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Abstract

The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural
dynamics is known to provide very accurate solutions, while reducing the number of degrees of freedom to
resolve the computational and cost problems. Thus, in the present paper, the spectral element model is
formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of
the present spectral element is then verified by comparing its solutions with the conventional finite element
solutions and exact analytical solutions. The effects of the axial velocity and axial tension on the vibration
characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are analytically and
numerically investigated.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving structures are of technological importance and present in a wide class of
engineering problems which arise in industrial, mechanical, civil, aerospatial, automotive and
electronic applications in the form of threadlines in the textile industry, chain and belt drives,
high-speed paper and magnetic tapes, band saw blades, fiber winding, filaments, aerial cable
tramways, cooling tower strips and the like. Recent developments in research on axially moving
structures have been reviewed by Wickert and Mote [1] and Pellicano and Vestrani [2].

The axial velocity of a structure may significantly affects the dynamic characteristics of the
structure even at low velocity, giving rise to variations of natural frequencies and complex modes.
Above a certain critical axial velocity, the axially moving structures may experience severe
vibrations and structural instability to result in structural failures. Thus, it is very important to
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accurately predict the dynamic characteristics and instability of such structures in advance for the
successful analysis and optimal design of a broad class of technological devices.

The axially moving beam-like one-dimensional structure with flexural rigidity has been
traditionally represented by the linear or non-linear Euler—Bernoulli beam theory [2-26] by
assuming that the beam is relatively thin as compared with its length. It appears that, to the
authors’ knowledge, there have been very few studies on the axially moving beam-like one-
dimensional structures in which Timoshenko beam theory was used. It is in this context that the
structure theory considered in this paper is the Timoshenko beam theory. Simpson [27] was
probably the first to derive the equations of motion for the moving thick beam on the basis of the
Timoshenko beam theory, but no numerical results were given. Later, Chonan [28] studied the
steady state response of a moving Timoshenko beam by applying Laplace transform method.
Simpson [27] did not consider the axial tension in their equations.

The solutions of the equations of motion for moving beams have been obtained by various
solution techniques including the Galerkin’s method [2-9], assumed mode method [10], finite
element method (FEM) [11,12], Green’s function method [13], transfer function method [14],
perturbation method [15-17], asymptotic method [18,19], and the Laplace transform method [28].
In the literature [29,30], it has been well recognized that the spectral element method (SEM) is one
of very accurate solution methods for the dynamic analysis of structures. In SEM, the spectral
element matrix (or exact dynamic stiffness matrix) is formulated in frequency-domain by using
exact dynamic shape functions. Therefore, it does not require any structural discretization to
improve the solution accuracy for a uniform beam, regardless of its length. As it is one of element
methods, the conventional finite element assembly procedure can be equally applied to formulate
the global system dynamic equation of a structure. In SEM, the dynamic responses in frequency-
and time-domains are computed very efficiently by using the forward-FFT (simply, FFT) and
inverse-FFT (simply, IFFT) algorithms. Recently, Le-Ngoc and McCallion [31] derived the
dynamic stiffness matrix for the axially moving string to obtain exact eigenvalues.

The purposes of the present paper are first to formulate the spectral element model for the
transverse vibration of an axially moving Timoshenko beam subjected to a constant axial tension,
and then to verify its high accuracy by comparing with the solutions by the other solutions
methods, and finally to investigate the effects of the axial velocity and the axial tension on the
vibration and stability of a moving beam.

2. Equations of motion

Consider a beam of flexural rigidity £ and shear rigidity kG4, which travels under an applied
axial tension P with constant axial velocity ¢. Based on the Timoshenko beam theory [32], the
total transverse deflection and the angle of rotation due to bending are denoted by w(x, ¢) and
Y(x, 1), respectively. The total kinetic and potential energies are given by

L
T = % / {pA[? + (b + W) + pI( + )} dx,
0

1 L
V=3 / {EIY"” + kGA(W' — §)* + Pw"} dx, 1
0
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where L is the length of beam, pA is the mass per length, p/ is the mass moment of inertia per
length, and x is the numerical factor depending of the shape of the cross-section. In Eq. (1), the
dot (-) denotes the derivative with respective to time and the prime (') denotes the derivative with
respective to spatial co-ordinate x. Define the shear force Q(x) and the bending moment M(x) as

O(x) = kGAW — ) — pAcOb + ew') + Pw,
M(x) = —EIY' + plc(jy + ). )

The virtual work due to the external force p(x, r) and boundary shear forces and bending moments
are given by

L
oW = / PO, 00w dx + M0y + Madisy + Q10w + Qa0w. (3)
0
Introducing Egs. (1) and (3) into the extended Hamilton’s principle

/lz(éT—5V+5W)dz:0 (4)

14

gives

15 L
/t /0 {%[KGA(W/ — )] — pAEW' + 2w + W) + Pw" + p(x, l)} ow dx dt
15 L
+ / / {aﬁx(mw') — pI(Y" + 20 + ) + kGAW — lp)} oy dx dt
I3l 0
+ [ T-owif + iom + Qaowalde

= [ @i Mo, + Medildr =0 )

From Eq. (5), the equations of motion for the uniform Timoshenko beam can be derived as
KGAW" — ') — pA(EW' + 2eW + ) + Pw" + p(x, ) = 0,
ELY" — pI(PY" + 2cf + ) + kGAW — ) = 0. (6)

The relevant boundary conditions are specified in terms of any pair of conditions selected from
the following groups:

wO)=wr or Q0)=-01}, {YO)=y, or M(©O)=M; atx=0,
W) =wy or QL)= 0o}, W)=y, or M(L)=—-M; atx=L. (7

3. Spectral element formulation

The spectral element formulation begins with the governing equations of motion without
external forces [29]. The free vibration response of the moving Timoshenko beam are then
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represented in the spectral forms as

N N
w0 = 3 W™, 0 = W), ®)
n=1 n=1
where W,(x) and ¥, (x) are the spectral components (or Fourier coefficients) corresponding to the
discrete frequencies w, = 2nn/T (n = 1,2, ..., N). N denotes the number of spectral components
to be taken into account in the analysis, and 7 is the time window related to N as

N =2fnyoT )

where fyyg is the Nyquist frequency in Hz. The accuracy of time responses may depend on how
many spectral components are taken into account in the analysis. The summation and subscripts
used in Eq. (8) are so obvious that they will be omitted in the following equations for brevity.

By substituting Eq. (8) into Eq. (6), with p(x,¢) = 0, and by following the spectral analysis
procedure by Doyle [29], one may obtain

A+ ay—a W' — adicoW' + ajo* W — ' =0,

(1 — ;)P — a2ico¥’ + (aw* — a3)¥P + as W' =0, (10)
where 1 = \/—_1 and a,, (m = 1,2, 3,4) are defined as
pA ol kGA P
“‘:@’ azzﬁ, agzﬁ, a4:@. (11)
The general solutions of Eq. (10) (i.e., spectral components) are assumed in the forms
Wi(x) = Wek*,  P(x) = Pek~, (12)

where k is the wavenumber. Substituting Eq. (12) into Eq. (10) yields an eigenvalue problem as
w 0
L) tof
(13)

From the condition for the existence of non-trivial solutions of Eq. (13), the dispersion relation
can be derived as follows:

(1 + ay — a\Ak? — 2a cok — aj* ik
—lazk (1 — arcHk? = 2arcok — (a0 — a3)

k* + ak® + Ik + yk +n =0, (14)
where

o= —2cw(a; + ay + araq — 2a1a2c2)/A,
p = lasz(ag — arc®) — (a1 + ar + aray — 6a1a202)w2]/A,
y = 2coa, Qa0 — az)/A, (15)
n = o’ai(aw’ —as)/A,

A=(—a)+as—acd).



U. Lee et al. | Journal of Sound and Vibration 271 (2004) 685-703 689

By using the four roots of Eq. (14), the general solutions of Eq. (10) can be expressed as
4 4
Wx)=> 4", W)= g, (16)
r=1 r=1

where

. agikr

(1 — ;p®)k? — 2arcok, — (a20? — a3)
Now, consider a finite beam element of length / as shown in Fig. 1. The spectral nodal
displacement degrees of freedom (simply, spectral nodal d.o.f.s) in Fig. 1 are defined by

Wy = W), ¥ =W%0), W,=Ww(dl), ¥ =%0. (18)

& (r=1,2,3,4). (17)

Substituting Eq. (16) into Eq. (18) gives a relation between the spectral nodal d.o.f.s vector {y}
and the constants vector {A} as

{d} = [X(w){A}, (19)
where
a={m v wm v},
Ay ={A4, 4, A5 A }T,
1 1 1 1
&1 & &3 &4
[X(w)] = (20)
€1 (%) es €4
€1€q €28y €383 €4&4
with

e, = (r=1,2,3,4). (21)

By substituting Eq. (8) into Eq. (5), the spectral force—displacement relations can be obtained as
0 = kGA[(1 + a4 — a1 *)W' — ajicoW — ¥,

M = —EI[(1 — arc*)¥' — mrico?]. (22)

In Eq. (22), the subscripts 7 used for Q and M, which represent the nth spectral components, are
omitted for brevity. The spectral nodal shear forces and bending moments specified on the two
ends of beam element, as shown in Fig. 1, are defined by

O1=-00), M =M©O0), 0O»=00), M;=-M(J. (23)

Y w, W, ¥-

(ol fo -

&
<

Fig. 1. Sign convention for the finite Timoshenko-beam element.
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Substituting Eq. (16) into Eq. (23) gives a relation between the spectral nodal forces vector {f}
and the constants vector {A} as

{f} = [Y(w){A}, (24)
where
fl={0 M, O M)},
—g1 —92 —9g3 —Ya
—hy —hy —hs —h
N)=Er| = 72 % (25)
€1g1  €xg> €39z €494
elhl €2h2 €3h3 €4h4
with

g, = im3[(1 + ay — a1 Ak, — ajco + ie],
hy = i[(1 — axAkr — arewle, (r=1,2,3,4). (26)

Eliminating the constants vector {A} from Egs. (19) and (24) gives the nodal forces-nodal
displacements relation as

{f} = [s(w)]id}, (27)

where [s(w)] is the spectral element matrix, which is the frequency-dependent symmetric matrix
defined by

[s()] = [Y(@)[X(@)] . (28)

The spectral element matrices can be assembled in a completely analogous way to that used in
FEM. Applying the boundary conditions after the assembly may provide a global system
equation in the form as

[S(w)]{dq} = {fq}a (29)

where [S(w)] is the global spectral matrix (i.e., global dynamic stiffness matrix), {d,} is the global
spectral nodal d.o.f.s vector, and {f,} is the global spectral nodal forces vector.

To obtain the dynamic responses in time-domain, first compute {f,} from the external forces
transformed into the frequency-domain by using the forward FFT algorithm. Next solve Eq. (29)
for {d,} and apply the results into Eq. (19) to compute the spectral displacement components
from Eq. (16). Finally, based on Eq. (8), the inverse FFT algorithm is used to obtain the dynamic
responses in the time-domain. The natural frequencies wy4r are computed from the condition
that the determinant of global spectral matrix [S(w)] becomes zero as follows:

det[S(w)] = 0. (30)

4. Stability of moving beam

An axially moving beam may become unstable if its axial velocity is over a certain critical value.
To investigate the stability of the moving beam one usually assume the free vibration responses of
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the form [34]
w(x, £) = we'',  Y(x, 1) = e (31)
Applying Eq. (31) into the free vibration equations, Eq. (8) with p(x, t) = 0, yields an eigenvalue

problem from which the eigenvalues 4 can be computed in the form of complex number
A = Re(4) + 1Im(4). (32)

The type of instability can be determined from the signs of the real (Re) and imaginary (Im) parts
of all eigenvalues A as follows:

Stable if Re(1)<0,
Dynamic instability(flutter) if Re(4) >0 and Im(1)#0,
Static instability(divergence) if Re(4) >0 and Im(1) = 0. (33)

The eigenvalue problem to investigate the stability of the present moving beam problem can be
readily reduced from Eq. (29) by simply replacing iw with A, which can be hinted from Egs. (8)
and (31), as

[S(A)dy} = {0;. (34)

The type of instability, for specific values of axial velocity ¢ and axial tension P, is then determined
by investigating the eigenvalues 4 numerically solved from the characteristic equation

det[S(1)] = 0. (35)

The wavenumbers k, (r = 1,2,3,4) required to compute [S(1)] in Eq. (35) are obtained from
Eq. (14), with replacing iw with /.

The critical axial velocity at which the static instability (i.e., divergence speed ¢p) occurs can be
analytically derived in a closed form from either the existence of non-trivial equilibrium position
(static eigenvalue problem) [13,35] or the observation that the static instability occurs when the
axial velocity of a beam equals the propagating wave speed in the beam [35]. In the following, the
aforementioned two approaches will be used to determine the divergence speeds for a Timoshenko
beam simply supported at both ends.

For the first approach, the static eigenvalue problem can be readily reduced from Eq. (13) by

putting w = 0 as
w 0

For the existence of non-trivial solutions of Eq. (36), the following characteristic equation should
be satisfied:

(1 + a4 — a;cHk* ik
—liaszk (1 — arcHk? + a3

(1 + as — a1 )1 — arc®k> — as(ay ¢ — ag)] = 0. (37)

Eq. (37) gives four characteristic values as

az(ai — as)
(1 — ax)(1 + ag — a1 c?)

ki =k, =0, k3=—k4=1€:\/ (38)
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Thus, the non-trivial equilibrium displacements of the moving beam can be expressed in the form
W(x) = A + Aox + Aze™ + Aze R,
Y(x) = By + Box + Bye™ + Bie F, (39)
where
iask iask

B =4,, B,=0, By= = A;, Bs= —
: ? ’ : (1 — arc®k? + a3 : ! (1 — axAk* + a3

As. (40

The coefficients A; (i = 1,2, 3,4) are determined by the boundary conditions. Applying simply
supported at both ends to Eq. (39) gives
=" n=1,2,3,...), (41)
L
where n denotes the vibration mode number. Equating Eq. (38) with Eq. (41) gives the divergence
speed cp,, at which the divergence instability of the nth vibration mode occurs, as follows:

1 |91 —/ (ﬁ + )
—A|——— (for bending wave mode),
nm 2aia;
Cpn = - (42)
1 o +\/di+a
—A|———F———  (for shear wave mode),
nm 2611612

where
q1 = aja3L* + n*n*(a) + ax + way),

¢ = —4r’n*aimlazas L’ + (1 + ag)]. (43)

Now, as the second approach, the divergence speed ¢p will be obtained from the observation
that the static instability occurs when the axial velocity becomes equal to the phase speed of the
bending wave of a stationary beam, i.e., ¢p = ¢, [35]. The phase speed can be obtained from [29]

=—. (44)
The dispersion relation for the stationary beam with zero axial velocity can be reduced from
Eq. (14) as
K* 4 pi> +1i7=0, (45)
where
B = azas — 0*(a) + ar + azag) /A,

= a,0*(@0° — a3) /A,
1+ ay. (46)

> =
I
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Eq. (45) gives four characteristic values as

kl:_kzz,a:wﬁwm

. :
ks = —ky = Fr = \/5 - 252 — 4 (47)

On the basis of the characteristic values given in Eq. (47), the general solutions of the stationary
beam can be obtained as
(a) When o< w,:

W(x) = A, sin(k;x) + As cos(k1x) 4+ A3 sinh(kyx) + A4 cosh(ksx),
P(x) = b1 A, sin(k;x) — b1 A; cos(k1x) + by A3 sinh(kax) + by A4 cosh(kax). (48)
(b) When o = w,:

W(x) = A, sin(k;x) + A, cos(k1x) + Az + Aux,
Y(x) = by A, sin(k;x) — b1 A cos(kix) — b3 As. (49)
(c) When o > w,:
W (x) = A, sin(k;x) + A, cos(k1x) + Az sin(kax) + A cos(kax),
W(x) = by Ay sin(kx) — by Ay cos(kyx) + by Ay sin(kyx) — by A3 cos(kax), (50)
where

ask, asks a

by = _ by = _ b
e —a) -k 7 (@t —a) -2

(51

amo? — az

and w. = \/a3/a, denotes the cut-off frequency below that the second mode (i.e., shear mode)
attenuates. Applying simply supported at both ends to Eqgs. (48)—(50) gives
(a) When o <w,:

_ n
kln:f” n=1,2,3,..). (52)

(b) When o > w,:

— nmw - nm
kln:f or an:f n=1,2,3,...). (53)

First by solving Eq. (45) for w by replacing the wavenumber in Eq. (45) with the value given by
Eq. (52) or (53) and then by applying the result w and the corresponding wavenumber into
Eq. (44), one may obtain the divergence speed which is identical to that (i.e., Eq. (42)) derived by
the static eigenvalue problem approach.

Eq. (42) shows that, in theory, the static instability occurs whenever the axial velocity of a beam
is equal to the phase speed of the propagating bending wave (i.e., w/k;) or to the phase speed of
the propagating shear wave (i.e., w/k,). However, in practice, the critical axial velocity of a
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Table 1

Comparison of the dimensionless natural frequencies obtained by the present SEM, the FEM, and the exact theory [32]
Dimensionless Dimensionless Method Ng(Npor) Dimensionless natural frequency

axial velocity v axial tension p

QI QZ Q3 95 QI() 915

0 0 Theory 1[32] — 1.57 6.28 14.12  39.10 154.45 340.61
SEM 12 1.57 6.28 14.12  39.10 15445 340.61
FEM 10 (20) 1.57 6.28 14.12 3928 173.62 433.93

20 (40) 1.57 6.28 14.12  39.12 15542 350.20
50 (100) 1.57 6.28 14.12  39.10 154.53 34145
100 (200)  1.57 6.28 14.12  39.10 154.47 340.79

0 4.63x107° SEM 12 1.96 6.71 14.55 39.54 15490 341.06
FEM 10 (20) 1.96 6.71 14.56  39.72  174.03 434.31

20 (40) 1.96 6.71 14.55 39.56 155.86 350.64

50 (100) 1.96 6.71 14.55 39.54 15498 341.90

100 (200)  1.96 6.71 14.55 39.54 15491 341.24

Upi 4.63x107° SEM 12 0.00 5.67 13.66 38.76  154.14 340.26
FEM 10 (20) 0.02 5.67 13.68 38.97 173.58 434.44

20 (40) 0.02 5.67 13.67 38.78 155.17 350.07

50 (100) 0.02 5.67 13.66 38.76  154.23 341.12

100(200)  0.02 5.67 13.66 38.76  154.16 340.44

Note: Ng =number of finite elements, Ny, =number of d.o.f.

moving beam is usually considered as the lowest divergence speed cp; that is equal to the
propagating speed of the first bending wave of the beam.

5. Numerical illustrations and discussions

For numerical illustrations, a uniform beam simply supported at both ends is considered. The
geometric and material properties of the beam are the length L = 1 m, thickness # = 0.01 m, width
0.03m, mass per unit length pA = 0.84kg/m, mass moment of inertia per unit length
pl =7 x 10~°kgm, flexural rigidity EI = 180 Nm?, and the shear rigidity kG4 = 6.75 x 10° N.

Table 1 is prepared to verify the high accuracy of the present spectral element model and also to
investigate the effects of dimensionless axial velocity v = ¢/+/E/p and dimensionless axial tension

p=P/EA on the dimensionless natural frequencies Qy = wy/(r/EI/pA/L?). The present
spectral element model is evaluated by comparing the natural frequencies obtained by SEM with
those obtained by using the exact formula of Blevins [32] and the conventional FEM. The exact
formula of Blevins for the natural frequencies of Timoshenko-beam simply supported at both
ends is given as follows [32]:

L4 o
w%Vp|T7beam = w%Vp|BE7beam pTI(B - VB - D) (P =1,2,3, ), (54)
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where p is the mode number and

2 |EI .
ONp|BE—beam = (%) ”p_A (for Bernoulli — Euler beam),

1 D L4 KG
B=—+—=(n*+=>), D=—x
rERN (n * pzl)’ T*E (53)

The finite element model used in this study is formulated in the form
[M]{d} + [C]{d} + [K]{d} = {f}, (56)

where {d} is the nodal displacement d.o.f. vector defined by Eq. (20), {f} is the nodal forces vector,
[M] is the mass matrix, [C] is the skew-symmetric gyroscopic matrix, and [K] is the stiffness matrix:
the finite element matrices are given in Appendix A. To formulate the finite element model given by
Eq. (56), the displacement fields within a finite element of length / are assumed in the form [33]

w(x, 1) = [N ()T {d(D)},  Y(x, 1) = [Ny ()[1d(D)}, (57)

where [N,,] and [N, ] are the shape function matrices given in Appendix A.

Because the example beam is uniform, only one spectral finite element is used to obtain the
SEM results in Table 1, while the total number of convectional finite elements is gradually
increased to improve the FEM results. For the case of SEM, the problem size of Eq. (3) is just two
by two. In the fourth column of Table 1, the total number of elements and d.o.f.s used for the
SEM and FEM results are listed.

Table 1 shows that the SEM results for v = 0 and p = 0 are identical to the exact analytical
results given by Blevins [32], while the FEM results converge to the SEM results (obtained by
using one spectral finite element) as the total number of convectional finite elements used in FEM
is increased. This implies that, in contrast to the conventional FEM model, the present spectral
element model provides highly accurate results by using only a small number of finite elements.
This is true especially at high frequency modes. From Table 1, one may observe that, for a fixed
axial velocity, the dimensionless natural frequencies are in general increased as the axial tension is
increased. On the other hand, for a fixed axial tension, all dimensionless natural frequencies are
decreased as the axial velocity of beam is increased. One may also observe from Table 1 that the
dimensionless fundamental natural frequency vanishes first when the dimensionless axial velocity
v is increased to a certain critical value (i.e., dimensionless divergence speed vp;) at which the
static instability (i.e., divergence) occurs.

Table 2 shows the effects of thickness-to-length ratio (4#/L) on the dimensionless natural
frequencies of the beam. Three beam thicknesses 4 = 0.005, 0.01, and 0.03m are considered for
fixed beam length L = 1 m. As the beam thickness is increased, the natural frequencies are found
to decrease.

Fig. 2 shows the changes in dimensionless eigenvalues A = 1/(\/EI /pA/L?) with varying the
dimensionless axial velocity of beam v, for dimensionless axial tension p = 4.63 x 107>. When the
dimensionless axial velocity v is lower than about vp; = 0.0113 (the first dimensionless divergence
speed), the moving beam is stable because all eigenvalues are pure imaginary. However, if the
dimensionless axial velocity is between vp; and vy = 0.0194, there exist pure positive real
eigenvalues (i.e., Re(A) > 0, Im(A) = 0), which implies the occurrence of the static instability (i.e.,
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Table 2
The effects of thickness-to-length ratio (/L) on the dimensionless natural frequencies of Timoshenko-beam of length
L=1m

Dimensionless Dimensionless Method ﬁ Dimensionless natural frequency
axial velocity v axial tension p L
Q; Q, Q3 Qs Qi Qs
0 0 Theory [32] 0.005 1.57 6.28 14.13  39.23  156.41 350.06
0.01 1.57 6.28 14.12  39.10 15445 340.61
0.03 1.57 6.24 13.94 37.85 13791 275.51
SEM 0.005 1.57 6.28 14.13  39.23 156.41 350.06
0.01 1.57 6.28 14.12  39.10 15445 340.61
0.03 1.57 6.24 13.94 37.85 13791 275.51
0 4.63%107° SEM 0.005 3.68 9.16 17.31  42.62 15991 353.59
0.01 1.96 6.71 14.55 39.54 15490 341.06
0.03 1.58 6.26 1396 37.86 137.92 275.53
Up1 4.63x107° SEM 0.005 0.00 5.74 1422 39.89 157.42 351.13
0.01 0.00 5.67 13.66 38.76  154.14 340.26
0.03 0.00 5.56 13.35  37.27 137.16 274.48
5 1 ) 1 ) L) L) L) L)
—— Pure Real Eigenvalue
4H - --Complex Eigenvalue
~ 3F
<
!gf) 2F ,”’ )
Vou A VF],,’
i i
]
OO 0.0'05 O.E)l 0.0'15 0.02 0.0'25 0.03 0.035
6 I -~ T T T
—— Pure Imaginary Eigenvalue
5H - - - Complex Eigenvalue mmsa ]
a4k
<3l i
£
N I J
) -_\ \\\ 1
\
I} I} I} I} I} ! I}
OO 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Dimensionless Axial Velocity v

Fig. 2. The dimensionless eigenvalues A = Re(A) + i Im(A) vs. the dimensionless axial velocity of beam v, where vp; is
the lowest dimensionless divergence speed, v, is the dimensionless axial velocity at which the second stable region starts,
vr; is the lowest dimensionless flutter speed, vp, is the second dimensionless divergence speed, and vr, is the second
dimensionless flutter speed.
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Table 3
The effects of thickness-to-length ratio (/L) on the dimensionless critical axial velocities of Timoshenko-beam of
length L = 1m

ﬁ Dimensionless critical axial velocity
L
Upi1 Us VR Up2 UF2
0.005 0.011 0.013 0.014 0.017 0.018
0.01 0.011 0.019 0.020 0.028 0.030
0.03 0.027 0.054 0.056 0.081 0.087
25 T T T T T T T T
[ First Stable Region
[ First Unstable Region (Divergence)
[ Second Stable Region
[ Second Unstable Region (Flutter and more) VF1
% 20 F /
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3 15F i
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§ VDl
S
2
2 st i
s
O 1 1 1 1 1 1 1 1
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Dimensionless Tension p ( x 10-5)

Fig. 3. The critical dimensionless axial velocities vs. the dimensionless axial tension, where vp; is the lowest
dimensionless divergence speed, v, is the dimensionless axial velocity at which the second stable region starts, and vg; is
the lowest dimensionless flutter speed.

divergence). Fig. 2 shows that there exist the second stable region between v; and vy = 0.0199, in
which all eigenvalues are pure imaginary. If the dimensionless axial velocity of beam becomes larger
than vg;, then there exist dimensionless complex eigenvalues with positive real parts Re(A), which
implies the occurrence of dynamic instability (i.e., flutter). Thus, vg is the lowest flutter speed of the
example beam. In Fig. 2, vpy = 0.0280 is the second dimensionless divergence speed and vy, =
0.0305 is the second dimensionless flutter speed. Table 3 shows the effects of the thickness-to-length
ratio (h/L) on the dimensionless critical axial velocities indicated in Fig. 2. As the thickness-to-
length ratio is increased, it is found that the critical axial velocities tend to increase.

Fig. 3 shows the changes in three critical dimensionless axial velocities of beam, vp; (the lowest
dimensionless divergence speed), v, and vp; (the lowest dimensionless flutter speed) with varying



698

L 0.8 Sl v= 0 g — v=0
© . — © —
) I/' ---V=05vy, 5 -T- X;S'Svm
§ 0.6 S \ 9 D1
= Il \ § N
S 0.4 )/ ) o
X ’ N\ &
© 4 = -0.5 4
g 0.2 /, g /
S 5 /
Z 0 . < 4 .
0.5 1 0 0.5
x/L x/L
@ 1st Mode (b) 2nd Mode
1 — 1
[
% — v=0 § — v=0
& 0.5 n 05 -=-v=05 Vo1
o 3 =Y
3 \ § 277N v o
= 0 ] 5 0 \
3 N \
N = !
T -0.5 g -0.5
IS S \
£ S \
S z \ /
-1 1 . y
0.5 1 0 0.5
x/L x/L
(© 3rd Mode (d) 4th Mode

=

U. Lee et al. | Journal of Sound and Vibration 271 (2004) 685-703

Fig. 4. Dimensionless axial velocity dependence of the natural modes of a moving Timoshenko-beam under the
dimensionless axial tension p = 4.63 x 1075,

the dimensionless axial tension p. The region below the curve vp; and the narrow region between
two curves vy and vp; are the first stable region and the second stable region, respectively. The
region between two curves vp; and v, indicates the first divergence instability region, while the
region just above the curve vy, indicates the flutter instability region. It is apparent from Fig. 3
that the three critical dimensionless axial velocities are monotonically increased as the
dimensionless axial tension is increased.

The moving Thimoshenko beam may have complex natural modes. Fig. 4 compares the real
parts of the natural modes for various dimensionless axial velocities. It shows that the symmetric
or antisymmetric natural modes of the stationary beam are all distorted due to the effects of axial
velocity and thus their original symmetry or antisymmetry cannot be reserved for the case of
moving beam. In Table 1, it is shown that the fundamental dimensionless natural frequency of
bending mode vanishes when the dimensionless axial velocity of beam reaches at the
dimensionless divergence speed vp;. Accordingly, one may observe from Fig. 4(a) that the first
bending mode indeed disappears when the beam is axially traveling at the dimensionless axial
velocity of vp;.

Fig. 5 shows the dispersion curves for the stationary Timoshenko beam. There exist the
propagating bending wave (k) and evanescent wave (k;) below the cut-off frequency Q, = 10677,
while there exists only the propagating shear wave (k) above the cut-off frequency Q..

Fig. 6 shows the changes in the dispersion curves of the moving Timoshenko beam with varying
its dimensionless axial velocity. The lowest two dimensionless natural frequencies are indicated in
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Fig. 5. Dispersion relation for the stationary Timoshenko-beam (i.e., v = 0) under the dimensionless axial tension
p =4.63 x 1073, where Q. is the dimensionless cut-off frequency.

Fig. 6 by the circle (O) and the triangle (A), in order to show they all move to leftward as the
dimensionless axial velocity of beam is increased. As shown in Fig. 6(e), the fundamental
dimensionless natural frequency 2; vanishes first when the dimensionless axial velocity reaches at
vp1 = 0.0113 and then it disappears forever as the dimensionless axial velocity is increased over
vp1. When the beam is in the stationary state (i.e., v = 0), the wavenumber k» is pure imaginary
and there exists evanescent wave within the beam as shown in Fig. 6(a). However, when the beam
is moving, wavenumber k, becomes complex as shown in Fig. 6(b). As the dimensionless axial
velocity of beam is increased up to vz = 0.0068, all wavenumers at zero frequency merge to zeros
(see Fig. 6¢c). If the dimensionless axial velocity of beam is kept increasing over vyc, the
wavenumber k; becomes pure real at 0< Q< Q ¢, while it is complex at Q> Q; . This implies
that, when the dimensionless axial velocity is lager than vy ¢, there exits traveling shear wave
within a narrow low-frequency band given by 0 < Q< Q; ¢. Thus, the dimensionless frequency Q; ¢
is the dimensionless lower cut-off frequency which is far below the dimensionless cut-off
frequency Q¢ shown in Fig. 5. The dimensionless lower cut-off frequency ;¢ and the critical
dimensionless axial velocity vy above that the dimensionless lower cut-off frequency may exist
can be derived from Eq. (14) as

o 1 ~h—=\F=4 1 [EI \/—17 s
LC__TC 21 /E p_A’ Ve = A (58)

2

where f1, f», and f3 are given in Appendix B.
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Fig. 6. Dimensionless axial velocity dependence of the dispersion relation of a moving Timoshenko-beam under the
dimensionless axial tension p = 4.63 x 107>, where O and A indicate the 1st and 2nd dimensionless natural frequencies,
respectively, and Q¢ is the lower dimensionless cut-off frequency which appears when v=vyc.

6. Conclusions

In the present paper, the dynamic equations of motion for the moving Timoshenko beam under
a uniform axial tension are derived and then the spectral element model is formulated by using the
exact dynamic shape functions. The high accuracy of the present spectral element is then verified
by comparing its solutions with the exact analytical solutions and the conventional FEM
solutions. The critical axial velocity at which the divergence instability occurs is analytically
derived in a closed form. Through some numerical studies are conducted to investigate the
followings:

The axial tension tends to decrease the natural frequencies while the axial velocity increases
them. When the moving speed equals to the lowest divergence speed given by Eq. (42), the
fundamental natural frequency vanishes to make the first bending mode disappear with inducing
the static instability.

There may exist a very narrow stable region between the first static instability (divergence)
region and the first dynamic instability (flutter) region. The divergence and flutter speeds tend to
increase as the axial tension is increased.

When the axial velocity is larger than the value of \/P/pA, there exist a lower cut-off frequency
below that the propagating shear wave appears.



U. Lee et al. | Journal of Sound and Vibration 271 (2004) 685-703

Appendix A
The shape function matrices used in Eq. (57) are defined by [33]

Nl = [(1 = OQ2 — &= E +6r)R/4,1(1 — E)(1 — £+ 3r)R/8,
(14 Q2+ E—E+6rR/4, 11 — E)1 + &+ 3r)R/8],
[Ny ()] = [-3(1 — E)R/(2]), —(1 — &)(1 + 3& — 6r)R/4,
3(1 — E)R/Q21), —(1 + &)(1 — 3¢ — 6r)R/4],

where

x 4ET 1

— — <x< e — —
¢ 2(1) b Osx<h), r==m R=13;

The finite element matrices in Eq. (56) are derived in the form
[M] = [my] = [my]",  [Cl=[ej] = ~[ez]"s  [KI= [kl = [kyl"  (ij = 1,2,3,4)
with the components given by

my = ms3 = 12mp(26 + 147r + 210/%) + 36mig,

miy = —mzg = mpl(44 + 231r + 315r%) + 3mgl(1 — 15r),
my3 = 36myr(3 + 21r + 351%) — 36mp,

miy = —moy = —mpl(26 + 189r + 315r%) + 3mgl(1 — 15r),
My = mas = mplP(8 + 42r + 631%) + mgl*(4 + 15 + 90r?),
Moy = —3mpl22 + 14r 4+ 21r%) — mgl>(1 + 15r — 45r),
mr = pAIR? /840, mg = pIR?/(30]),

cll=cn=c33=c4 =0,

Cla = €3 = €34 = —C14 = 37l (2 + 5r) + 2cp,
s = —cpl? — cgl(1 — 3r),

cr = cpAIR/30, cgr = cpIR/I,

ki = —ki3 = k33 = 4R%[ko + 3kgr + %72 + 10r + 151%)],

kir = kia = —ka3 = —ksa = 2IR*(ko + 3kg + 3k7),

ko = kas = PR*[ko + kr(4 + 61 + 97) + k(8 + 30r 4 45)],
kos = PR[ko + kr(2 — 6r — 91%) + k(2 4 30r + 45/%)],
ko=9rEI/P, kg = (EI —*pD)/P, ki = (P— c*pA)/(60]).

701

(A.1)

(A.2)

(A.3)

(A.4)



702 U. Lee et al. | Journal of Sound and Vibration 271 (2004) 685-703

Appendix B

In Eq. (58), f; (i = 1,2,3) are defined by

fi = = 8ai®lazas(as + 1) + aasasag(as — 4) + a(arae)*(1 — 4as) + 2(a1ag)’]
—da;M@ai(as — 1)(3as + 2) + ayasasag(Tas — 12as + 8)
— 2ay(ara6)’(9a3 — 4as + 1)(@rac)* (8as — 5)]
+ H—dda(as — 1)*(4as — 1)
— a1a§a5a6(a5 — 1)(5as + 2)(6as — 5)
+ ax(aag)*(5ad — 33ak — 36as + 1) + (a1a6)’ (13as — 224% — 3)]
— 2a5a6[a§a5(5a5 — 2)(as — 1)2 — 2a1a2a6(4a§
+as — 1)(as — 1) + (a1a6)*(3a2 + 2as + 3)],
1 :a1a3c4[(a2a5)2(a5 — 1)2 + 2a1a2a5a6(4a§ + as — 95)
+ (a1a6)*(1 — 20as — 8a3)] + as(as — 1)P[(aras)*(as — 1)*
+ ayazasag(as — 1)(13as + 10) + (a1a6)2(1 — 25as — 12a§)]
+ aszasag(as — 1)2[a2(a5 — D)(Sas — 1) — 4ajag(as + 1)],
fy = aasag(as + 1) (@ — as — 1), (B.1)

where

as =1+ a4 — alc2, ag=1— arc*. (B.2)
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