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Abstract

This paper presents several aspects of the dynamics of a cylindrical shell with and without heavy internal
fluid loading, which have not been studied before in detail. Firstly, a consistent formulation of boundary
integral equations for a shell of finite length is derived based on the energy conservation principle and the
reciprocity theorem. This derivation naturally leads to identification of principal components of the energy
flux through an arbitrary cross-section of a shell and to formulation of Green’s matrix for an infinitely long
shell at each individual circumferential wave number. Secondly, an inspection into the energy re-
distribution between several transmission paths in a near field (in a boundary layer at the vicinity of a
loaded cross-section) is performed, which sheds light on the role of evanescent waves in motions of a driven
shell. Thirdly, the influence of excitation conditions on steady fluctuations of the overall energy flow
between transmission paths in a far field is explored for the case, when several propagating waves exist in a
shell both with and without internal fluid loading. Besides, a systematic verification of the solution offered
by the boundary equations method is given through comparison of eigenfrequencies with those computed
in finite element modelling for various boundary conditions. Analysis of dispersion curves and input
mobilities is also presented.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of thin walled structures are, in numerous industrial applications, accompanied by
sound emission into an acoustic medium. In some cases the ‘feedback’ influence produced by an
acoustic medium on structural vibrations is negligible and the vibro-acoustic behaviour of the
structure is entirely defined by the structural properties, e.g., density, Young’s modulus, thickness,
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etc. However there are very many industrial applications where a strong coupling between the
structural vibrations and the acoustic field exists—where the ‘feedback’ of the fluid needs to be
considered in the vibro-acoustic analysis [1]. In these cases, simultaneous solution of the coupled
equations of dynamics of the structure and the acoustic medium is needed. Apart from this
phenomenological classification of problems in dynamics of thin-walled structures into ‘light’ and
‘heavy’ fluid loading cases, another classification is alternatively suggested depending on whether
a modal approach or a wave approach is applied [2]. In the first case a standing wave solution is
sought and in the second a travelling wave solution. The latter may especially be useful if the
system has remote parts and the forcing is concentrated in a local area.
In practical engineering design, the finite element method is often regarded as a universal tool

for calculations of eigenfrequency spectra, mode shapes and forced vibrations. However it has
limitations for unbounded structures and requires very fine meshing when dealing with high
frequencies. Although power flow may be obtained from post-processing of the discretised
velocities, forces and stresses, it may be difficult to obtain adequate insight into the underlying
mechanisms. To obtain fundamental insight into the key transport mechanism and the governing
parameters for power flow, analytically based tools may be advantageous.
Such an alternative may be the boundary integral equations method. The method is equally

applicable to describe travelling waves in infinite structures and standing waves in finite
structures—with and without heavy fluid loading [3–6]. The essence of this method is the use of
Green’s matrices to formulate the response of a system to a ‘fundamental’ set of ‘basic loading
cases’ [3]. Then it does not make any difference whether a problem for a finite structure or for an
infinite structure is posed. Moreover, from the viewpoint of efficiency of computations, it does not
present difficulties to consider a complex structure composed by the ‘elementary’ segments,
provided that their Green’s matrices are available. This means the method may be used in a sub-
structuring approach.
The boundary integral equations method has been successfully applied for solving various

coupled problems in structural acoustics, e.g., in Refs. [4–6]. In particular, this method is suitable
and convenient for analysis of dynamics of cylindrical shells, which are widely used in technical
applications as elements of many structures, e.g., pipelines, aircraft fuselages, ship hulls, etc. The
determination of the dynamic properties of cylindrical shells is thus an important subject in the
area of noise and vibration control. Both the modal and the wave problem formulations may be
posed for the ‘empty’ (or ‘light’ fluid loaded) structure, as well as for the fluid filled (or ‘heavy’
fluid-loaded) structure. In this paper, Green’s matrix and boundary equations are presented in a
simple analytical form for a cylindrical shell both with and without an internal fluid loading and a
wide range of problems in dynamics of cylindrical shells is solved by use of these tools.
Addressing the existing literature on the subject, two groups of papers should be mentioned.

The first one includes papers dealing with analysis of dispersion of linear waves and power flow in
infinitely long cylindrical shells with and without fluid loading [7–15]. In particular, the detailed
analysis of solution of a homogeneous problem given in Ref. [10] is extended in Refs. [11–13] to
calculations of an input mobility and the energy flow in a farfield zone. The results obtained in
these papers give a deep insight into the structure of free waves existing in a cylindrical shell with
and without fluid loading. An important issue of comparison of the energy distribution between a
structure and an acoustic medium in a far field is also carefully studied in these references. As is
shown in Ref. [11], in the case of mechanical excitation of a dominantly longitudinal wave in a
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fluid-loaded shell, a considerable part of energy may be conveyed to a far field by an acoustic
wave. Similar analysis has been recently carried out in Ref. [7] with use of different tools. Ref. [7]
also contains a comprehensive list of recent publications on this subject.
Another group of papers is related to use of a boundary equations method in analysis of

vibrations of cylindrical shells and in analysis of power flow in beam structures. Refs. [8,16] deal
with mobility functions for a cylindrical shell without fluid loading and the concept explored there
is fairly close to the contents of earlier papers [3,4]. In Ref. [3], boundary integral equations for
vibrations of a cylindrical shell in vacuum have been derived and solutions of several model
problems for multi-segment cylindrical shells have been presented. Boundary integral equations
are applied to solve coupled problems in structural acoustics in Ref. [4]. Most recently, a concept
of boundary integral equations has been used in Refs. [6,9] for analysis and optimisation of power
flows in tubular structures and in sandwich plates.
It appears that no publications are available which deal with the formulation and consistent

application of Green’s matrix and boundary integral equations for analysis of the propagation of
waves in cylindrical shells with/without fluid loading and their free/forced vibrations. In
particular, a detailed inspection into the energy redistribution between longitudinal, torsional,
flexural and acoustic waves in the near field (in the boundary layer located nearby the loaded
cross-section of a shell) has not yet been performed. Such an inspection is very important for
exploring possibilities of isolation and suppression of vibrations by mechanical dampers mounted
at the surface of a shell. Besides, the systematic comparison of eigenfrequencies of cylindrical
shells of finite length calculated by the boundary equations method and by the finite element
method also presents the aspect of novelty.
The paper is structured as follows. In Section 2, a reciprocity theorem is formulated for a thin

elastic cylindrical shell within the framework of general Novozhilov shell theory. Somigliana’s
identity and a system of boundary integral equations are derived in Section 3 for a shell with no
fluid loading. Section 4 contains derivation of components of Green’s matrix in such a case. In
Section 5, a dependence of purely real, purely imaginary and complex roots of the dispersion
equation on an excitation frequency is studied and the shape of Green’s functions (a forced
response of an infinitely long shell in ‘fundamental’ loading cases) is analysed. A boundary
integral equations method is applied in Section 6 to compute natural frequencies of several
cylindrical shells and their magnitudes are verified by comparison with the results obtained by use
of a commercial finite element programme. In Section 7, an investigation is carried out into the
energy flows in a cylindrical shell with no fluid loading, with emphasis put on energy exchanges
between flexural, torsional and longitudinal waves in a near field, e.g., in vicinity of a loaded cross-
section. Section 8 contains formulation of Green’s matrix for a fluid-loaded shell. In Section 9,
dispersion curves for a fluid-loaded shell are analysed and some examples of the shape of Green’s
functions are given. Finally analysis of the energy transmission in a fluid-loaded shell is performed
in Section 10. Most of the attention is focused on the re-distribution of the energy input between
flexural, torsional, longitudinal and acoustic waves in various excitation conditions. The
mechanism of such a re-distribution is identified and the comparison of the energy flows in a
shell without fluid loading and in the fluid-loaded shell is performed. Although the theory outlined
in the present paper is easily adjusted for a detailed analysis of frequency spectra in multi-segment
shells of a finite length as well as for energy flow calculations for infinitely long multi-segment
shells, vibrations of these structures are not tackled in the present paper.
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2. Reciprocity theorem

The dynamics of thin cylindrical shells may be described within the framework of various shell
theories, e.g., suggested by Flugge, Donnell–Mushtary, Novozhilov–Gol’denveiser, etc., see Ref. [17].
The validity ranges of these theories have been thoroughly studied in numerous publications (see,
for example, Refs. [17,18]) and it is not the goal of the present paper to discuss this subject any
further. We just note that as is proven in Ref. [18], the asymptotically consistent theory of thin
shells based on Kirchhoff–Love hypotheses is the one suggested by Novozhilov and Gol’denveiser
[18,19]. Of course, to analyse propagation of comparatively short waves in a cylindrical shell,
Timoshenko–Reissner-type theories should be used. However, our analysis is restricted to a
frequency range where the characteristic wavelength is markedly larger than the thickness of the
shell and Novozhilov–Gol’denveiser theory is adopted hereafter.
A shell of constant thickness h and mid-surface radius R is considered in co-ordinates ðx; yÞ: The

Lame parameters and curvatures are, respectively, A1 ¼ 1; A2 ¼ R; 1=R1 ¼ 0; 1=R2 ¼ 1=R; see
Refs. [18,19]. The sign convention adopted in the theory is illustrated in the appendix. To derive
boundary equations and a Somigliana identity for a cylindrical shell it is necessary to formulate a
reciprocity theorem. This derivation is reproduced here in detail for the stationary case, when
time-dependence for all generalised displacements and forces is introduced as expð�iotÞ and this
multiplier is omitted.
Two loading cases of a cylindrical shell are considered, which are generated by arbitrary sets of

driving forces presented as series of trigonometric functions in the circumferential co-ordinate:

q1ðx; yÞ ¼
X

m

q1mðxÞ cosðmyÞ;

q2ðx; yÞ ¼
X

m

q2mðxÞ sinðmyÞ;

q3ðx; yÞ ¼
X

m

q3mðxÞ cosðmyÞ ð1aÞ

and

q0
1ðx; yÞ ¼

X
m

q0
1mðxÞ cosðmyÞ;

q0
2ðx; yÞ ¼

X
m

q0
2mðxÞ sinðmyÞ;

q0
3ðx; yÞ ¼

X
m

q0
3mðxÞ cosðmyÞ: ð1bÞ

Here, the origin of the circumferential co-ordinate is chosen arbitrarily. The amplitudes of
displacements in these loading cases are expanded in similar series:

uðx; yÞ ¼
X

m

umðxÞ cosðmyÞ;

vðx; yÞ ¼
X

m

vmðxÞ sinðmyÞ;

wðx; yÞ ¼
X

m

wmðxÞ cosðmyÞ ð2aÞ
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and

u0ðx; yÞ ¼
X

m

u0mðxÞ cosðmyÞ;

v0ðx; yÞ ¼
X

m

v0mðxÞ sinðmyÞ;

w0ðx; yÞ ¼
X

m

w0
mðxÞ cosðmyÞ: ð2bÞ

The amplitudes of displacements, deformations, force and moment resultants in the ‘trial’ state
are distinguished from those in the ‘actual’ state by a superscript 0. To be able to treat an arbitrary
loading case, complementary sets of driving loads and displacements where trigonometric
functions change places should also be considered. However, due to the periodicity of
trigonometric functions, the boundary equations for the two cases are exactly the same.
The reciprocity theorem, which follows from the variational principle is formulated as [18]Z 2p

0

Z
l

½T1e01 þ T2e02 þ S$0 þ M1k01 þ M2k02 þ 2Ht0

� rho2uu0 � rho2vv0 � rho2ww0�R dx dy

¼
Z 2p

0

Z
l

½T0
1 e1 þ T0

2 e2 þ S0$ þ M0
1k1 þ M0

2k2 þ 2H0t

� rho2u0u � rho2v0v � rho2w0w�R dx dy: ð3Þ

This formulation differs from its counterpart in statics [19] only by the presence of inertial terms,
which apparently are self-balanced. The explicit formulation of deformations, force and moment
resultants are given in the appendix. Their substitution into the reciprocity formulation after
integration by parts and some simple transformations gives

dum

dx
þ

mn
R

vm þ
n
R

wm

� �
u0

m

����
x¼l

x¼0

þ �
1� n
2

m

R
um þ

1� n
2

dvm

dx
þ

h2

12

2ð1� nÞ
R2

dvm

dx
þ

h2

12

2ð1� nÞm
R2

dwm

dx

� �
v0m

����
x¼l

x¼0

þ
h2

12

d2wm

dx2
�

m2n
R2

w0
m �

mn
R2

vm

� �
dw0

m

dx

����
x¼l

x¼0

þ
h2

12
�
d3wm

dx3
þ

ð2� nÞm2

R2

dwm

dx
þ

ð2� nÞm
R2

dvm

dx

� �
w0

m

����
x¼l

x¼0

þ
Z l

0

�
d2um

dx2
þ

1� n
2

m2

R2
um �

1þ n
2

m

R

dvm

dx
�

n
R

dwm

dx
�

ro2ð1� n2Þ
E

um

� �
u0

m

�

þ
1þ n
2

m

R

dum

dx
�

1� n
2

d2vm

dx2
þ

m2

R2
vm �

h2

12

2ð1� nÞ
R2

d2vm

dx2
þ

h2

12

m2

R4
vm

�
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þ
m

R2
wm þ

h2

12

m3

R4
wm �

h2

12

ð2� nÞm
R2

d2wm

dx2
�
ro2ð1� n2Þ

E
vm

�
v0m

þ
n
R

dum

dx
þ

m

R2
vm þ

h2

12

m3

R4
vm �

h2

12

ð2� nÞm
R2

d2vm

dx2
þ

1

R2
wm þ

h2

12

d4wm

dx4

�

�
h2

12

2m2

R2

d2wm

dx2
þ

h2

12

m4

R4
wm �

ro2ð1� n2Þ
E

wm

�
w0

m

�
dx

¼
du0m
dx

þ
mn
R

v0m þ
n
R

w0
m

� �
um

����
x¼l

x¼0

þ �
1� n
2

m

R
u0

m þ
1� n
2

dv0m
dx

þ
h2

12

2ð1� nÞ
R2

dv0m
dx

þ
h2

12

2ð1� nÞm
R2

dw0
m

dx

� �
vm

����
x¼l

x¼0

þ
h2

12

d2w0
m

dx2
�

m2n
R2

w0
m �

mn
R2

v0m

� �
dwm

dx

����
x¼l

x¼0

þ
h2

12
�
d3w0

m

dx3
þ

ð2� nÞm2

R2

dw0
m

dx
þ

ð2� nÞm
R2

dv0m
dx

� �
wm

����
x¼l

x¼0

þ
Z l

0

�
d2u0

m

dx2
þ

1� n
2

m2

R2
u0m �

1þ n
2

m

R

dv0m
dx

�
n
R

dw0
m

dx
�

ro2ð1� n2Þ
E

u0
m

� �
um

�

þ
1þ n
2

m

R

du0
m

dx
�
1� n
2

d2v0m
dx2

þ
m2

R2
v0m �

h2

12

2ð1� nÞ
R2

d2v0m
dx2

þ
h2

12

m2

R4
v0m

�

þ
m

R2
w0

m þ
h2

12

m3

R4
w0

m �
h2

12

ð2� nÞm
R2

d2w0
m

dx2
�

ro2ð1� n2Þ
E

v0m

�
vm

þ
n
R

du0m
dx

þ
m

R2
v0m þ

h2

12

m3

R4
v0m �

h2

12

ð2� nÞm
R2

d2v0m
dx2

þ
1

R2
w0

m þ
h2

12

d4w0
m

dx4

�

�
h2

12

2m2

R2

d2w0
m

dx2
þ

h2

12

m4

R4
w0

m �
ro2ð1� n2Þ

E
w0

m

�
wm

�
dx: ð4Þ

The expressions in curly brackets are in fact the differential operators of equations of stationary
forced vibrations of a cylindrical shell, i.e., the set of ordinary differential equations in terms of
the unknown modal amplitudes ðum; vm;wmÞ is obtained:

�
d2um

dx2
þ
1� n
2

m2

R2
um �

1þ n
2

m

R

dvm

dx
�

n
R

dwm

dx
�

ro2ð1� n2Þ
E

um ¼ q1m
ð1� n2Þ

Eh
; ð5aÞ

1þ n
2

m

R

dum

dx
�

1� n
2

d2vm

dx2
þ

m2

R2
vm �

h2

12

2ð1� nÞ
R2

d2vm

dx2
þ

h2

12

m2

R4
vm

þ
m

R2
wm þ

h2

12

m3

R4
wm �

h2

12

ð2� nÞm
R2

d2wm

dx2
�
ro2ð1� n2Þ

E
vm ¼ q2m

ð1� n2Þ
Eh

; ð5bÞ

ARTICLE IN PRESS

S.V. Sorokin et al. / Journal of Sound and Vibration 271 (2004) 815–847820



n
R

dum

dx
þ

m

R2
vm þ

h2

12

m3

R4
vm �

h2

12

ð2� nÞm
R2

d2vm

dx2
þ

1

R2
wm þ

h2

12

d4wm

dx4

�
h2

12

2m2

R2

d2wm

dx2
þ

h2

12

m4

R4
wm �

ro2ð1� n2Þ
E

wm ¼ q3m
ð1� n2Þ

Eh
: ð5cÞ

These equations are derived for an arbitrary loading of the shell and they are equally valid for any
number of circumferential waves m: In some references, the ‘bending’ terms

h2

12

m3

R4
wm �

h2

12

ð2� nÞm
R2

d2wm

dx2

in the second equation and

h2

12

m3

R4
vm �

h2

12

ð2� nÞm
R2

d2vm

dx2

in the third one are omitted, and this may result in significant errors in describing vibrations at all
numbers m; see Refs. [18,19]. The two other ‘bending’ terms in the second equation,

�
h2

12

2ð1� nÞ
R2

d2vm

dx2
þ

h2

12

m2

R4
vm;

are also omitted in many references. Although their contribution is negligibly small in most of the
cases, it becomes essential for flexural vibrations ðm ¼ 1Þ of a long shell (see Ref. [18]).
Non-integral terms in Eq. (4) formulate couples of generalised displacements and generalised

forces, which are involved in the boundary conditions. It is convenient to introduce the following
notations for generalised forces:

Q1m ¼
dum

dx
þ

mn
R

vm þ
n
R

wm; ð6aÞ

Q2m ¼ �
1� n
2

m

R
um þ

1� n
2

dvm

dx
þ

h2

12

2ð1� nÞ
R2

dvm

dx
þ

h2

12

2ð1� nÞm
R2

dwm

dx
; ð6bÞ

Q3m ¼ �
h2

12

d3wm

dx3
�
ð2� nÞm2

R2

dwm

dx
�

ð2� nÞm
R2

dvm

dx

� �
; ð6cÞ

Q4m ¼
h2

12

d2wm

dx2
�

m2n
R2

wm �
mn
R2

vm

� �
: ð6dÞ

Thus, Eq. (4) formulate the reciprocity theorem for the segment of a cylindrical shell ð0; lÞ in two
arbitrary loading cases, which conveniently leads to formulation of Somigliana identities.

3. Somigliana identities

So far no assumptions have been adopted concerning physical meanings of the ‘trial’ loading
case ðq0

1m; q
0
2m; q

0
3mÞ and the trial solution ðu0

m; v
0
m;w

0
mÞ: Now it is convenient to formulate three sets

of functions ðu0j
mðjx � xjÞ; v0j

mðjx � xjÞ;w0j
mðjx � xjÞÞ; j ¼ 1; 2; 3 as the amplitudes of vibrations

of an infinitely long cylindrical shell loaded by the three sets of driving forces ðdðx � xÞ; 0; 0Þ;
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ð0; dðx � xÞ; 0Þ and ð0; 0; dðx � xÞÞ: Then Eq. (4) due to the fundamental property of the delta-
function is transformed to three Somigliana identities for each of these loading cases:

umðxÞ ¼ Q1mðxÞu01
m ðx; xÞ þ Q2mðxÞv01m ðx; xÞ þ Q3mðxÞw01

m ðx; xÞ þ Q4mðxÞ
@w01

m ðx; xÞ
@x

� �����
x¼l

x¼0

� Q01
1mðx; xÞumðxÞ þ Q01

2mðx; xÞvmðxÞ þ Q01
3mðx; xÞwmðxÞ þ Q01

4mðx; xÞ
dwmðxÞ
dx

� �����
x¼l

x¼0

þ
1� n2

Eh

Z l

0

½q1mðxÞu01
m ðx; xÞ þ q2mðxÞv01m ðx; xÞ þ q3mðxÞw01

m ðx; xÞ� dx; ð7aÞ

vmðxÞ ¼ Q1mðxÞu02
m ðx; xÞ þ Q2mðxÞv02m ðx; xÞ þ Q3mðxÞw02

m ðx; xÞ þ Q4mðxÞ
@w02

m ðx; xÞ
@x

� �����
x¼l

x¼0

� Q02
1mðx; xÞumðxÞ þ Q02

2mðx; xÞvmðxÞ þ Q02
3mðx; xÞwmðxÞ þ Q02

4mðx; xÞ
dwmðxÞ
dx

� �����
x¼l

x¼0

þ
1� n2

Eh

Z l

0

½q1mðxÞu02
m ðx; xÞ þ q2mðxÞv02m ðx; xÞ þ q3mðxÞw02

m ðx; xÞ� dx; ð7bÞ

wmðxÞ ¼ Q1mðxÞu03m ðx; xÞ þ Q2mðxÞv03m ðx; xÞ þ Q3mðxÞw03
m ðx; xÞ þ Q4mðxÞ

@w03
m ðx; xÞ
@x

� �����
x¼l

x¼0

� Q03
1mðx; xÞumðxÞ þ Q03

2mðx; xÞvmðxÞ þ Q03
3mðx; xÞwmðxÞ þ Q03

4mðx; xÞ
dwmðxÞ
dx

� �����
x¼l

x¼0

þ
1� n2

Eh

Z l

0

½q1mðxÞu03
m ðx; xÞ þ q2mðxÞv03m ðx; xÞ þ q3mðxÞw03

m ðx; xÞ� dx: ð7cÞ

Similarly to the case of flexural vibrations of a plate (see Refs. [3,5,6]), an additional identity is
formulated with respect to the first derivative of the radial displacement w: It is obtained by
differentiation of Eq. (7c) with respect to the co-ordinate x of the ‘observation point’:

dwmðxÞ
dx

¼ Q1mðxÞ
@u03

m ðx; xÞ
@x

þ Q2mðxÞ
@v03m ðx; xÞ

@x
þ Q3mðxÞ

@w03
m ðx; xÞ
@x

þ Q4mðxÞ
@2w03

m ðx; xÞ
@x @x

� �����
x¼l

x¼0

�
@Q03

1mðx; xÞ
@x

umðxÞ þ
@Q03

2mðx; xÞ
@x

vmðxÞ þ
@Q03

3mðx; xÞ
@x

wmðxÞ þ
@Q03

4mðx; xÞ
@x

dwmðxÞ
dx

� �����
x¼l

x¼0

þ
1� n2

Eh

Z l

0

q1mðxÞ
@u03

m ðx; xÞ
@x

þ q2mðxÞ
@v03m ðx; xÞ

@x
þ q3mðxÞ

@w03
m ðx; xÞ
@x

� �
dx: ð7dÞ

The four identities (7) contain 16 unknown values of boundary displacements and generalised
forces at the edges of the shell. Respectively, eight boundary equations are obtained by putting an
observation point at the edge x ¼ 0 and at the edge x ¼ l:
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For a shell of a finite length, the boundary conditions are formulated at the edges x ¼ 0; x ¼ l

as
w11Q1m þ w12um ¼ 0;

w21Q2m þ w22vm ¼ 0;

w31Q3m þ w32wm ¼ 0;

w41Q4m þ w42
dwm

dx
¼ 0 ð8aÞ

and
w51Q1m þ w52um ¼ 0;

w61Q2m þ w62vm ¼ 0;

w71Q3m þ w72wm ¼ 0;

w81Q4m þ w82
dwm

dx
¼ 0: ð8bÞ

An arbitrary set of conditions may be modelled by the appropriate choice of the coefficients wij ;
i ¼ 1; 2;y; 8; j ¼ 1; 2 (for example, the set wi2 ¼ 0; i ¼ 1; 2;y; 8 defines an unconstrained shell).
Then a system of algebraic equations (7)–(8) is composed, which uniquely defines the amplitudes
of forced vibrations of a cylindrical shell of finite length.
An exact solution to the problem of forced vibrations of a cylindrical shell with arbitrary

boundary conditions at arbitrary frequency for arbitrary circumferential wave number is obtained
by solving this system. It may also be conveniently used to determine eigenfrequencies of a shell.
To use these equations for practical computations, Green’s matrix should be set up.

4. Green’s matrix

Elements of Green’s matrix are introduced as the amplitudes of displacements in the axial,
circumferential and radial directions of an infinitely long cylindrical shell vibrating at its mth
circumferential mode in response to four fundamental ‘loading cases’, see Ref. [3]. For example,
the elements of the first row of Green’s matrix should satisfy a set of ordinary differential
equations:

�
@2u01

m

@x2
þ

1� n
2

m2

R2
u01m �

1þ n
2

m

R

@v01m

@x
�

n
R

@w01
m

@x
�

ro2ð1� n2Þ
E

u01m ¼ dðx � xÞ; ð9aÞ

1þ n
2

m

R

@u01m

@x
�

1� n
2

@2v01m

@x2
þ

m2

R2
v01m �

h2

12

2ð1� nÞ
R2

@2v01m

@x2
þ

h2

12

m2

R4
v01m

þ
m

R2
w01

m þ
h2

12

m3

R4
w01

m �
h2

12

ð2� nÞm
R2

@2w01
m

@x2
�

ro2ð1� n2Þ
E

v01m ¼ 0; ð9bÞ

n
R

@u01
m

@x
þ

m

R2
v01m þ

h2

12

m3

R4
v01m �

h2

12

ð2� nÞm
R2

@2v01m

@x2
þ

1

R2
w01

m þ
h2

12

@4w01
m

@x4

�
h2

12

2m2

R2

@2w01
m

@x2
þ

h2

12

m4

R4
w01

m �
ro2ð1� n2Þ

E
w01

m ¼ 0: ð9cÞ
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A solution of this system is not uniquely defined unless some additional conditions are
formulated, e.g., conditions at infinity. To be more precise, this inhomogeneous system
uniquely defines a particular solution, which actually pertains a unit jump in the real part of
the axial force at x ¼ x; see the right hand side of Eq. (9a). Any general solution of the system of
homogeneous equations (9) may be added to this particular solution. If the Green’s function is
formulated for solving problems in dynamics of both the infinitely long shell and the shell of a
finite length, then a general solution should be chosen to satisfy the well-known Sommerfeld
radiation conditions [1] at infinity and the Green’s function is defined uniquely. However, if the
Green’s function is derived only for the formulation of boundary equations, then the
general solution may be chosen arbitrarily. Specifically, as is discussed in Ref. [3], computations
are most efficient when the sum of the particular and the general solutions is a real-valued
function.
Similarly to the case of a vibrating beam, due to the natural symmetry of an infinitely long

cylindrical shell with respect to each cross-section, the elements of Green’s matrix may be
obtained by solving the problem for a semi-infinite structure, which is extended either at
�Noxox or at xoxoN: Dynamics of both these parts of a shell is described by a
homogeneous set of differential equations (the loading term in Eq. (9a) is omitted) with the
following four loading conditions at the cross-section x ¼ x; see Refs. [3,4]:

Q01
1mðx; xÞ ¼

@u011mðx; xÞ
@x

þ
mn
R

v011mðx; xÞ þ
n
R

w01
1mðx; xÞ ¼ �

1

2
sgnðx � xÞ;

v01m ðx; xÞ ¼ 0;

w01
m ðx; xÞ ¼ 0;

Q01
4mðx; xÞ ¼

h2

12

@2w01
m ðx; xÞ
@x2

�
m2n
R2

w01
m ðx; xÞ �

mn
R2

v01m ðx; xÞ
� �

¼ 0: ð10Þ

The first condition formulates a unit jump in the magnitude of an axial force at x ¼ x; the
remaining homogeneous ones formulate the symmetry of wave propagation in a shell to the left
and to the right from the loaded cross-section.
To obtain the solution to such a problem, the roots of the dispersion polynomial of

homogeneous equations (9) should be found, as will be discussed in Section 5. Then the first row
of Green’s matrix is formulated as

u01m ¼
X4
j¼1

ajC
01
j exp

*kj

R
jx � xj

 !
;

v01m ¼ sgnðx � xÞ
X4
j¼1

bjC
01
j exp

*kj

R
jx � xj

 !
;

w01
m ¼ sgnðx � xÞ

X4
j¼1

C01
j exp

*kj

R
jx � xj

 !
: ð11Þ
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Four coefficients C01
j ; j ¼ 1; 2; 3; 4 are found from the loading conditions (10). It gives the

following set of four inhomogeneous algebraic equations:

1

R

X4
j¼1

aj
*kjC

01
j ¼ �

1

2
;

X4
j¼1

bjC
01
j ¼ 0;

X4
j¼1

C01
j ¼ 0;

X4
j¼1

*k2
j C01

j ¼ 0:

The suggested procedure is in effect identical to perform the Fourier transform for solving the
inhomogeneous system of equations (9) with Sommerfeld conditions.
Similarly, the second loading case is formulated with respect to a circumferential force

Q02
2mðx; xÞ; which is distributed in the circumferential direction as cos my and concentrated in the

axial direction

u02
m ðx; xÞ ¼ 0;

Q02
2mðx; xÞ ¼ �

1� n
2

m

R
u02

m þ
1� n
2

@v02m

@x
þ

h2

12

2ð1� nÞ
R2

@v02m

@x
þ

h2

12

2ð1� nÞm
R2

@w02
m

@x
¼ �

1

2
sgnðx � xÞ;

Q02
3mðx; xÞ ¼ �

h2

12

@3w02
m

@x3
�

ð2� nÞm2

R2

@w02
m

@x
�

ð2� nÞm
R2

@v02m

@x

� �
¼ 0;

@w02
m ðx; xÞ
@x

¼ 0: ð12Þ

The relevant system of algebraic equations is formulated as

X4
j¼1

ajC
02
j ¼ 0;

1

R

X4
j¼1

1� n
2

þ
h2

12

2ð1� nÞ
R2

� �
bj

*kjC
02
j ¼ �

1

2
;

�
h2

12

X4
j¼1

½ *k3
j � ð2� nÞmbj

*kj�C02
j ¼ 0;

X4
j¼1

*kjC
02
j ¼ 0:
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Finally, the third row of Green’s matrix is defined by the following loading case:

u03m ðx; xÞ ¼ 0;

Q03
2mðx; xÞ ¼ �

1� n
2

m

R
u03m þ

1� n
2

@v03m

@x
þ

h2

12

2ð1� nÞ
R2

@v03m

@x
þ

h2

12

2ð1� nÞm
R2

@w03
m

@x
¼ 0;

Q03
3mðx; xÞ ¼ �

h2

12

@3w03
m

@x3
�

ð2� nÞm2

R2

@w03
m

@x
�

ð2� nÞm
R2

@v03m

@x

� �
¼ �

1

2
sgnðx � xÞ;

@w03
m ðx; xÞ
@x

¼ 0: ð13Þ

The system of algebraic equations defining coefficients C03
j ; j ¼ 1; 2; 3; 4 then becomes

X4
j¼1

ajC
03
j ¼ 0;

X4
j¼1

1� n
2

þ
h2

12

2ð1� nÞ
R2

� �
bj

*kjC
03
j ¼ 0;

�
h2

12R3

X4
j¼1

½ *k3
j � ð2� nÞmbj

*kj�C03
j ¼ �

1

2
;

X4
j¼1

*kjC
03
j ¼ 0:

For the second and the third loading cases, skew symmetry is related to the u displacement i.e.,
sgnðx � xÞ is introduced in u instead of in v and w as in the first loading case. The fourth loading
case is related to vibrations of an infinitely long cylindrical shell excited by a concentrated bending
moment. However, the elements of the fourth row in the matrix may also be obtained by
differentiation of the elements of the third row on the co-ordinate of an excitation point,
see Refs. [3,5,6] and this way is simpler and more convenient.

5. Dispersion curves and modal coefficients

As is shown in the previous section, to construct Green’s matrix it is necessary to find the roots
of the dispersion polynomial for a set of homogeneous differential equations (9) by the standard
substitution

u0N
m ¼ A exp

*kj

R
jx � xj

 !
; v0N

m ¼ B exp
*kj

R
jx � xj

 !
; w0N

m ¼ C exp
*kj

R
jx � xj

 !
: ð14Þ

In these formulas, N ¼ 1; 2; 3 is the number of the loading case. As functions (14) are substituted
into the differential equations (9), a homogeneous system of three algebraic equations in A;B;C is
obtained. The condition of an existence of a non-trivial solution is formulated by equating the
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following determinant to zero:

d11 d12 d13

d21 d22 d23

d31 d32 d33

�������
������� ¼ 0 ð15Þ

with the elements

d11 ¼ � *k2 þ
1� n
2

m2 � O2; d12 ¼ �
1þ n
2

*km ¼ �d21; d13 ¼ �n *k ¼ �d31;

d22 ¼ �
1� n
2

*k2 þ m2 � O2 �
h2

12R2
2ð1� nÞ *k2 þ

h2

12R2
m2;

d23 ¼ m þ
h2

12R2
m3 �

h2

12R2
ð2� nÞm *k2 ¼ d32;

d33 ¼ 1þ
h2

12R2
*k4 �

h2

12R2
2m2 *k2 þ

h2

12R2
m4 � O2; O2 ¼

ro2ð1� n2ÞR2

E
:

The dispersion polynomial is of the fourth order in *k2 and its roots are found by use of the
symbolic manipulator Maple V.1 If the elastic modulus E has an imaginary part describing the
effect of material losses, then four roots kj; j ¼ 1; 2; 3; 4 are selected as those having negative real
parts to ensure decay of waves at a large distance from the cross-section where a concentrated
force is applied. If no material losses are accounted for, then in addition to the roots having
negative real part, purely imaginary roots with positive sign are selected. Since time-dependence is
chosen as expð�iotÞ; such roots describe travelling waves coming from an excitation point to
infinity. In all cases, the number of roots retained in the analysis is four. To identify the type of a
wave relevant to the particular root, the modal coefficients introduced as

aj ¼
Aj

Cj

; bj ¼
Bj

Cj

are found by solving the system of equations

d11aj þ d12bj ¼ �d13;

d21aj þ d22bj ¼ �d23: ð16Þ

In Fig. 1, the set of dispersion curves is plotted for R ¼ 20 mm; h ¼ 0:35 mm; n ¼ 0:3; E ¼
210	 109 N=m2; r ¼ 7800 kg=m3; m ¼ 1; 2; 3; 4; 5: As is seen, the propagation of waves at
arbitrary low frequencies is possible only for m ¼ 1 (beam-like vibrations). To demonstrate the
applicability of Novozhilov–Gol’denveiser theory to describe this type of shell motions, the
dispersion curve derived from elementary Kirchhoff beam theory is displayed in thick black for
the lower frequency range. For any m > 1; wave propagation is possible only when the excitation
frequency exceeds its cut-on value. As is seen, the cut-on frequency increases as the
circumferential wave number increases. This phenomenon is well known, see for example
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Ref. [10]. As discussed, the number of selected roots of the dispersion equation is four, whereas
only two dispersion curves are plotted in Fig. 1 for each circumferential wave number. The
magnitudes of both the real and the imaginary part of two other roots remain in the range 8.5..11
for m ¼ 1::5 and the relevant curves are left out for reasons of clarity.
A closer inspection into the dispersion phenomena involved in generation of a propagating

wave is given in Figs. 2 and 3 for m ¼ 3: The circumferential mode m ¼ 3 is here chosen as a
general representative for all shell type motions. Fig. 2 shows the overall behaviour while Fig. 3
zooms in on the first cut-on. It is here noted that the first cut-on takes place just above 1659 Hz as
the result of a bifurcation. As is seen, two complex conjugate wave numbers firstly merge and
transform into two purely real ones. Then one of these purely real roots continues to grow and
transforms to a purely imaginary one as it crosses the axis, whereas the second root decreases.
This ‘two-phase’ transformation occurs in a very narrow frequency band. With further growth in
the excitation frequency, two complex conjugate roots transform to two purely evanescent ones,
so that in the frequency range from approximately 48.5 to 77 kHz there exist one propagating
wave and three evanescent waves. The second propagating wave is generated in a different
manner—at f ¼ 77 kHz a purely real wave number becomes purely imaginary, thus a decaying
wave is converted directly to a propagating wave. Even at this high frequency the wavelengths of
the propagating waves are much larger than the thickness of the shell so the shell theory is entirely
applicable.
Other valuable information concerning phenomena related to energy input and transportation

may be obtained from the modal coefficients. In Fig. 4 the modal coefficients for the waves
involved in the first cut-on is displayed—a3 being linked with the decaying wave and a4 with the
propagating wave. As the two complex conjugate waves merge, their modal coefficients become
purely real. At the first cut-on frequency, the modal coefficient of the ‘transforming’ wave crosses
zero and become purely imaginary. Significant changes around this bifurcation and cut-on is only
found in a3 and a4: All other modal coefficients are stable and almost constant across this
frequency range. Thus, at this specific frequency, the longitudinal displacement is uncoupled from
the radial and circumferential components of the displacement.
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At higher frequencies during the second bifurcation and cut-on, equivalent changes are seen on
several other modal coefficients, some of them shown in Fig. 5. At the bifurcation point of
48:5 kHz the second set of complex conjugates are converted to decaying waves, and a1;b1; a2 and
b2 turn purely real. At the second cut-on at 77 kHz—related to cut-on of wave no. 3—the modal
coefficient turns towards infinity, indicating uncoupled u and w motions of this wave at this
specific frequency. Observation on a4 also reveals a zero-crossing and thus uncoupling within this
propagating wave around 32 000 Hz:
The above inspection into the character of wave motions at the cut-on frequencies sheds light

on the qualitative difference between admittances of the shell in different excitation conditions.
Within the framework of Green’s functions concept, admittance is simply the displacement in the
direction of excitation at the cross-section of excitation. In Figs. 6 and 7 the input admittance for
excitation by longitudinal, circumferential and radial forcing is displayed for m ¼ 3: Similar
analysis of input admittance for a cylindrical shell at m ¼ 0 may be found in Ref. [16]. The total
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Fig. 2. Dispersion curves for m ¼ 3 showing the typical bifurcations: - - - Re, comp; F Im, comp; ?
 Re, — Im.

Fig. 3. Zoom on first bifurcation and cut-on for m ¼ 3: - - - Re, comp; F Im, comp; ?
 Re, — Im.
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response of the shell is of course related to the magnitude of the admittance. However the injected
and transmitted power for a real-valued excitation is only related to the imaginary part of the
admittance, i.e.,

* in the case of excitation by an axial force, to: Imðu01
m ð0; 0ÞÞ;

* in the case of excitation by a circumferential force, to: Imðv02m ð0; 0ÞÞ;
* in the case of excitation by a radial force, to: Imðw03

m ð0; 0Þ),
* in the case of excitation by a moment, to: Imðw004

m ð0; 0ÞÞ:

Below the first cut-on—appearing just below 1660 Hz—no energy may propagate in the shell and
the admittance remains purely real. During cut-on a significant difference is seen in the behaviour
of the imaginary part of the input admittance for the three loading cases. For the tangential and
the radial excitation a very large imaginary part instantly appears, whereas for the longitudinal
excitation a gradual increase from the zero value cut-on is observed. This may be explained from
the modal coefficients. Here it was observed that a4 are zero at cut-on—meaning that u is
uncoupled from w and thus the u displacement remains bounded while v and w become
unbounded. Similar behaviour is observed at second cut-on, just with roles inverted. Here modal
coefficient a3 peaks, indicating that the w motion is uncoupled from the u motion, and as b3
remains finite this indicates that v is also uncoupled from u: This explains why the admittance
from tangential and radial excitation remains bounded while the admittance related to
longitudinal excitation peaks towards infinity. So from a vibration-transmission point of view
tangential and radial excitation will be critical at frequencies around 1660 Hz whereas
longitudinal excitation will not reach its most critical value until around 77 kHz:
Another interesting phenomenon can be observed around 32 kHz: Here a ‘dropout’—or an

‘anti-resonance’—of the imaginary part of the admittance is found. This corresponds to the
second zero-crossing of a4 in Fig. 4. Thus no energy can be supplied by longitudinal excitation at
this frequency. This may also be explained on the level of wave amplitudes. As the calculated wave
amplitudes for given excitation appear in complex conjugate pairs for the complex waves and as
real for the decaying waves, they solely contribute to the real part of the input admittance. Only
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Fig. 4. Zoom on the modal coefficients a3 and a4 for m ¼ 3 around first bifurcation.
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the propagating waves contribute to the imaginary part. This means that if one attempts to excite
the structure in a direction that for the propagating wave is uncoupled at the frequency of
excitation, no energy is absorbed. There is simply no initial ‘link’ to the motion that is carrying the
energy.
In the admittance only the values of the Green’s functions at the point of excitation is

considered. However the spatial distribution of the Green’s functions—displacement as well as
generalised forces—also play an important role. The current Green’s functions represent the
response to a unit value of qmð1� u2Þ=Eh and thus allow the generalised force to be interpreted as
transfer ratios of the physical forces. The dependence of the modulus, the real and the imaginary
parts of the lateral displacement v033 and the circumferential generalised force Q03

23 upon axial co-
ordinate is presented in Fig. 8 for the case of a radial excitation of the cylindrical shell. Here the
amplitude of the circumferential displacement gradually reaches its maximum at xE0:015 m: The
amplitude of the circumferential force grows very quickly from zero to its maximum value
exceeding the magnitude of the input force almost by a factor of 1.5 and then levelling out around
0.8 times the input force. Such a rapid change in the magnitude of a force is typical for several
loading conditions.
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Fig. 5. Modal coefficients a1; a3 and a4 for m ¼ 3:
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The forced response of a cylindrical shell to the local driving force described by Green’s
functions may always be decomposed to the sum of propagating and evanescent waves. The
propagating waves constitute the far field of the shell, whereas contribution of the evanescent ones
is essential only in the boundary layer near the excitation. However, as will be shown in Section 7,
the evanescent waves control the dispersal of the injected power into longitudinal, torsional and
flexural components and a rather intense redistribution of energy may take place within this zone.
Knowing the detailed behaviour within the near field could thus be beneficial in noise control, as
the possibilities to suppress wave motion in this zone may be wider than in the far field.
The axial extension of this boundary is defined by the magnitude of the smallest real part of

complex (and real) wave numbers. If considering Fig. 1 it is noted that the purely decaying wave—
with a negative real valued wave number—has a order of magnitude that is similar to the
propagating wave number except for frequencies very close to cut-on. This means that by moving
approximately 0.7 times the farfield wavelength away from the point of excitation, the response
attributed to the decaying wave is reduced by a factor of 100. For the complex waves it was noted
that the decaying part remained in the range �8:5 to �11; which means the motion related to
these wave numbers will be reduced by a factor of 100 within an axial distance of approximately
0:5R: These considerations may be used for preliminary evaluation of possible spatial extension of
the near field and agrees quite well with the behaviour found in Fig. 8.
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Fig. 6. Input admittance for longitudinal, tangential and radial excitation—magnitude and imaginary part: —— Long

exc; – – – – Tang exc; –3–3– Rad. exc.
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6. Finite cylindrical shells—verification of boundary equations

The boundary equations for vibrations of a shell of finite length are formulated when the
elements of Green’s matrix are substituted in Eqs. (7) and an ‘observation point’ x tends to the
edge from inside of the shell, i.e., x ¼ 0þ #e or x ¼ l � #e; #e-0:
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Fig. 7. Zoom on input admittance for longitudinal, tangential and radial excitation—magnitude and imaginary part:

—— Long exc; – – – – Tang exc; –3–3– Rad. exc.

Fig. 8. Examples of Green’s functions displaying displacement v03m and generalised force Q03
2m for m ¼ 3; f ¼ 4000 Hz:
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The test problem of free vibrations of an isolated cylindrical shell under various boundary
conditions has been solved to validate the numerical algorithm. The analysis was performed with
two different geometries: one thin-walled shell with radius R ¼ 20 mm; thickness h ¼ 0:35 mm
and length l ¼ 35 mm and a second ‘pipe-like’ geometry with R ¼ 13:5 mm; thickness h ¼ 1 mm
and length l ¼ 100 mm: Both with material properties E ¼ 210	 109 N=m2; r ¼ 7800 kg=m3 and
u ¼ 0:3: In Table 1 the results have then been compared with eigenfrequencies obtained by use of
ANSYS finite element software2 and very satisfactory agreement is found. To be noted is that in
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Table 1

Comparison of eigenfrequencies from the boundary integral method and the finite element method

Boundary condition m n ANSYS BIM D (%)

Thin shell geometry

Clamped–clamped 5 1 9558 9566 0.08

6 1 10212 10226 0.14

4 1 10545 10550 0.05

7 1 12137 12163 0.21

Navier 5 1 7411 7420 0.13

4 1 7711 7714 0.04

6 1 8859 8876 0.20

3 1 10545 10546 0.00

Free–free 2 0 584 583 0.16

2 1 821 822 0.10

3 0 1650 1650 0.02

3 1 2046 2049 0.15

4 0 3162 3164 0.04

4 1 3630 3637 0.19

5 0 5111 5116 0.10

Pipe like geometry

Clamped–clamped 2 1 5949 5959 0.16

3 1 10843 10909 0.61

2 2 11333 11346 0.11

Navier 2 1 4489 4502 0.29

1 1 6394 6398 0.07

2 2 9344 9353 0.09

3 1 10592 10661 0.65

Free–free 2 0 3658 3664 0.16

2 1 3763 3768 0.14

2 2 6666 6677 0.16

3 0 10298 10361 0.61

3 1 10432 10501 0.66

3 2 11294 11378 0.74

2ANSYS Swanson Analysis Systems, Inc., Houston, PA, USA.
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the case of Navier boundary conditions Q1m ¼ vm ¼ wm ¼ Q4m ¼ 0 at the edges x ¼ 0 and l;
analytical eigenfrequencies of the shell may also be found directly from Eq. (15) if the longitudinal
wavenumber is introduced as k ¼ inpR=l; where n is a positive integer.

7. Power flow

The reciprocity theorem (4) is easily generalised to formulate an energy flow through arbitrary
cross-section of a shell at each circumferential number, see Refs. [10–15] for details. It is
convenient to present an energy flow at each circumferential wave number as

Nstr;tot
m;out ¼ Naxial

m;out þ Ntorsion
m;out þ N

bending
m;out : ð17Þ

Here the contributions of longitudinal, torsional and flexural components are presented explicitly:

Naxial
m;out ¼ �gpR

o
2

Eh

ð1� n2Þ
½ImðumÞ 
ReðQ1mÞ �ReðumÞ ImðQ1mÞ�:

Ntorsion
m;out ¼ �gpR

o
2

Eh

ð1� n2Þ
½ImðvmÞ 
ReðQ2mÞ �ReðvmÞ ImðQ2mÞ�;

N
bending
m;out ¼ � gpR

o
2

Eh

ð1� n2Þ
½ImðwmÞ 
ReðQ3mÞ �ReðwmÞ ImðQ3mÞ�

� gpR
o
2

Eh

ð1� n2Þ
½Imðw0

mÞ 
ReðQ4mÞ �Reðw0
mÞ ImðQ4mÞ�; ð18Þ

where g ¼ 2 if m ¼ 0 and g ¼ 1 if ma0:
The overall energy flow is obtained by summation of energy flows at different circumferential

numbers.
In the literature (see Refs. [10–15] for example), attention has been focused at farfield analysis

of the energy flow, whereas in practical applications it is also very important to analyse a nearfield
power flow. As discussed in Section 5 the existence of such a near field is actually related to the
presence of a boundary layer in the vicinity of the excitation cross-section of the cylindrical shell.
Within this boundary layer, the power input produced by driving forces is transmitted to the
propagating modes.
Another aspect, which has not yet received attention, is the ‘modal’ approach to the analysis of

energy transportation. Specifically, a power flow in the far field is often calculated simply as a
contribution from ‘propagating’ wave numbers (in our notations, those purely imaginary ones
which have positive imaginary parts). However, a shell theory suggests that three different types
of waves exist in a cylindrical shell—dominantly flexural, torsional and longitudinal waves. As is
seen from Eq. (14), each individual wave number actually contributes to each of these three types
of waves, but these contributions are dependent upon excitation conditions and shell parameters.
This aspect is very important because devices which suppress propagation of dominantly flexural
waves are different from those for suppression of dominantly longitudinal waves and, as is well
known [2], it is much easier to suppress flexural vibrations than tangential ones. For this purpose
it is, as discussed in Section 5, important to know the length of the boundary layer where possible
damping devices may be applied.
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In the case of mechanical excitation of wave motions in a shell by a transverse force, the
dominantly flexural wave is developed in the boundary layer. However, in parts remote from the
excitation point most of energy may be conveyed by longitudinal or torsional waves. Thus
analysis of interaction between waves in the nearfield zone becomes of primary interest, as it is in
this zone the energy ‘injected’ into a shell by a transverse driving force is redistributed from
flexural waves to tangential ones.
In the following energy transportation in the shell geometry introduced in Section 5 will be

studied in detail.
We begin with the case of radial excitation at the frequency f ¼ 1661 Hz; which slightly exceeds

the first cut-on frequency, i.e., the case when only one wave propagates in the shell. In the left part
of Fig. 9 the energy distribution is displayed—with the upper graph zooming in on the intense
redistribution in the boundary layer, where the energy injected in radial direction almost
immediately is converted into power flow related to tangential motion. Gradually radial motion
then regains the energy and in the far field this motion is responsible for approximately 70% of
the power flow at this frequency. At a slightly higher frequency f ¼ 2000 Hz—displayed in the
right part of Fig. 9—similar phenomena with a very rapid exchange just after injection is seen.
However at this frequency the radial motion later only regains a very limited amount of energy. In
the far field the main power flow is split between longitudinal and tangential motion. To further
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Fig. 9. The power flow balance at frequencies of 1661 and 2000 Hz for m ¼ 3: —— Naxial ; - - - - Ntorsion; –3–3– Nbending;w;
33–33–33 Nbending;w0

; —— Nscr;tot:
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illustrate the profound frequency dependence of the energy redistribution, the power flow for
f ¼ 1659:5 and 4000 Hz is presented in Fig. 10. It is observed that immediately after cut-on the
energy flow from radial motion closely resembles the total power flow in the far field and
longitudinal and radial motion only account for a small energy flow that is even in reverse
direction. As the frequency of excitation is increased, longitudinal and tangential motion
gradually takes over the power flow and at 4000 Hz the power flow from radial motion is
diminutive in the far field even when the original power is injected purely in that direction.
In the previous case the relative energy distribution in the far field was identical and stable, no

matter how the energy was injected. However, at higher frequencies more than one wave may
propagate and the cross-coupling between the propagating waves may produce spatial oscillations
of displacements, generalised forces and power flow. In Fig. 11 the Green’s functions v03m for an
excitation frequency of 100 kHz—where two waves may propagate—is displayed. Just after the
second cut-on a very large difference in wavelengths exists between the propagating waves. At
100 kHz there is a ratio of 8.8 between the wavelength of the second cut-on wave and the first cut-
on wave—a difference very clearly seen in the figure. The various excitation conditions will excite
the two propagating waves differently, which means that the oscillations in the total amplitude
will depend upon excitation.

ARTICLE IN PRESS

Fig. 10. The power flow balance at frequencies of 1659.5 and 4000 Hz for m ¼ 3: —— Naxial ; - - - - Ntorsion;
–3–3– Nbending;w; 33–33–33 Nbending;w0

; —— Nscr;tot:

Fig. 11. Green’s function v03m for m ¼ 3 at 100 kHz: —— Real; – – – – Imag; —— Magn.
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At 100 kHz the ratio between the excited amplitudes for the first cut-on wave and the
second cut-on is 0.13 for longitudinal loading and 35 for radial loading. Thus the final power flow
balance depends very much upon type and direction of excitation as seen in Fig. 12. For the
longitudinal excitation the dominant carrier of energy is the longitudinal motion with a
negative contribution from tangential motion and negligible power flow from radial displacement.
For the radial excitation the situation is reversed. The power flow is completely contained
within the radial displacements and only tiny amounts of energy are attributed to longitudinal
and tangential motion. Due to the very large differences in wave amplitudes the cross-coupling
effects and oscillatory content in the power flow is rather limited. However, at even
higher frequencies very significant oscillations are found—e.g., at 140 kHz; where peak-to-
peak oscillations within one component of power flow may be as large as 80% of the total power
flow.

8. Green’s matrix—including internal fluid loading

The results reported in the previous sections of the paper are applicable for analysis of wave
propagation in cylindrical shells with light fluid loading. However, as it has been discussed in the
introduction, it is quite typical in many technical applications to deal with vibrations of e.g., a
cylindrical shell filled with some rather dense compressible fluid. In such a case, vibrations of the
shell are strongly coupled with the fluid’s motions.
The Green’s matrix is constructed by solving the shell equations (5) simultaneously with the

Helmholtz equation

@2j
@r2

þ
1

r

@j
@r

�
m2

r2
jþ

@2j
@x2

þ
o
cf


 �2

j ¼ 0; ð19Þ

with j being the acoustic velocity potential.
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Fig. 12. Power flow for longitudinal and radial excitation at 100 kHz: —— Naxial ; - - - - Ntorsion; –3–3– Nbending;w;
33–33–33 Nbending;w0

; —— Nscr;tot:
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The fluid–structure interaction is then defined by a continuity condition formulated at the
surface of a shell r ¼ R as

@j
@r

¼ �iow: ð20Þ

Eq. (5c) then contains the contact pressure defined by the formula p ¼ irf oj and may be re-
written as

n
R

@um

@x
þ

m

R
vm þ

h2

12

m3

R4
vm �

h2

12

ð2� nÞm
R2

@2vm

@x2
þ

1

R2
w01

m þ
h2

12

@4wm

@x4

�
h2

12

2m2

R2

@2wm

@x2
þ

h2

12

m4

R4
wm �

ro2ð1� n2Þ
E

wm � irf o
1� n2

Eh
jm ¼ 0: ð21Þ

Displacements are sought in the form (3) and a general solution of Eq. (19) is

jðx; r; yÞ ¼ DmImðkrÞ exp
*k

R
x


 �
cos my; k2 ¼ �

*k

R


 �2

�
o
cf


 �2

:

The ‘fluid’ modal coefficient is found from the condition

Dm
dImðkrÞ

dr

����
r¼R

¼ �ioCm:

Then the fluid loading term in Eq. (21) becomes

�rf o
2 ð1� n2Þ

Eh
ImðkRÞ

dImðkrÞ
dr


 ����
r¼R

��1

:

The dispersion equation (15) is composed of the same elements as for an ‘empty’ shell, but the last
one is modified as

d33 ¼ 1þ
h2

12R2
*k4 �

h2

12R2
2m2 *k2 þ

h2

12R2
m4 � O2 � rf o

2R2 ð1� n2Þ
Eh

	 ImðkRÞ
dImðkrÞ

dr

����
r¼R


 ��1

:

The properties of the roots of the dispersion relation are studied most carefully in Refs. [10,12,13].
For example, in Ref. [10], it has been found that the dispersion equation has an infinitely large
number of roots and the vast majority of these roots are related to evanescent ‘fluid-dominated’
waves. However, since the attention in these references has been focused on the energy
transmission in a far field, the role of evanescent waves in the boundary layer in the fluid-filled
shell near the excitation point has not been studied in detail.
In the present case, similarly to the case of an empty shell, Green’s matrix is obtained in the

form of expansion of the coupled response of a shell and a fluid on all normal modes, which exist
in this system. Thus, it is necessary to retain evanescent modes together with propagating ones.
Although these evanescent waves do not transport energy, they control the input mobility of a
fluid-loaded shell. Similarly to the case of a shell without fluid loading, these waves act in the
boundary layer as ‘transducers’ of the energy of vibrations from the directly excited waves to the
propagating ones.
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As has been discussed in Section 1, the standard technique to formulate the stationary forced
response of a fluid-filled cylindrical shell is Fourier transformation. Then the amplitudes of radial
displacements and all other physical variables are available in the integral form. In computations
of these integrals in a complex plane, contribution of a finite number of poles is taken, see
Refs. [10–15]. Although the methodology we use here (which has been suggested in Ref. [6]) is also
based on similar expansion of the forced response, the choice of Galerkin’s orthogonalisation
procedure to fulfil the continuity condition in a fluid and the selection of ‘fluid-dominated’ modes
for this purpose appears to be physically more reasonable. Besides, unlike some previous research
papers (e.g., Ref. [15]), the accuracy of such an approximate solution is consistently controlled (as
is done in Ref. [6]) by the independent computations of acoustic and structural power
transmission and checking the energy balance between them and the energy input.
Let M be the number of roots of the dispersion equation (15), which is used to construct

Green’s matrix. As is shown in Section 4, the dispersion equation (15) always has four roots,
which satisfy all conditions at infinity in the case of no fluid loading. Apparently, M > 4 for a
fluid-loaded shell. For example, if a lateral concentrated force is applied, a solution is formulated
as

u03m ¼ sgnðx � xÞ
XM
j¼1

ajC
03
j exp

*kj

R
jx � xj

 !
;

v03m ¼
XM
j¼1

bjC
03
j exp

*kj

R
jx � xj

 !
;

w03
m ¼

XM
j¼1

C03
j exp

*kj

R
jx � xj

 !
;

j03
m ¼

XM
j¼1

�ioC03
j ImðkjrÞ

dImðkjrÞ
dr

����
r¼R


 ��1

exp
*kj

R
jx � xj

 !
: ð22Þ

The conditions at the loaded cross-section of a shell are still given by Eqs. (13). However,
Eqs. (13) are not sufficient to uniquely define all unknown coefficients C03

j ; j ¼ 1;y;M: Their
‘redundancy’ is explained by the necessity to fulfil continuity conditions not only at the cross-
section of a shell, but also in a fluid field at x ¼ x: Due to the symmetry of this particular loading
case, this condition is formulated as zero axial velocity

@jm

@ *x
¼ 0: ð23Þ

If this equality holds exactly, then an exact formulation of Green’s matrix is obtained. In practical
computations, it is possible to retain in the series (22) only a finite number of terms. Then the
Green’s matrix is obtained approximately and the accuracy of its formulation may be assessed by
the convergence rate of coefficients C03

j ; j ¼ 1;y;M as the number M of terms increases.
In such an approximation, condition (23) is formulated in an averaged sense by the Galerkin

method, and a system of equations defining coefficients C03
j ; j ¼ 1;y;M is composed asXM

j¼1

ajC
03
j ¼ 0; ð24aÞ
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XM
j¼1

1� n
2

þ
h2

12

2ð1� nÞ
R2

� �
bj

*kjC
03
j ¼ 0; ð24bÞ

�
h2

12R2

XM
j¼1

½ *k3
j � ð2� nÞmbj

*kj�C03
j ¼ �

1

2
; ð24cÞ

XM
j¼1

*kjC
03
j ¼ 0; ð24dÞ

XM
j¼1

C03
j
*kj

dImðkjrÞ
dr

����
r¼R


 ��1Z R

0

ImðkjrÞImðknrÞr dr ¼ 0; n ¼ 5;y;M: ð24eÞ

In Eqs. (24), orthogonalisation is performed with the total velocity and the individual pressure
distributions ðn ¼ 5;y;MÞ in the radial direction chosen as weight functions.
Condition (23) is applied to construct the row of Green’s matrix for the loading of a shell by

radial or circumferential forces concentrated in the axial direction. Here the deformation of the
fluid-filled shell is symmetric with respect to a loaded cross-section and no fluid flow is admissible
through this section, i.e., a ‘rigid acoustic baffle’ is inserted into the loaded cross-section. For a
longitudinal loading, a set of ‘skew-symmetric’ conditions (10) should be supplemented by the
condition jm ¼ 0 at x ¼ x: This condition of a ‘soft acoustic baffle’ allows free penetration of fluid
particles through the loaded section. Here orthogonalisation is performed with the total pressure
against the individual velocity distributions ðn ¼ 5;y;MÞ: Then a set of elements for the Green’s
matrix is obtained by solving this system of ðM 	 MÞ linear algebraic equations.
Conditions (24e) are formulated for a selected sub-set of roots ðn ¼ 5;y;MÞ from the

dispersion equation (15). It may be advantageous to perform the orthogonalisation against fluid
dominated roots. Potentially the roots originating from the introduction of fluid loading may here
be distinguished from the original shell modes by gradually lowering the density rf -0: However
it is not always possible to perform a clear identification of ‘shell originated’ and ‘fluid originated
waves’. A complex conjugate wave in the fluid-loaded shell may develop from two decaying
waves, one originating from the shell and the other originating from the fluid. In order to indicate
the stability of the approximation, calculations were performed with different number of roots
ðMÞ and with orthogonalisation against different sub-sets ðn ¼ 5;y;MÞ: From this investigation
a fine stability on the power flow was found even with a limited number of roots included.

9. Dispersion curves—including internal fluid loading

In Fig. 13 dispersion curves are plotted for the cylindrical shell introduced in Section 5, but now
filled with an acoustic medium of rf ¼ 1000 kg=m3 and cf ¼ 1440 m=s: Again a zoom is
performed in the regions of cut-on and from Fig. 14 it is seen that bifurcation phenomena similar
to those found for the shell without fluid appear. It is noted that the first cut-on now takes place at
928 Hz as compared with 1659 Hz for the shell without fluid—a significant drop due to the rather
small thickness of the shell. A second cut-on appears at 64 kHz and a third around 77 kHz: Or
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rather at 76822:2 Hz; exactly the same frequency as the second cut-on appeared for the shell
without fluid. This is clearly seen from the modal coefficient a3 for the shell without fluid that
peaks at this specific frequency. This means there is no coupling between u and w and for a finite
value of u there will be no w displacement and thus no coupling to the fluid for this wave at this
specific frequency.
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Fig. 13. Dispersion for shell with fluid, m ¼ 3: + Comp, Re; 3 Comp, Im; + Decay; � Prop.

Fig. 14. Bifurcation at first and second cut-on for shell with fluid, m ¼ 3:+ Comp, Re; 3 Comp, Im; + Decay; � Prop.
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10. Power flow—including internal fluid loading

The presence of fluid loading does not modify the formulation of power flow of structural
waves (18). However, due to the compressibility of the fluid some amount of energy may ‘escape’
from a structural path and be transported through the fluid. The formulation of the energy
transported through the acoustic medium is

N
fluid
m;out ¼ �g

po
2

Z R

0

½ImðpmÞReðufl;mÞ �ReðpmÞ Imðufl;mÞ�r dr; ð25Þ

where ufl;m is the longitudinal displacement in the fluid.
An energy conservation law may then be formulated as

Ntot
m;out ¼ Naxial

m;out þ Ntorsion
m;out þ N

bending
m;out þ N

fluid
m;out: ð26Þ

As follows from this equation, the mechanical energy injected is spread over four paths—a very
important fact from a practical point of view. In many cases, this phenomenon may be
undesirable because it makes mechanical suppression of vibrations at the surface of the shell
inefficient in avoiding energy transportation to the far field.
In Fig. 15 the power flow is displayed for low frequency excitation at 2000 Hz; where only one

wave may propagate. To the left is displayed the structural power flow in the same way as for the
shell without fluid and to the right a comparison between the calculated gain in fluid power Nfluid

and the loss of structural power �DNstr;0 as referred to the cross-section of excitation. It is noted
that the structural power flow has resemblance to the energy distribution in Fig. 15 for excitation
at 4000 Hz for a shell without fluid. Actually the wave propagating at 2000 Hz for the shell with
fluid is almost identical to the wave propagating in the shell without fluid at 3500 Hz: At 2000 Hz
the shell with fluid has k ¼ 0:872; a ¼ 0:080 and b ¼ �0:339 versus k ¼ 0:867; a ¼ 0:080 and
b ¼ �0:339 at 3500 Hz for the shell with fluid. At the low frequencies only a very small amount of
energy—in this case 1:4%—is carried in the fluid. The fluid primarily acts as ‘added mass’ in the
low-frequency range.

ARTICLE IN PRESS

Fig. 15. Power flow in structure and fluid for radial excitation, f ¼ 2000 Hz; m ¼ 3: (a) —— Naxial ; - - - - Ntorsion;
–3–3– Nbending;w; 33–33–33 Nbending;w0

; —— Nscr;tot; (b) 3 Nfluid ; —— �DNstr;0:
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At higher frequencies an increasing amount of the power flow may take place in the fluid. Then
steady spatial fluctuation of the energy between structural and acoustic transmission paths are
observed. The ratio of power in the fluid to the total power and the amount of oscillation will
depend very much upon the excitation conditions as shown in Fig. 16. Here the power flow is
shown for an excitation frequency of 68 kHz and m ¼ 3: The wave cut-on firstly would carry only
10% of its energy in the fluid whereas the wave cut-on secondly would carry almost 85% if excited
alone. Thus the final power flow balance will again depend significantly upon magnitude and
phase of the two waves. For all three loading cases a very fine agreement is found between the
calculated loss in structural power and the gain in fluid power as is seen in the right hand side of
Fig. 16.
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Fig. 16. Power flow in structure and fluid for longitudinal, tangential and radial excitation, f ¼ 68 kHz; m ¼ 3:

(a) —— Naxial ; - - - - Ntorsion; –3–3– Nbending;w; 33–33–33Nbending;w0
; —— Nscr;tot; (b) 3 Nfluid ; —— DNstr;0:
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11. Conclusions

This paper presents a consistent derivation of the boundary integral method for cylindrical
shells with fluid loading together with a thorough discussion of its versatile application. It is
illustrated how the method allows detailed studies to be performed on finite as well as infinite
structures and how it handles ‘light’ as well as ‘heavy’ fluid loading. Furthermore the method
makes it possible to handle nearfield and farfield analysis within the same analytic tool and
provides profound insight into the complex energy redistribution in the zone of transition.
Within a homogeneous problem formulation, typical dispersion curves are presented and

phenomena of bifurcations and cut-on are studied. It is also illustrated how modal coefficients
may bring valuable information for interpretation of the dynamic behaviour. As is shown in the
paper, the energy distribution between various wave numbers and various transmission paths in a
shell of given parameters is very sensitive to the excitation frequency. Also, the energy distribution
between axial, torsional, flexural and acoustical components in the far field may be very different
from those in the near field. Moreover in cases when a shell supports more than one propagating
wave, steady fluctuations between these components are strongly affected by the excitation
conditions. All these features are adequately captured by the boundary equations method which is
also applicable for analysis of finite structures. For the finite cylindrical shell the boundary
integral method has been compared with traditional finite element analysis in terms of
eigenfrequencies, and excellent agreement has been found.
The work has also highlighted the potential of the boundary integral approach in analysis of

more complicated problems in dynamics of fluid–structure coupled systems. It particular,
formulation of Green’s matrices makes it possible to introduce a concept of sub-structuring to
describe wave propagation and power flow in complex systems. Furthermore, the explicit
formulation of Green’s functions offers numerous possibilities of averaging in the frequency
domain as well as in the spatial domain. This means the boundary integral method may also
supply input for statistical energy based analysis procedures in the high frequency domain, one of
the strengths here being the consistent transition from deterministic, displacement based analysis
to a statistical and energy-based approach.

Appendix. The shell theory used: sign convention and formulas for deformations and force resultants

The positive directions of the displacements and driving forces are shown in Fig. 17. Within the
framework of Gol’denveiser–Novozhilov theory [17,18] the components of mid-plane deforma-
tion are

e1 ¼
@u

@x
ðthe deformation in the axial directionÞ;

e2 ¼
1

R

@v

@y
þ

w

R
ðthe deformation in the circumferential directionÞ;

$ ¼
1

R

@u

@y
þ

@v

@x
ðthe shear deformationÞ;
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k1 ¼ �
@2w

@x2
ðthe bending curvature in the axial directionÞ;

k2 ¼ �
1

R2

@2w

@y2
þ

1

R2

@v

@y
ðthe bending curvature in the circumferential directionÞ;

t ¼ �
1

R

@2w

@x @y
þ

1

R

@v

@x
ðthe twistingÞ:

Force and moment resultants in a shell element are, respectively [17,18],
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ðthe axial membrane forceÞ;
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ðthe axial bending momentÞ;
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Fig. 17. The sign convention in the shell theory.
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M2 ¼
Eh3

12ð1� n2Þ
�n

@2w

@x2
�

1
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@2w

@y2
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R
v


 �
ðthe circumferential bending momentÞ;

H ¼
Eh3

12ð1� n2Þ
ð1� nÞ �

1

R

@2w

@x@y
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1

R
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ðthe twisting momentÞ:

They are also shown in Fig. 17.
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