationship as the algebraic constraint. The base point co-ordinates of the centroidal body-fixed
reference frame of ith body in the global frame are denoted by

ri ¼ ðxi yi ziÞ
T: ðA:1Þ

The Euler parameters for the ith body are denoted by

pi ¼ ðe0
i e1

i e2
i e3

i Þ
T: ðA:2Þ

The normalization condition is

Up
i ¼ pT

i pi � 1 ¼ 0: ðA:3Þ

Two 3� 4 matrix Ei and Gi is defined as

Ei ¼

�e1
i e0

i �e3
i e2

i

�e2
i e3

i e0
i �e1

i

�e3
i �e2

i e1
i e0

i

2
64

3
75; ðA:4Þ

Gi ¼

�e1
i e0

i e3
i �e2

i

�e2
i �e3

i e0
i e1

i

�e3
i e2

i �e1
i e0

i

2
64

3
75: ðA:5Þ

The transformation matrix

A ¼ EGT: ðA:6Þ

ARTICLE IN PRESS

Y. Cheng et al. / Journal of Sound and Vibration 271 (2004) 599–614612



Appendix B. The parameters of the Gough–Stewart platform

The details of the Stewart parallel mechanism used in this application are given as follow:
Base platform (in the base platform frame):

Pai ¼ 4:9 cos ð2ði � 1Þp=37p=12Þ 4:9 sin ð2ði � 1Þp=37p=12Þ 0
� �T

;

i ¼ 1; 2; 3:

Stabilized platform (in the stabilized frame):

Pbi ¼ 1:8 cos ð7ip=3Þ 1:8 sinð7ip=3Þ 0
� �T

; i ¼ 1; 2; 3:

The upper and lower mounting point Pai and Pbi in their local frame X 0
UiY

0
UiZ

0
Ui and X 0

LiY
0
LiZ

0
Li

are (see Fig. 4)

Pi
ai ¼ 0 0 2

� �T
; i ¼ 1; 2;y; 6

and

Pi
bi ¼ 0 0 0:2

� �T
; i ¼ 1; 2;y; 6:

The inertia parameters of the system and initial positions of the platforms are listed,
respectively, in Tables 2 and 3. (The initial velocities and accelerations of the two platforms are
zero.)
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