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Abstract

Active control of structural vibration and acoustic radiation of a fluid-loaded laminated plate is
numerically studied. A finite element formulation is developed for modelling the dynamic behavior of the
laminated plate integrated with piezoelectric layers and viscoelastic layer based on the first order shear
deformation theory (FSDT). The Rayleigh integral on the plate surface is coupled with the derived finite
element formulation to model acoustic fluid–structure interaction of the baffled laminated plate subjected
to heavy fluid loading. Active damping control and active constrained layer damping (ACLD) control of
structural vibration and acoustic radiation of the baffled fluid-loaded laminated plate with piezoelectric
layers acting as active damping layers and viscoelastic layer acting as passive damping layer are formulated
using the developed numerical method and negative velocity feedback control algorithm. The control
performance of the active damping control and the ACLD control of structural vibration and acoustic
radiation of a fluid-loaded plate is numerically evaluated. The results obtained demonstrate that the ACLD
is more effective. The proposed model can be used for designing and predicting the control of structural
vibration and acoustic radiation of a fluid-loaded laminated plate using active damping control and the
ACLD treatment.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Active control of structural vibration and sound radiation of fluid-loaded structures has
become a very interesting research area. Several researches have been focused on active structural-
acoustic control (ASAC) applied to fluid-loaded structures. The concept of ASAC [1–3] involves
controlling the acoustic response of a fluid–structure system by applying oscillating force inputs
directly to the structure. The concept is similar to active vibration control (AVC) since the
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actuators are vibrational inputs applied directly on a flexible structure, but the goal of reducing
acoustic response often differs from the goal of reducing a purely structural response. ASAC also
differs from active noise control (ANC), since ASAC applies vibrational inputs to structure itself
rather than exciting the acoustic medium with loudspeakers. Gu and Fuller [4] analytically studied
the active control of sound radiation from a simply supported rectangular fluid-loaded plate and
determined the control forces by the optimal solution of a quadratic cost function. Meirovitch [5]
used the non-linear Riccati equation to get optimal control to reduce the sound radiation
pressure. Ruckman and Fuller [6] investigated the active control of acoustic radiation from a
fluid-loaded spherical shell using linear quadratic optimal control theory. Lee and Park [7] used a
near-field approach to active control of sound radiation from a fluid-loaded rectangular plate
based on quadratic cost function.
Active control methods have emerged as a very promising method to reduce structural

vibration and structural radiated noise at low frequencies and have been found to be
complementary to passive control methods, which are good at high frequencies. Active–passive
hybrid systems that integrate active actuators with significant, well-designed passive devices have
been of popular interest to structural control researchers in recent years. Such an approach can
compensate for system uncertainties through feedback actions and is more effective than a fixed
passive design. On the other hand, it normally requires less control power than purely active
systems. Also, since energy is always being dissipated, it is more stable than the active approach.
In other words, it has the advantages of both the purely passive (stable, fail-safe, lower power
consumption) and active (high performance, feedback actions) systems. Important among these
systems is the active constrained layer damping (ACLD) treatment. The ACLD systems have been
studied by various researchers [8–10]. It has been shown that the active component can provide
adjustable damping, whereas the passive component can enhance gain and phase margins,
reliability, practicality and high-frequency performance. An ACLD system generally consists of a
piece of passive viscoelastic damping material (VEM) sandwiched between an active piezoelectric
layer and the host structure.
The combination of active control technique in conjunction with new developments in

specialized actuator and sensor materials has permitted the implementation of the concept of
smart structure. Recent studies on smart structures have shown that piezoelectric materials can be
an effective alternative to the conventional discrete sensing and control system. Bonding or
embedding piezoelectric materials in a structure can act as sensors and actuators because of the
direct and converse piezoelectric effects, respectively. Finite element models have been proposed
[11–20] for analyzing the static and dynamic performance of such smart structures.
The present study is focused on active control of structural vibration and acoustic radiation of a

baffled laminated composite plate with heavy fluid on one side. A finite element formulation is
developed for modelling the dynamic behavior of the laminated plate integrated with piezoelectric
layers and viscoelastic layer based on the first order shear deformation theory (FSDT). The
Rayleigh integral on the plate surface is coupled with the derived finite element formulation to
model acoustic fluid–structure interaction of the fluid-loaded laminated plate. The active damping
control and the ACLD control of structural vibration and acoustic radiation of the baffled
laminated plate with piezoelectric layers acting as active damping layer and viscoelastic layer
acting as passive damping layer are formulated using negative velocity feedback control
algorithm. The static response of a piezoelectric bimorph beam to electrical loading and the
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natural frequencies of a cantilever beam with an active layer are calculated and compared with
solutions of previous studies to demonstrate the reliability and the accuracy of the developed finite
element model. The acoustic response of a stiffened plate in water is calculated to validate the
developed numerical method for coupled fluid–structure interaction analysis. The control
performance of the active damping control and the ACLD control of structural vibration and
acoustic radiation of the baffled laminated plate is numerically studied based on the proposed model.

2. Theory

2.1. Structure—finite element method

A laminated composite plate with integrated piezoelectric sensors and actuators is shown in
Fig. 1. It is assumed that the surfaces of the piezoelectric layers that are in contact with the
substrate are suitably grounded. The piezoelectric layer is polarized in the thickness direction and
exhibits transversely isotropic properties in the xy plane. The finite element formulation is
developed using a four-noded two-dimensional quadrilateral isoparametric element shown in Fig.
2 [14]. The element is based on the first order shear deformation theory and has five degrees of
freedom (d.o.f.): u; v;w; yx and yy at four nodes. Two additional d.o.f.s js and ja per element are
included to represent the electrical voltages of two different piezoelectric layers. For every
additional piezoelectric layer an additional voltage d.o.f. is needed per element. The electric
potential is constant throughout the plane of the element and varies linearly through the thickness
of the piezoelectric layers. Using Hamilton’s principle and the element, the overall system
equations are obtained in terms of the global co-ordinate representing the global generalized
mechanical displacement fdg; and the electric potentials, on the sensors fjsg; and on the actuators
fjag as follows [16]:

½M�f .dg þ ½Kdd �fdg � ½Kda�fjag � ½Kds�fjsg ¼ fFg; ð1Þ

½Kad �fdg þ ½Kaa�fjag ¼ fqg; ð2Þ

½Ksd �fdg þ ½Kss�fjsg ¼ f0g; ð3Þ

where ½M� is the global mass matrix, ½Kdd �; ½Kaa� and ½Kss� represent the global generalized stiffness
matrices corresponding to the vectors of mechanical displacements, the actuator and the sensor
potentials, respectively. The matrices ½Kda� and ½Kds� are the electrical–mechanical coupling
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Fig. 1. Schematic of a laminated piezoelectric composite plate.
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stiffness matrices of the substrate and the piezoelectric actuator and sensor layers. ½Kad � ¼ ½Kda�T;
½Ksd � ¼ ½Kds�T: fFg is the mechanical force vector. fqg is the electric force vector as a result of the
applied surface charge density distribution on the actuators.
The spatial distribution of electric potential on the sensor surface is obtained in terms of the

mechanical displacement co-ordinates through electroelastic coupling from Eq. (3) as follows

fjsg ¼ �½Kss��1½Ksd �fdg: ð4Þ

In practice, the electric potential distribution is known on the actuators. In such cases, the
global system Eq. (1) can be expressed in terms of the generalized mechanical displacement co-
ordinates with the known electric potential distribution on the actuator surface appearing as
external forcing through electroelastic coupling ½Kda�

½M�f .dg þ ½K �fdg ¼ fFg þ ½Kda�fjag; ð5Þ

where

½K � ¼ ½Kdd � þ ½Kds�½Kss��1½Ksd �: ð6Þ

With the control algorithm known, fjag can be expressed in terms of fdg and thus all the electric
d.o.f.s in Eq. (5) can be condensed.
For active damping, negative velocity feedback can be adopted as the control algorithm.

Velocity feedback is seen to be more robust control strategy than displacement or acceleration
feedback, as far as unmodelled phase shifts are concerned [3]. The unmodelled phase shift is one of
the most important effects which limit the performance of feedback controllers in practical
mechanical systems. The phase shift may arise because of the dynamic response of the sensors or
actuators being used or may be due to time delays in the controller.
Using the negative velocity feedback, fjsg and fjag can be related by a control gain matrix

½Gain�; namely,

fjag ¼ �½Gain�f ’jsg ¼ ½Gain�½Kss��1½Ksd �f ’dg: ð7Þ

It should be noted that not the full state of the velocity f ’dg must be measured in Eq. (7) and
measurement depends on the configuration of the sensors. As we know, non-full state
measurement is of sensor placement problems and the question of sensor and actuator location
is of specific importance. In practice it is useful to investigate possible sensor and/or actuator
locations and to evaluate their impact on the closed-loop performance for purpose of control.
However, the sensor and actuator placement problems and their importance have been studied
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Fig. 2. Plate element with two additional electrical degrees of freedom.
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and emphasized in many investigations and contributions [20,21] and are not considered in this
analysis. It is also clear that the above control algorithm ignores the measurement noise.
With Eq. (7), Eq. (5) becomes

½M�f .dg þ ½ %C�f ’dg þ ½K �fdg ¼ fFg; ð8Þ

where ½ %C� is the active damping matrix

½ %C� ¼ ½Kda�½Gain�½Kss��1½Ksd �: ð9Þ

For the ACLD treatment shown in Fig. 3, the negative velocity feedback can also be adopted as
the control algorithm. The viscoelastic layer in Fig. 3 is assumed to be linearly viscoelastic and
characterized by a complex modulus model. In such cases, Eq. (5) can be expressed as

½M�f .dg þ ½ %C�f ’dg þ ½K � þ i½K
0

ve�
h i

fdg ¼ fFg; ð10Þ

where ½ %C� is the active damping matrix produced by the piezoactuator layer, i ¼ ð�1Þ1=2; ½K
0

ve� is
the passive structural damping matrix caused by the viscoelastic layer.
Taking account of the Rayleigh’s damping and structural damping of the laminated plate,

Eq. (10) becomes

½M�f .dg þ ½CR� þ ½ %C�
� �

f ’dg þ ½K � þ i½K
0
�

h i
fdg ¼ fFg; ð11Þ

where ½CR� is the Rayleigh’s damping matrix, ½CR� ¼ a½M� þ b½K�; in which a and b are the
Rayleigh’s damping coefficients, ½K

0
� is the total structural damping matrix mainly produced by

the viscoelastic layer.
For the case of harmonic excitation of frequency o; Eq. (11) can be written as

�o2½M� þ io ½CR� þ ½ %C�
� �

þ ½K � þ i½K
0
�

h i� �
fug ¼ ff g; ð12Þ

or

io½M� þ ½CR� þ ½ %C�
� �

þ
½K

0
�

o
þ

½K �
io

� �
fvg ¼ ff g; ð13Þ
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where fug is the complex amplitude of the displacement vector for all structural d.o.f., fvg ¼
iofug is the complex amplitude of the velocity vector, ff g is the complex amplitude of the vector
of mechanical forces applied to the structure.

2.2. Sound radiation—the Rayleigh integral

For a harmonically vibrating plate surface extending over an infinite half-space, the acoustic
pressure at any field point P according to the Rayleigh integral can be described as follows [22]

pðPÞ ¼ ior
Z

S

e�ikrvnðQÞ=2pr dS; ð14Þ

where pðPÞ is the acoustic pressure at the field point P; vnðQÞ is the normal velocity of the vibrating
surface at a point Q on the plate surface, r ¼ jQ � Pj; r is the density of the fluid, k ¼ o=c is the
acoustic wavenumber, c is the speed of sound in the fluid, S is the plate surface.
Discretisizing the plate surface into four-noded two-dimensional quadrilateral isoparametric

elements and interpolating the structural normal velocity and surface pressure over each element
allow Eq. (14) (for PAS) to be written in terms of the nodal normal velocity fvng and surface
pressure fpg as

fpg ¼ ½D�fvng; ð15Þ

where ½D� is the acoustic impedance matrix. In the calculation of ½D� the integrand in Eq. (14) (for
PAS) is singular and the singular integral should be accurately evaluated [23,24]. This equation
provides the link between the acoustic pressure and normal velocity on the plate surface.

2.3. Active control of coupled system

When a structure is loaded only with air in a free space, the structural and acoustic models are
solved independently. However, in the case of a structure immersed in water, due to the fluid
impedance is comparable to that of the structure, the structural and acoustic systems are strongly
coupled and must be solved simultaneously.
The structural and acoustic systems are coupled together by considering the acoustic pressure

acting on the surface of the structure as an additional external load vector ffpg: The load vector,
which can be found by application of Hamilton’s principle, is given by

ffpg ¼
Z

S

½N�Tp dS; ð16Þ

where ½N� is a matrix of interpolation function, the superscript T denotes the matrix transpose.
Since the acoustic pressures are known only at the nodal locations, they are mapped across the
element by the interpolation functions during the integration in Eq. (16). Hence, the acoustic load
vector is written in matrix form

ffpg ¼ ½G�½A�fpg; ð17Þ

where ½A� ¼
R

S
½N�T½N� dS and ½G� is the transformation matrix to transform a vector of normal

forces to a vector of forces to all structural d.o.f.
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Thus, the global dynamic equation of coupled system with active control is formed as

io½M� þ ½CR� þ ½ %C�
� �

þ
½K

0
�

o
þ

½K �
io

� �
fvg ¼ ff g � ½G�½A�fpg: ð18Þ

The vector of normal velocity fvng in Eq. (15) is related to the vector of the structural velocity
fvg by the transformation matrix ½G�

fvng ¼ ½G�Tfvg: ð19Þ

If velocities fvng and fvg are eliminated from Eqs. (15), (18) and (19), the resulting equation for
the coupled fluid–structure system is

½I � þ ½D�½G�T½Z��1½G�½A�
� �

fpg ¼ ½D�½G�T½Z��1ff g; ð20Þ

where ½I � is the identity matrix

½Z� ¼ io½M� þ ½CR� þ ½ %C�
� �

þ
½K

0
�

o
þ
½K�
io

� �
:

Once system Eq. (20) has been solved in terms of the surface pressure pf g; the structural
velocity fvg and the normal velocity fvng may be recovered by solving Eqs. (18) and (19).
The mean square velocity %v2n


 �
and the acoustic power P of the plate can be calculated from the

following formulas

%v
2
n


 �
¼

1

2S0

Z
S

vnj j2 dS; ð21Þ

where S0 is the area of the plate.

P ¼
1

2

Z
S

Reðpv�nÞ dS; ð22Þ

where the asterisk denotes the complex conjugate.

3. Numerical results and discussion

In this section, first the static response of a piezoelectric bimorph beam to electrical loading and
the natural frequencies of a cantilever beam with an active layer are calculated and compared with
solutions of previous studies to demonstrate the reliability and the accuracy of the developed finite
element model. Second, the acoustic response of a stiffened plate in water is calculated to validate
the developed numerical method for coupled fluid–structure interaction analysis. Finally, the
performance of the active damping control and the ACLD control of structural vibration and
acoustic radiation in water of the baffled laminated plate is studied.

3.1. Bimorph beam

A cantilevered piezoelectric bimorph beam is shown in Fig. 4. It consists of two identical PVDF
layers (E ¼ 2 GPa; n ¼ 0:29; e31 ¼ 0:046 C=m2; xS

33 ¼ 0:1062 nF=m) with vertical but opposite
polarities and, hence, will bend when an electric field is applied vertically. The bimorph beam is
modelled by 5 and 20 elements, respectively, along the length. With a unit voltage applied across
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the thickness, the deflection of bimorph beam is computed by the present plate element and
compared with the theoretical and other finite element predictions as listed in Table 1. It can be
seen that the results obtained by the present plate element are in good agreement with other
predications.

3.2. Laminated piezoelectric composite beam

The beam shown in Fig. 5 has aluminum as substrate along with an adhesive layer and a
piezoceramic layer (PZT-4). The material properties are: EPZT ¼ 83:0 GPa; Eadh: ¼ 6:9 GPa;
EAl ¼ 68:9 GPa; nPZT ¼ 0:31; nadh: ¼ 0:4; nAl ¼ 0:25; rPZT ¼ 7600 kg=m3; radh: ¼ 1662 kg=m3;
rAl ¼ 2769 kg=m3; e31 ¼ �10:126 C=m2; xS

33 ¼ 11:53 nF=m: The neutral axis can be determined by
considering the force balance in the longitudinal direction [10] as t1 ¼ 8:5586 mm: The beam is
modelled by 1
 6 and 3
 15 elements. The computed natural frequencies given in Table 2 show
convergence and good agreement with the results reported by Raja et al. [19], Saravanos and
Heyliger [27] and Robbins, Reddy [28].

3.3. Acoustic radiation of a fluid-loaded stiffened plate

The simply supported square plate (dimension a ¼ 1 m) of thickness h ¼ 5 cm; reinforced by
four stiffeners of rectangular cross-section located as shown in Fig. 6. The depth and width of the
stiffeners are H ¼ 7:5 cm and W ¼ 5 cm; respectively. The plate and stiffeners material is steel
(rs ¼ 7850 kg=m3; E ¼ 210:0 GPa; n ¼ 0:3). A structural damping factor Z ¼ 0:01 is assumed for
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Fig. 4. A cantilevered piezoelectric bimorph beam.

Table 1

Static deflection of the piezoelectric bimorph beam (10�7m)

Distance x (mm)

20 40 60 80 100

Tzou [25] (analytical) 0.138 0.552 1.242 2.208 3.450

Detwiler et al. [14] (plate element) 0.14 0.55 1.24 2.21 3.45

Tzou and Ye [26] (solid-shell element) 0.132 0.528 1.19 2.11 3.30

Present (5 elements) 0.145 0.562 1.238 2.176 3.374

Present (20 elements) 0.137 0.535 1.195 2.116 3.299
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both the plate and the stiffeners. The excitation is a transverse point force of magnitude F0 ¼ 1 N
located at x0 ¼ 7:5 cm; y0 ¼ 7:5 cm: The values of density and acoustic velocity are r ¼
1:21 kg=m3 and c ¼ 343m=s in air and r ¼ 1000 kg=m3 and c ¼ 1500 m=s in water. The plate is
modelled by 15
 15 plate elements described in Section 2.1 and four stiffeners are modelled by
4
 15 Timoshenko beam elements [29] and the eccentricity of the stiffeners is taken into account
by a transformation that makes beam d.o.f. ‘‘slave ’’ to ‘‘master’’ d.o.f. in the plate. Although this
eccentric beam modelling may introduce an incompatibility and cause an error, Gupta and Ma
[30] pointed out the error can be confined within an acceptable limit with a relatively few number
of elements. The Rayleigh integral on the plate surface is made by discretisizing the plate surface
into the same mesh as plate finite element mesh. This means that, for the acoustic radiation
calculation, the stiffened plate is considered as being plane and only the ‘‘vibrating effect’’ of the
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Fig. 5. A cantilever beam with an adhered piezoelectric layer.

Table 2

Natural frequencies of the cantilever

Frequency (Hz)

1 2 3 4 5

Raja et al. [19] 533.3 3203.3 8467.5 15,490.4 23,854.1

Saravanos and Heyliger [27] 544.2 3242.0 8496.0 15,391.0 —

Robbins and Reddy [28] 538.4 3204.6 8395.5 15,196.7 22,632.7

Present (6 elements) 550.6 3259.1 8566.8 15,565.7 23,427.8

Present (45 elements) 552.7 3270.6 8490.8 15,186.0 22,776.3

Fig. 6. Schematic of a stiffened plate.
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stiffeners is considered [31]. Fig. 7 shows the radiated sound power level (dB, re:10�12 W) of the
stiffened plate in air and in water respectively. It is clear that the present results for sound power
agree well with those presented by Berry and Locqueteau [32]. The first three natural frequencies
of the stiffened plate in-vacuo and in water are given in Table 3. The natural frequency of the
stiffened plate in water is calculated based on Everstine’s method [33].

3.4. Active damping control and ACLD control of structural vibration and acoustic radiation

The numerical simulation is based on a laminated rectangular plate shown in Fig. 3. The
dimensions of the simply supported plate are Lx ¼ 0:455 m; Ly ¼ 0:379m: The disturbance is
assumed to be a point force with amplitude F0 ¼ 1 N and located at ðx1; y1Þ ¼
ð0:11375m; 0:09475 mÞ as shown in Fig. 8. The base plate is steel (E ¼ 210:0 GPa; n ¼ 0:3;
rs ¼ 7850 kg=m3). The piezoceramic layer is PZT-4 (E11 ¼ 81:3 GPa; E22 ¼ 81:3 GPa; E33 ¼
64:5 GPa; G12 ¼ 30:6 GPa; G13 ¼ 25:6 GPa; G23 ¼ 25:6 GPa; n12 ¼ 0:33; n13 ¼ 0:43; n23 ¼ 0:43;
e31 ¼ �5:20 C=m2; e32 ¼ �5:20 C=m2; e33 ¼ 15:08 C=m2; e24 ¼ 12:72 C=m2; xS

11 ¼ 13:054 nF=m;
xS
22 ¼ 13:054 nF=m; xS

33 ¼ 11:505 nF=m; r ¼ 7600 kg=m3). The viscoelastic layer is 3M ISD112
(G ¼ 10ð1þ iÞMPa; n ¼ 0:499; r ¼ 1600 kg=m3). The laminated plate is modelled by 16
 16
elements, as shown in Fig. 8. To control the structural vibration and acoustic radiation of the
plate, the collocated sensors and actuators should be coupled into sensor/actuator (S/A) pairs
through closed control loops. Then, the piezoelectric sensor/actuator layer is also modelled into
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Fig. 7. Radiated sound power versus frequency.

Table 3

Natural frequencies of the stiffened plate in vacuo and in water

Frequency (Hz)

1 2 3

Berry and Locqueteau [32] (in vacuo) 342 883 1271

Present (in vacuo) 349 875 1246

Present (in water) 272 763 1128
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16
 16 piezoelectric sensor/actuator pairs, as shown in Fig. 8. That is, each sensor/actuator patch
has dimensions of about 0:028m
 0:023m: It should be noted that the piezoelectric PZT or
PVDF used as sensor/actuator has a ‘‘breakdown’’ voltage [11]. The PVDF and PZT have
different breakdown voltages and depend on their thickness. The maximum electrical field for
PVDF and PZT is about 40V/mm and 2V/mm, respectively.
Three cases of the laminated plate shown in Fig. 3 are considered as follows: Case A (Base

plate, no control): h1 ¼ h3 ¼ h4 ¼ 0:0 m; h2 ¼ 0:003m; Case B (Base plate+two piezoelectric
layers, active damping control): h1 ¼ h4 ¼ 0:001m; h2 ¼ 0:003m; h3 ¼ 0:0 m; the control gain
matrix ½Gain� is assumed to be a constant gain Gain; Case C (Base plate+two piezoelectric
layers+viscoelastic layer, ACLD control): h1 ¼ h4 ¼ 0:001m; h2 ¼ 0:003m; h3 ¼ 0:003m; t1 ¼
0:0028m; the control gain matrix ½Gain� is assumed to be a constant gain Gain: The first five natural
frequencies of plates in vacuo and in water are shown in Table 4.
Figs. 9–12 show the mean square velocity level (dB, re: 1 m2=s2) and the acoustic power level for

these three cases, in air and in water, respectively. It should be noted that the damping of the base

ARTICLE IN PRESS

Fig. 8. Schematic of disturbance location and element mesh of plate.

Table 4

Natural frequencies of plates in vacuo and in water

Cases Frequency (Hz)

1 2 3 4 5

Case A: Base plate

In vacuo 86.7 193.4 241.0 344.6 373.6

In water 30.5 94.0 121.7 193.7 210.4

Case B: Base plate+two piezoelectric layers

In vacuo 105.5 235.2 293.0 418.8 454.1

In water 45.7 136.6 175.9 275.3 298.5

Case C: Base plate+two piezoelectric layers+viscoelastic layer

In vacuo 155.5 346.4 431.5 616.2 668.1

In water 70.7 209.0 268.9 418.5 453.8
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Fig. 9. Mean square velocity without control and with control of active damping and ACLD treatment (in air).
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Fig. 11. Mean square velocity without control and with control of active damping and ACLD treatment (in water).

0 30 60 90 120 150 180 210 240 270 300
20

30

40

50

60

70

80

90

100

 Base plate
 Active damping(Gain=0)
 Active damping(Gain=1000)

 ACLD(Gain=0)
 ACLD(Gain=1000)

S
ou

nd
 p

ow
er

 le
ve

l (
dB

)

Frequency (Hz)

Fig. 12. Sound power without control and with control of active damping and ACLD treatment (in water).
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plate and the piezoelectric layer is not considered in the numerical results presented here. It is clear
that there is a change of the natural frequency of the plate in the cases of no control, active
damping control and ACLD control due to the effect of stiffness and mass of the piezoelectric
layer and viscoelastic layer. This is apparent in Figs. 9–12 through the rightward shift to the
resonance peaks of both the mean square velocity and the radiated power. It can be seen that the
active damping control and the ACLD control can decrease the peak amplitude of the mean
square velocity and the radiated sound power of the plate effectively and especially the ACLD
control is more favorable for damping the structure to reduce vibration and sound radiation.
Figs. 13 and 14 show the distribution of electric potential on the sensor surface for ACLD at the

first and second natural frequencies in water. For active control of time-harmonic problems using
the negative velocity feedback with a constant gain Gain; the amplitude of the control voltage on
the piezoelectric actuator is related to the amplitude of the sensor voltage on the corresponding
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Fig. 13. Amplitude of sensor voltage of piezoelectric sheets for ACLD (in water, 70.7Hz).
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Fig. 14. Amplitude of sensor voltage of piezoelectric sheets for ACLD (in water, 209.0Hz).

S. Li, D. Zhao / Journal of Sound and Vibration 272 (2004) 109–124122



piezoelectric sensor as jjaj ¼ Gainojjsj: It means that with the same sensor voltage and control
gain, the higher the excitation frequency is, the higher the control voltages need.

4. Conclusions

Active control of structural vibration and acoustic radiation of a fluid-loaded laminated plate is
numerically studied. A finite element formulation is developed for modelling the dynamic
behavior of the laminated plate integrated with piezoelectric layers and viscoelastic layer based on
the first order shear deformation theory. The Rayleigh integral on the plate surface is coupled
with the derived finite element formulation to model acoustic fluid–structure interaction of the
fluid-loaded laminated plate. The active damping control and the ACLD control of structural
vibration and acoustic radiation of the baffled laminated plate are formulated using negative
velocity feedback control algorithm. Numerical simulations show that both the active damping
control and the ACLD control can reduce the mean square velocity and the radiated sound power
of the plate effectively and especially the ACLD control is more favorable for damping the
structure to reduce vibration and sound radiation. The developed model provides a means for
designing and predicting the performance of a fluid-loaded plate with different damping
treatments that can be used in many engineering applications.
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