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Abstract

A substructure approach is formulated to investigate the power flow characteristics of a plate–cylindrical
shell system subject to both conservative and dissipative coupling conditions. The system is divided into a
shell substructure and a plate substructure. The theoretical receptance function of each substructure with a
free–free interface condition is formulated by modal analysis to describe the dynamical behaviour of each
substructure. The displacement components induced by external forces and the interface coupling forces are
deduced, permitting determination of the coupling forces and power flow through the interface between the
two substructures. On the basis of the dynamic information of the two substructures and through a
synthesis analysis using the geometrical compatibility and force balance conditions on the coupling
interfaces, the dynamic characteristics of power flow excited and transmitted within the system are
calculated. A power flow density vector and the corresponding energy flow line are defined for this coupled
system. The numerical example demonstrates the applicability of the proposed method and illustrates the
power flow characteristics associated with the complex coupled plate–cylindrical shell system.
r 2003 Published by Elsevier Ltd.

1. Introduction

A power flow analysis (PFA) provides a technique able to model mathematically the medium-
to high-frequency responses of structures. The fundamental concepts of power flow analysis, as
discussed and described by Goyder and White [1–3], use the rate of energy flow to characterize the
dynamic response of vibrating systems. Considerable attention has been focused on the dynamic
and power flow behaviour of coupled beams or plate structures adopting different theoretical
methods involving mobility, direct dynamic stiffness, travelling and scattering wave receptance
theories [4–12].
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Applications of finite element analysis (FEA) to energy flow modelling usually adopt a global
model performed on a global system [13–17] or in the case of receptance theory to a local FEA
domain [18,19]. Hambric [20] and Gavric and Pavic [21] use FEA to calculate structural
intensities. The FEA method applied to a power flow analysis and/or used to perform structural
intensity calculations can conveniently model complex structures subject to complex boundary
conditions, demonstrating its advantageous applicability. However, in general, because the
structural intensity prediction requires an accurate description of various spatial derivatives, it is
necessary to admit a large number of modes into the analysis to ensure convergence of solution.
This numerical scheme of study, adopting modal superposition, encounters difficulties due to the
computational effort required. To ease this problem, Wang et al. [22] proposed a substructure
method to analyze the power flow in L-shaped plates. The concept of an energy flow density
vector developed by Xing and Price [23] was further investigated and the magnitude and direction
of the power flow density vector at any location of the structure were calculated [22,24]. This
method provides a way of determining the dominant paths of energy flow using a vector field
analysis approach [24].
Many engineering structures are constructed by combinations of plates and cylindrical shells.

They are joined together by welds, bolts or dashpots. The coupling between these components
may be conservative or compliant and dissipative. In a study of the dynamic characteristics of
cylindrical shells, Franken [25] derived the input impedance of a simply supported cylindrical shell
but the analysis did not include the influence of bending stiffness of the shell and therefore it has
limitations in the estimation of input power in practical applications. Heckl [26] and Fuller [27]
derived analytical expressions to evaluate the input radial mobility of an infinite elastic cylindrical
shell. Harari [28] developed a general formula to evaluate the transmitted loss of energy or power
based on the structural impedance of finite and semi-infinite cylindrical shells. Ming et al. [29]
present the mobility function and power flow of a semi-infinite cylindrical shell and two coupled
shells using Flugge’s shell theory [30,31].
The dynamical characteristics of a coupled plate–cylindrical shell system were discussed by

Peterson and Boyd [32] who developed an analytical model for the free vibration of a cylindrical
shell with an internal floor using the Rayleigh–Ritz technique. Langley [33] studied the free
vibration of a simply supported stiffened cylindrical shell with an internal plate by a dynamic
stiffness method. Missaoui et al. [34] investigated the free and forced vibrations of a cylindrical
shell with a floor partition based on a variational formulation in which the structural coupling is
simulated using artificial spring systems. Missaoui and Cheng [35], Li et al. [36] present findings on
the structural acoustic coupling characteristics of a cylindrical shell with an internal floor partition
using artificial stiffness to describe the structural coupling between the shell and the plate.
This paper describes further developments of the substructure approach [22] to examine the

power flow characteristics in a more complex coupled plate–cylindrical shell system excited by an
external force as shown in Fig. 1. The mathematical model adopts a receptance theory [19,37]
approach to describe a conservative or compliant and dissipative coupling condition. Thin shell
differential equations are used [30,38] to calculate the receptance function of simply supported
cylindrical shells subject to different types of excitation using modal analysis theory. The
displacement components induced by external forces and the interface coupling forces are
deduced, permitting determination of the coupling forces and power flow between the interfaces
of the substructures by satisfying geometrical compatibility conditions and force balance
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equations at the coupling edges. The power flow characteristics in the system and across the
coupling edges of the cylindrical shell and plate are calculated for both conservative and
dissipative coupling conditions. The substructure approach presented herein divides the large
global structure into many small substructures for which dynamic response results are obtained by
analytical methods or FEA approaches, thus introducing a higher computational efficiency at the
substructure level. Based on these substructure results, the global vibration information of the
global structure can be synthesized. When a substructure is readily defined by an analytical
solution, a theoretical substructure model is adopted. The main advantage of using a theoretical
model in a power flow analysis allows calculation of high-frequency components easily and
efficiently, so it is suitable to calculate the detailed distribution of the power flow density vector in
the structure. For a system with complex boundary conditions, there are no theoretical natural
modes available. It is then necessary to resort to FEA models at the substructure level to derive
the vibration modes of each substructure and then by a synthesis process to determine the
vibration information of the global system.
In this paper, because of the availability of analytical results, a theoretical model is used. The

global shell–plate system is divided into two substructures. That is, a shell substructure and a plate
substructure. Section 2 provides the governing equations describing the dynamics of the two
substructures together with their theoretical solutions dependent on the two different coupling
conditions adopted on the coupling interfaces of the shell and the plate. Section 3.1 develops the
necessary power flow analysis formulations defined for this complex shell–plate coupling system.
Section 3.2 presents an example calculation to demonstrate the applicability of the developed
method through descriptions of power flow characteristics and energy flow transmission paths
associated with the complex shell–plate coupling system.

2. Substructure approach to a plate-cylindrical shell system

The plate–cylindrical shell system under investigation is illustrated in Fig. 1. It is assumed that
simply supported boundary conditions apply to the ends of the plate and cylindrical shell. This
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Fig. 1. Schematic illustration of a plate–cylindrical shell system.
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total system can be separated into two subsystems. That is, a rectangular plate with simply
supported boundary conditions applied to two opposite edges with the coupling edges ðy ¼ 7b=2Þ
assumed free and a cylindrical shell with simply supported boundary conditions applied to the two
ends of the shell with the two coupling edges ðy ¼ yb1; y ¼ yb2Þ assumed free.
Each substructure is treated as an independent system but two kinds of forces act on it. One is

the external excitation force whereas the other is the internal distributed coupling force acting at
the coupling edge. The whole system is coupled by the distributed internal forces ½fcp� ¼
½Nyy;Qy;Myy�T; as shown in Fig. 2, acting along the coupling edges of the plate and ½fcs� ¼
½Nyy;Qy;Myy�T; as shown in Fig. 3, acting along the coupling edges of the shell.

2.1. Vibration of a substructure

As shown in Figs. 2 and 3, each subsystem is treated as an idealized system consisting of a single
rectangular uniform plate or a uniform cylindrical shell. Their structural damping properties are
represented by a linear Voigt viscoelastic model with hysteretic damping or loss factor Z [39].
Under the assumption of thin shell theory [31], the differential equations describing the dynamic

ARTICLE IN PRESS

b

Nyy(x,b/2)Nyy(x,-b/2)

Qy(x,-b/2)
Qy(x,b/2)

Myy(x,-b/2)

Myy(x,b/2)

a

Y

X

(xe,ye)

f (x e, ye, t)

simply supported

simply supported

Fig. 2. Schematic illustration of the plate in the local co-ordinate system.

θ

x
uz

ux

uθ

h
Q

N

Mθθ

θθ

θ

θb

M e

fθ
f z

f x
(xe,θe)

Fig. 3. Schematic illustration of the cylindrical shell in the local co-ordinate system.
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behaviour of the cylindrical shell in the axial ðxÞ; tangential ðyÞ and radial ðzÞ directions as shown
in Fig. 3 are expressed as
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with stress-displacement relations
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where cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1� m2Þ

p
denotes the phase velocity of the compressional wave travelling in the

elastic shell, b2 ¼ h2s=12R2 and fx; fy; fz denote the distributed forces along x; y; z directions
respectively.
It is assumed that simply supported boundary conditions apply at the ends of the cylindrical

shell, but the axial displacement is not zero. This is analogous to the axial movement allowed at an
end of a simply supported beam (see, for example, Warburton [40]). Under the influence of
harmonic excitation and modal analysis theory [37,41] it is assumed that

ux ¼
Xn

i¼1

Xm

j¼1

Uij cos jy cos kix e
iot; ð7Þ
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where ki ¼ ip=l:
The substitution of Eqs. (7)–(9) into equations of motion (1)–(3) yields a homogeneous set of

three linear algebraic equations for the displacement amplitudes Uij;Vij ;Wij given by
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Here,
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where l ¼ oR=cp is a non-dimensional frequency, and
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If a moment Me is applied in the y-direction at position ðxe; yeÞ on the shell, Eqs. (17)–(19) become
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ARTICLE IN PRESS

Z.H. Wang et al. / Journal of Sound and Vibration 271 (2004) 863–882868



Fz ¼ 2a
ð1� m2Þ
Ehslp

Z 2p

0

Z l

0

@

a@y
½Medðy� yeÞdðx � xeÞ� cos jy sin kix dx dy

¼ � 2
ð1� m2Þ
Ehslp

Z 2p

0

Z l

0

@

@y
½cos jy sin kix�Medðy� yeÞdðx � xeÞ dx dy

¼ 2j
ð1� m2Þ
Ehslp

Me sin jye sin kixe: ð22Þ

It follows from these results that the response represented by Eqs. (7)–(9) of the cylindrical shell
can be determined under any kind of excitation. The applied forces fx; fy; fz in Eqs. (1)–(3) consist
of both external exciting forces and internal coupling forces. For this linear system, it is
convenient to express the displacements Uij;Vij ;Wij described by Eqs. (7)–(10) in a summation
form involving two components. Namely, the one induced by external exciting forces and the
other by internal coupling forces. Therefore, the displacement and rotation angle fuð1Þcs g; fu

ð2Þ
cs g of

the shell at two coupling edges are represented in the summation form:
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s
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s

" #
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R2
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( )
; ð23Þ

where Rs and Res denote the interface receptance functions of the shell under internal coupling
forces ffð1Þcs g; ffð2Þcs g and external excitations ffesg respectively. These receptance functions
representing the displacement response vectors under each unit internal coupling force or external
exciting force are determined using modal theory and Eq. (10). The internal coupling forces ffð1Þcs g;
ffð2Þcs g remain unknown and need to be determined by undertaking a synthesis process using
geometrical compatibility conditions and force balance equations at the two coupling edges as
described in Sections 2.2 and 2.3.
If it is assumed R-N and by changing the cylindrical co-ordinate system of Eqs. (1)–(3) to a

Cartesian co-ordinate system then Eqs. (1) and (2) transform to differential equations describing
the in-plane vibration of the plate substructure and Eq. (3) the differential equation describing its
bending vibration. The stress–displacement relations of the plate substructure retain the same
form as expressed in Eqs. (4)–(6).
Gorman [42], Leissa [43] developed a theoretical model to describe the free vibration of a

uniform rectangular plate. After the natural frequencies ors and principal modal shapes jrs of a
uniform plate are determined, according to modal superposition theory, its response can be
written as
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where jIx
rs ; j

Iy
rs denote the modal shapes associated with the in-plane vibration of the plate in

the x and y directions, respectively, whereas pIx
rs ; pIy

rs represent their corresponding principal
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co-ordinates. The terms jb
rs; pb

rs designate the modal shapes and the principal co-ordinate of
bending vibration of the rectangular plate and 1prpn; 1pspm denote the number of modes
admitted in the numerical scheme of the study.
The descriptions of displacement and rotation angle fuð1Þcp g; fu

ð2Þ
cp g at the two coupling edges of

the plate under internal coupling forces ffð1Þcp g; ff
ð2Þ
cp g and external excitations ffepg have a similar

matrix form to Eq. (23). That is,
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2.2. Conservative coupling and synthesis of substructures

When the coupling edges of the plate and cylindrical shell are directly connected, the coupling
conditions applying between the two substructures are described by their force balance and
geometric compatible conditions acting at the coupling edges. In the global co-ordinate system,
these conditions are expressed as follows:
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Here Tp denotes the transformation matrix from the plate local co-ordinate system to the global
co-ordinate system, Ts1; Ts2 represent the transformation matrices from the local cylindrical
co-ordinate system to the global co-ordinate system, defined at the two coupling edges
respectively.
From Eq. (28) and by using the inverse transformation matrices the following result is obtained:
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where the subscript c is neglected. The substitution of Eqs. (23), (27) and (30) into Eq. (29) allows
the coupling relations to be expressed in the form
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where
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It therefore follows that the response of the whole system can be determined after derivation of
solution of the receptance functions of the plate and the cylindrical shell.

2.3. Compliant-Dissipative Coupling and synthesis

In many engineering applications, two substructures are assumed connected by spring–damper
systems. In general, these spring–damper systems can be treated as independent substructures. To
simplify calculation, assume that the spring–damper systems between the plate and the shell are
massless, the couplings between substructures are treated as compliant-dissipative and the spring–
damper systems along the coupling edges have different constant complex stiffness coefficients in
each displacement and rotational direction. This allows the complex stiffness matrix at any
position along the coupling edge in the global co-ordinate system to be written as

½KD� ¼

KY ð1þ iZyÞ
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8><
>:

9>=
>;: ð34Þ

The force balance conditions and responses of the substructures expressed in Eqs. (23), (27) and
(28) remain unchanged. The geometrical compatibility equations at two coupling edges in the
global co-ordinate system are now written as
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Substituting Eqs. (23) and (27) into Eq. (35), the coupling relations become
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where
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Therefore, the coupling forces in the global co-ordinate system may be expressed as
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3. Power flow characteristics in a plate–cylindrical shell system

3.1. Power flow density vector

Xing and Price [23] expressed and discussed the basic definition of a power flow density vector
in a continuum. Using this definition, the instantaneous power flow density vector in a thin plate
is defined in the form

qk ¼ �Ref ’uzgRefQkg þRef ’uz; jgRefMjkg �Ref ’ujgRefNjkg; ð39Þ

with a time-averaged quantity

/qkS ¼ � 1
2
RefQk ’u

�
z � Mkj ’u

�
z;j þ Nkj ’u

�
k g; ð40Þ

where j ¼ 1; 2 ¼ k: In these equations a standard Cartesian tensor notation and a summation
convention are used. The sign of the second term on the right-hand side of Eqs. (39) and (40) is
dependent on the direction definitions of ’yj and Mjk: These definitions are based on the sign
convention of elasticity theory (see, for example, Reismann and Pawlik [44]).
The time-averaged power flow density vector /qkS in Eq. (40) is equivalent to a structural

intensity parameter [20,21] and has similarity to an acoustic intensity parameter in a fluid domain
being the product of pressure and the in-phase component of fluid particle velocity (see, for
example, [45]).
Similarly, the instantaneous power flow density vector in a thin shell is given by

qk ¼ �Ref ’uzgRefQkg þRef ’uz;j � ’uk=RkgRefMjkg �Ref ’ujgRefNjkg; ð41Þ

with a time-averaged quantity

/qkS ¼ � 1
2
RefQk ’u

�
z � Mkjð ’u�z;j � ’u�k =RkÞ þ Nkj ’u

�
k g; ð42Þ

where Rk is the radius of the shell curvature about the k-axis. Here, for a thin cylindrical shell,
R1 ¼ R;R2 ¼ N:
The instantaneous power flow density vector across one coupling edge is only in the y direction

of the plate (see, Fig. 2) and can be expressed as

qc
y ¼ �Ref ’uzgRefQyg þRef’hygRefMxyg þRef’hxgRefMyyg

� Ref ’uxgRefNxyg �Ref ’uygRefNyyg: ð43Þ

The total transmitted power at a coupling edge is given by the integral of the transmitted power
flow density along the length of the coupling edge. That is,

qtrans ¼
Z a

0

qc
ydx; ð44Þ

with the corresponding time-averaged quantity

/qtransS ¼
Z a

0

/qc
yS dx: ð45Þ

It is convenient to determine the power flow at the coupling edge using a substructure
receptance approach because the solution of the coupling force in the coupling relationship
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described in Eqs. (30), (31) and the receptance function expressed in Eq. (27) are simple and in the
same local co-ordinate axis system.

3.2. Calculation example

For illustrative purposes, assume that the plate–cylindrical shell system shown in Fig. 1 is
defined by the data set: r ¼ 7750 kg=m3; E ¼ 206 GPa; Z ¼ 0:01; m ¼ 0:3; R ¼ 0:177 m; a ¼ l ¼
1:284 m; hp ¼ 0:003 m; hs ¼ 0:005 m; and the angles of the two coupling edges in the cylindrical
co-ordinate system are given as yb1 ¼ �yb2 ¼ 60
:
Two coupling edge conditions were examined. The first case assumes that the plate and the

cylindrical shell are directly connected at the coupling edges. This implies that the coupling is
conservative, all power output from the source substructure inputs to the receiver substructure.
The second case assumes that they are connected by uniform distributed spring–dampers at the
coupling edges. Therefore, the coupling is compliant and dissipative and a portion of the power
output from the source substructure stores and dissipates in the coupling spring–dampers.

3.2.1. Conservative coupling
Figs. 4 and 5 illustrate the variation of the time-averaged input power of external excitation and

total transmitted power flow along two coupling edges from the plate to the shell as a function of
frequency. A unit amplitude loading is applied at the centre of the plate. The results derived by a
FEA model are included to verify the substructure calculations.
The FEA model consists of 1209 nodes (341 nodes for the plate and 930 nodes for the shell) and

1200 plate–shell elements. In the calculation, 150 natural frequencies and principal modes of the
system were extracted using FEA package ANSYS spanning the frequency range up to 2200 Hz:
The structural damping loss factor Z of the plate and the shell are used in the mode equations to
derive the displacement response from the FEA calculation. From the node deflections of an
element, the spatial averaged squared surface velocity of this element was derived to calculate the
transmitted power flow using Eq. (46). Since the receiver shell is not connected to any other

ARTICLE IN PRESS

Fig. 4. Predictions of time-averaged input power flow of external excitation (excitation at the centre of the plate);

——, input power, – – –, input power (FEA).
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substructure except the source plate, the transmitted time-averaged power determined by the FEA
model approximately equals the rate of energy dissipation of the shell due to the internal loss
factor (see, [39]). This comparison is illustrated in Fig. 5 since

/qtransSEoZrpRlhsjv2s ð f ÞjE/qinS� oZrabhpjv2pð f Þj; ð46Þ

where jv2s ð f Þj; jv2pð f Þj denote spatial average squared velocities of the shell and plate respectively.
The total energy dissipation of the system in a vibration period is equal to the time-averaged input
power as shown in Fig. 4.
It is seen from Figs. 4 and 5 that except for small discrepancies in the natural frequency values,

only small differences exist in the determination of the time-averaged input power of external
excitation between the theoretical substructure predictions and those evaluated by the FEA
approach, thus providing a measure of confidence in the validity of the computations. The reason
for the errors occurring in the natural frequencies lies in the fact that different plate–shell theories
are used in the two calculations. That is, the influences of transverse shear deformation and
rotational inertia of a plate–shell element are incorporated into the ANSYS calculations but they
are ignored in the theoretical model. In previous studies [32,34] relating to free vibration of a
cylindrical shell with an internal floor, it was found that errors also occurred in the prediction of
natural frequencies of some modes between theoretical methods and the FEA approach. As
shown in Fig. 5, some errors are observed in the transmitted power flow from the plate to the
shell, because an approximation (i.e. Eq. (46)) is used to calculate the transmitted power flow in
the FEA model.
In the following presentation of spatial distributions of time-averaged power flow density

vectors, Figs. 6 and 7 relate to a unit amplitude exciting force applied at position xe ¼ 0:45 m;
ye ¼ �0:023 m indicated by the symbol ‘‘+’’ and defined in the local co-ordinate axes of the plate.
For clarity of presentation, the modulus of time-averaged power flow density vectors in Figs. 6
and 7 are defined as

j/qðx; yÞSjðdÞ ¼ j/qðx; yÞSj0:2 ¼ ðjqxðx; yÞj
2 þ jqyðx; yÞj

2Þ0:1: ð47Þ
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Fig. 5. Predictions of time-averaged transmitted power flow from the plate to the shell (excitation at the centre of the

plate); ——, transmitted power, – – –, transmitted power (FEA).
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Fig. 6 illustrates the spatial distribution of the time-averaged power flow density vector at a
frequency of 160:5 Hz: This corresponds to the first natural frequency of the system. Fig. 7 shows
similar data corresponding to a frequency of 177 Hz which coincides with the second natural
frequency of the system.
The power flow density vector displaying the dynamic behaviour of a plate–cylindrical shell

under a single force excitation is very complex and frequency dependent in character. The power
flow density at a position near to the source is not necessarily always larger than its density at
positions further away from the source. Power flows from the excitation source and usually
terminates at a boundary. Figs. 6 and 7 illustrate the possibility that the time-averaged power flow
density is equal to zero at positions within the plate and a circulation or vortex type flow is
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observed in the vicinity of this position. This behaviour further demonstrates that a heat
conduction analogy [46] for mechanical power flow is not true [23].
One difficulty encountered in a general FEA modal superposition approach is the accuracy of

predicting internal forces. Compared to the prediction of the displacement response, the
calculation of the internal force exhibits slow or poor convergence and therefore a large number
of modes is required for accurate predictions of energy flow which is a product of force and
velocity. In the theoretical substructure approach adopted herein, the modes of the plate and the
shell are defined by trigonometric or hyperbolic functions which have continuous derivatives, and
therefore such difficulties can be overcome. The highest natural frequency admitted in the present
calculation for a suitable accuracy of convergence of solution is at least 300 kHz:
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3.2.2. Compliant and dissipative coupling

Fig. 8 schematically illustrates a section of a plate–cylindrical shell system with a compliant
and dissipative coupling. The material and geometric properties of the plate and shell are
the same as defined in the original model but a uniform distributed damper connects
them. The complex stiffness per unit length of the damper is only in the z direction and
defined by

KD ¼ 104ð1þ iZzÞN=m2: ð48Þ

Figs. 9–11 illustrate the variation of the time-averaged power flow with frequency to
different assumed coupling damping coefficient Zz: A unit force excitation is applied at the
centre of the plate. Fig. 9 shows the results of time-averaged input power caused by the
external excitation whereas Figs. 10 and 11 display the results of total time-averaged
output power along two coupling edges from the plate and total input power to the shell
respectively.
These figures illustrate that for different coupling damping models, the principal dynamic

characteristics of the system remain nearly the same as measured by the natural frequencies of the
system, the input power caused by the external excitation and the power from the damping
coupling into the receiver shell. However, large differences are observed in the time-averaged
power flowing from the plate to the dampers. This implies that the coupling dampers mainly
absorb and dissipate the energy stored originally in the source plate because the total input power
induced by external excitation must balance the total power dissipated in the plate, the shell and
the dampers. There is no obvious influence caused by the coupling damping to the dynamic
behaviour of the receiver shell and the time-averaged input power from the external excitation.
Therefore, the bigger the coupling damping the larger the energy dissipation in the coupling
damper system, thus reducing the energy dissipated in the plate.
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4. Conclusion

In this paper, a receptance substructure approach is applied to investigate the power flow
characteristics of a complex plate–cylindrical shell system. The receptance function of each
substructure is formulated using theoretical descriptions of the modal shape functions. The
displacement components induced by external forces and the interface coupling forces are
deduced, permitting determination of the coupling forces and power flow between the interface of
substructures by synthesizing through the force balance and geometric compatibility conditions
applied at the coupled edges. Both conservative and dissipative couplings along the coupling edge
are investigated. The power flow characteristics of the system are examined numerically. The
proposed method calculates the higher modes easily and efficiently to ensure convergence of
solution because the theoretically defined modes and internal forces are described by
trigonometric or hyperbolic functions which have continuous derivatives.
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Fig. 9. Predictions of time-averaged input power flow for the compliant and dissipative coupling; ——, Zz ¼ 0:01; – – –,
Zz ¼ 0:1:

Fig. 10. Predictions of time-averaged output power flow from the plate for the compliant and dissipative coupling;

——, Zz ¼ 0:01; – – –, Zz ¼ 0:1:
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The power flow density vector associated with the plate–cylindrical shell displays complexity of
form and is frequency dependent. The time-averaged power flow density value at positions near
the source is not necessarily larger than its value at positions far from the source. Time-averaged
power usually flows from the excitation source and ends at a boundary, but there is every
likelihood that the time-averaged power flow density is equal to zero at positions within the plate,
and a circulation or vortex like structure may exist around this zero density power flow position.
This phenomenon implies that a heat conduction analogy for mechanical power flows is not true.
The main contribution of the coupling damping value in the compliant and dissipative coupling

edge is observed in the power flowing to the source substructure plate. For the same applied
excitation, the larger the coupling damping value, the greater the energy dissipation at the
coupling edges with corresponding reduction of energy dissipated in the source plate.

Appendix A. Nomenclature

a; b length and width of rectangular plate
D flexural rigidity of plate or shell
E Young’s modulus
f ðtÞ general expression of exciting forces
fc internal coupling force matrix
fe external excitation force matrix
hp; hs thickness of plate and shell
i ¼

ffiffiffiffiffiffiffi
�1

p
mrs generalized modal mass
Mxx;Myy;Myy internal bending moments and twisting moment per unit length
Mxy;Mxy internal twisting moment per unit length
½Re�; ½Rc�; receptance functions between displacements at coupling edges and external

excitations or internal coupling forces
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Fig. 11. Predictions of time-averaged transmitted power flow to the shell for the compliant and dissipative coupling;

——, Zz ¼ 0:01; – – –, Zz ¼ 0:1:
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n mode number used in modal analysis
Nxx;Nyy;Nyy extension force per unit length
NxyNxy in-plane shear force per unit length
prsðtÞ principal co-ordinate
Qx;Qy;Qy transverse shearing forces per unit length
q general expression for power flow
/qS general expression for time-averaged power flow
R radius of cylindrical shell
T a period of excitation
½T� orthogonal transformation matrix between global and local co-ordinate systems
uðtÞ general expression for displacement
ux; uy; uz displacement components for shell shown in Fig. 3
ux; uy; uz displacement components for plate
Uij;Vij ;Wij displacement amplitudes of mode ij of shell
x; y; z spatial co-ordinates
a the angle between global and local co-ordinate systems
Z damping loss factor
m Poisson ratio
y general expression for slope angle
yb angle at the coupling edges in the cylindrical co-ordinate system
r mass density
sij stress tensor
jr;jrs principal mode shape
o exciting frequency
ors natural frequency
½ �T transpose of a matrix
½ ��1 an inverse matrix
ð�Þ conjugate of a complex variable
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