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Abstract

An analytical solution for the elastic plane dynamic problem of a rectangle is presented. The following
boundary conditions were considered: two free edges, arbitrary normal pressure and shear displacement on
the two other edges. By means of space and time Fourier transform, the solution is reduced to a set of
fundamental solutions which are related to different symmetries. The solutions are expressed by means of
infinite summation series involving implicit real roots. The inversion of the time Fourier transform and the
numerical convergence of the solutions are discussed. As regards the applications, the solution is a tool for
computations involving some kind of shock-absorber.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Since the publication of Leissa’s work [1] the problem of the vibrations of rectangles has been
extensively investigated [2,3]. Most of the publications deal with bending vibrations because of
their vital role in several applications, all of them making use of numerical methods. The effect of
longitudinal displacement on the bending modes was examined by Leissa [4] to the second order.
The so-called plane dynamic problem deals exclusively with longitudinal vibrations. A well-
known analytical method for the solution of the plane static problem for circumference and other
shapes, but not for rectangles, was found by Muskhelishvili [5]; however it is not extendable to the
dynamic problem. Some formulae for the dynamic problem may be found in Radok [6], but there
is no method for inserting the boundary conditions. In the literature there are no analytical
solutions for the rectangle plane problem corresponding to rather general boundary conditions,
even for the static case.

This paper deals with the analytical solution of the plane dynamic problem for a rectangle with
two free edges and with normal pressure and tangential displacement boundary conditions on the
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other edges. Boundary conditions may easily be replaced by normal displacement and tangential
pressure, but not by normal and tangential pressure, which would be the most important case for
practical applications. However, the solution presented can be used in order to obtain a linear
combination in which the normal pressure is given and the tangential pressure is approximated by
numerical methods. The generalization from two free edges to edges with constant pressure is
trivial.

2. Formulation and solution of the problem
2.1. Boundary conditions

The plane stress problem (see for example, Ref. [7]), involves bodies with small thickness and
constant section in the z direction. The external z = constant surfaces are free and the mean value
in the z direction of the external pressures acting on the other sides is orthogonal to the z axes; this
means that the external force per unit length of the boundary lies in the xy plane. Then the
dynamical equations of the theory of the elasticity can be reduced to a two-dimensional
formulation:
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ox

o
(x,y,0) + a_; (X, 7, ) = —pau(x, y, »),

0 0
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b
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is the stress tensor in the xy plane. The stress tensor is connected to the displacements u, and u, by
the equations

where

ou ou
x\As Vs :l 2G—x s i_y IRE) 5
(5. 0) = (4 26) 2 (5 3.0) + 15 (5,0,0)

O-y(xay, (,U) = ()“ + 2’G) auy (X,y, (U) + j’ aux (X,y, (U),
oy ox
1= 6( Ly 0+ Ly, ) ), (2)
oy 0x

where 1 and G are the modified Lamé coefficients for the plane stress problem which may be
expressed in terms of the three-dimensional Lamé coefficients A* and pu: 1 = 2% u/(A* + 2p);
G = u. In Eqgs. (1), p is the mass density and w is the variable of the time Fourier transform that is
understood to be performed. Hereafter, Eqgs. (1) and (2) are defined on a rectangular shaped
domain delimited by the edges x = +L/2 and y = + L, /2. Usually, the boundary conditions are
given in terms of the stress tensor or in terms of the displacements. In the first case, o, and 7 are
given on the x = +L/2 edges while ¢, and 7 are given on the y = +L,/2 edges. In the second
case, u, and u, are given on the four edges. There are thus eight boundary conditions.
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Unfortunately, a solution with boundary conditions of this kind is not available. In order to find
solutions, the eight boundary conditions must be replaced. It is supposed to have zero pressure on
two edges

L
6x<i_§5yaw> = O’ (33)

r(ig,y, (u> =0, (3b)

while normal pressure P,(x, ), Py2(x, ) and tangential displacement s,(x, ), sy2(x, w) on the
other two edges are given by

L L
oy (x, 72, w> = Pyi(x,w), o, (x, — 72, w) = —Pp(x, ),

L L
Uy (x, 72 w) = sy(x,m), Uy (x, — 72 w> = 50(x, w). 4)

The following notation is adopted for uniformity reasons

X1 =Ux, Yo =0y, JY3=1U, Yg=7T, JY5=Ox.

2.2. Space symmetries

It is useful to introduce the x and y axes reversal operators P, and IA’}, in order to deal with
boundary conditions assigned on opposite edges. P, and P, are defined by

Poi(x,y,0) = =1 (—x,y,0),  Pyyi(x,y,0) = 1(x, -y, w),

Pon(x,p,0) = 1(=x,y,0),  Pynx,y,0) = 1(x, —y, 0),

Pos(x,y,0) = 3(-x,3,0),  Pys(x,y,0) = —15(x, —y, ),

Pora(x,p,0) = —pu(—x,p,0),  Pupy(x,y,0) = —p(x, -y, 0),

Poys(x,p, ) = 1s(=x,y,0),  Pyys(x,y,0) = 15(x, —y, ). (5)

Transformations for the boundary conditions can be taken from Egs. (4) and (5)

P.P(x,0) = Py(—x,0), i=12 Pusilx,0)=—si—x0), i=12,
PyPyi(x,0) = —Pp(x,0), P,Ppu(x,w) = —P(x,),

lA)ysxl(x, ) = s0(x,0), Psolx,w)=sq(x, o). (6)

Symmetrized and antisymmetrized quantities g(x, y) are denoted by
(1+Py)(1+P) (1+P)(1-Py)
g5 = y Yo g = y L2
(I -Py(1 +Py) (I =P —Py)
gis = y Y g = y 2
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so that

2

with B; = §,4 for j =1,2. (7)

f)XgSBz — gS82’ ngA37 — _gABz PygBIS gBlS, PygBlA _gBlA

Since Egs. (1) and (2) are linear and invariant under space axis reversals the solution can be
decomposed with y; = 755 + 754 + 315 + 4 =35 5 27'%, with B; =S, A for j=1,2 and
i=1,2,3,4,5.

Boundary conditions are now

L L
e (x, —22,a)> - Pff&(x w) }’BIBZ< 72, w> soP (x, w), (8)
and
L L
/(f'BZ <2,y,a)> —,{ng2 <§,y,a)) =0, ©)

while for y = —L,/2 and x = —L/2 are identically satisfied, as a consequence of Egs. (5)—(7). As
an example, this may be checked for the Xf 18 component

L2 L2 D
4 (- 2.0) = 200 (42.0) = 18, PP 0 = - PAR0)

The next step is to expand Eq. (8) in Fourier series

PfiBz(x, w) = Z clffzz)(a)) cos(k,x), sS B’(x w) = Z c]‘jﬁ’)(w) sin(k,x),

=0 >0
PP w) =) B (@)sinky)x),  sEP o) = ¢l () cos(kyx), (10)
p=0 p=0

where k, = (2n/L)p and k;' = 21/L)(p + 5). It should be noted that the series involving k;' are
modified Fourier series; however it can be demonstrated (see Appendix A) that the usual inversion
formulae hold

L)2 L2
B (w) = / PP (x, w)sin(k;'x)dx  and c;{ﬁz)(w):% / st (x, o) cos(kx)dx. (1)
—L)2 —-L/2

(The reasons for taking k¢ instead of k, in two equations are connected to further developments
and cannot be elucidated at this stage.) Then the solutions are given by

B B> BB BB BB
=33 @ 0) + B (@) (X, y, 0), (12)
pEN BIBQ
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in which the functions X'.B 18 j=1,2; By, By, = A, S satisfy both the boundary conditions

ip(j)>

Xfﬁ%(x, %, co) = sin(k,x) 72,,(1)( %, w) =0,

Xiﬁé) <x, %, a)) = ,(fﬁ%( l; w) = cos(k,x),

Xf%(x %, w) = cos(kA X) X;;ﬁ( %, a)> =0,

Xf‘ﬁg( 22 ) =0 Xfp%) <x, %, co) = sin(k;’x) (13)

132

and conditions (9). Therefore the functions Li( ) Are the fundamental solutions to which all the

other solutions may be constructed.

2.3. The fundamental solutions

This sub-paragraph deals with the fundamental solutions Xg’(l;)z defined from conditions (9) and
(13). Egs. (1) and (2) can be considered as differential equations with respect to the y variable.

Since there are no 0,5 terms, s must be considered as a dependent variable:

A 4G(G + 2)
= prg ' . 14
=0T Trae 2T 26 O (14

Taking into account Eq. (14), Egs. (1) and (2) can be rewritten as

0 0 o 4
0 0 —pw?  —0y
o1 = Ay A= i, 1 o o |
(. +2G) (7. +2G)
—4GO+G) , )
b L " 5 00
( G+26) 279P) Gi20°

with 1<i,j<4.
Following Egs. (5), a solution with symmetry y?5 can be found by putting

Xlss(x, y,®) = ci(w, z) sin(éx) cosh(zy), xfs(x, y,m) = c2(w, z) cos(Ex) cosh(zy),

155 (x, p, 0) = c3(w, 2) cos(éx) sinh(zy), 13 (X, ¥, ®) = cy(, z) sin(Ex) sinh(zy). (16)

The substitution of Egs. (16) into Eq. (15) leads to a system of algebraic equations in the ¢;
variables which admits non-trivial solutions only for the two eigenvalues

2
lefl(Zaw)Zm & =8(z,m) = z2+w—Gp_
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The two corresponding solutions y; bear the same y dependence, and therefore it is easy to obtain
a linear combination for which Eq. (3b) holds; this combination is given by

2

+ Z—Gp> sin (fz £> sin(¢;x) + z” sin <§1 g) sin(ézx)] cosh(zy),

SS(x,p,0,2) =2G&, | | 22 —ﬂ +i sin f cos(¢1x)
Xo 1% P, @,2) = £b6) 260 + 2G) 2G 25 !

- fitasin (5 Jeos(Eun)coshizn

w?

0,2 =z | (4 58 Jsin( &5 Jeostein) - &iéasin(& 5 Joostéan) snbie),

XfS(X, )V, @, Z) = 5162 |: <Zz

2
135 (x,p, ,2) =2GzE &, <z +2—(5> (—sin (52 %) sin(&;x) + sin <§1 %) sin(?jzx)) sinh(zy). (17a)

Eq. (3a), and taking into account Eq. (14), leads to the equation ¢>(z, w) = 0, where

)
2,90 ; éé
bS(w,2) = 22¢, sin<§1§>cos<§2§> _ <Z 2G) sin(é23) cos(é‘] g)

&

There are infinite complex roots z5, o = +1, 42, +3... for this equation. Therefore there are
an infinity of solutions y?* dependlng ona complex pardmeter 25 35 = 1¥5(x, y, 0, 25). Hereafter
the functions are referred to complex variables so that, for instance: sin(izy) = isinh(zy),

22+ w?p/2G = +iy/—2z> — ©?p/2G and so on. Likewise solutions bearing the other symmetries
can be found:

(xy’wz) — y/CtS(xyawZ)
2

xf‘s(x,y,w,z)zéléz[ (2450 Jeos( &3 ) costeun + 2 cos(él 3 Jeostéancose,

50x, y,w,2) = 2GE, | — ZZ_M)ip +i cos f sin(&x)
£ (XY, 0,2) = 20U 2G(J.+ 2G) 26 2 1

+ a6 cos & 5 Jsntan|cosha),
2

50,09 =282 (2 4 58 Joos( &5 Jsintéin) + & cos 5 Jsintéan) s,

S(x V,w,z) =2Gz& &, (Z + %) <—cos (éz %) cos(&yx) + cos <£1 g) cos(ézx)> sinh(zy),

10y, 0,2) = - 0L (x,y,,2). (17b)
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The solutions compatlble with condition (3a) are given by x4 = y*4(x,p, 0,25); yABZ =

Bz(x y,,z2); here the zZ are the roots of the equation

N
2_|_M g L
¢A<w,z)=z261cos<51§)sin<52§> (Fr5) el Sm<515> o,

& 2

Now boundary conditions (13) must be taken into account. The first to be considered is the
solution z3¢))(x, p, ®). The functions
1 1 S5 (x, y,w z)

(1)
T =@ kzms(zw) ST

=1,2,3,4, (18)

are invariant under the substitutions &, — — £; and .fy—» &,, therefore they are single-valued
functions in the complex variable z. The integrals fc jlp (z)dz have a vanishing limit if the
integration path Cg tends to infinity avoiding the nelghbourhood of the poles of the function. In
fact, if |x|<L/2 and |y|<L,/2 the goniometrical and hyperbolical functions which takes place in
the numerator through the x5 approach infinity faster than those that take place in the
denominator through the factor ¢°. The limit to be performed is of the kind of the limits of the
ratios

sin (&, £)sin(&;x) cosh(zy)
sin(& §)cos (¢, %) cosh(zZ)’

and so on. It should be noted that at least one of these two ratios has an exponential convergence
for z— oo in the complex plane. In the other case, x = +L/2 or y = +L,/2 the functions f(l)(z)
are convergent at least as 1/z2, even on the real and imaginary axis. As a consequence of the
residue theory it is apparent that

Sresi Pt =— > restfy @) (19)

z5 all the
other poles

The left side of this equation can be written as

> AN (xy,0 (20)
with
M _ zf 1 1 1
PEL) — R21(E)7 -9 (o, 25) cosh (25 )
and
2 2
fazéi(w)zéwzi,w):\/(z% 3 +§G) &, = B0) = & o) =)+



368 P. De Sabbata | Journal of Sound and Vibration 272 (2004) 361-383

Series (20) is a solution for which both condltlons (3) hold, since z5 is a root of the function
$3(w, z). This solution is denoted by ,(lp (x ¥, w), and can be taken from the right-hand side of
Eq. (19), obtaining, if i =1 and i = 2,

SS _ (—1y*k,  cosh(z),y) sin(k,x)

1p 2 Ly
2 _ wp ? p COSh z1, 22
ks =76 3 (21, F)

+ o k S
(-Df2 5 1 1 ss s
_ E( 1o (X, p, ,1s87),
= L (@) -k (E) ¢ (,ish g

ss(l) _ (— l)sz( (;(;p) cosh(zy,y) cos(k,x)

2p o’ 2
k2 — ol 4 5 cosh(z1, %)

+ o0 k S
-2 s 1 1 s
- . X (xvy’a)’ls ) (21)
kggj Ly (&) k(&) ¢ i) ¢

Here the following notations were adopted

2n 1 . p
Si - L_2<k + 5) 5 éfk = él(lslfa (D) = G - (Slf)zs
S .S w2P SN2 b
iZk = éZ(lSkaw) = 7 - (Sk) 5 le — kp - l + 2G

It should be noted that the terms involving series in Eqs. (21) vanish if y = L,/2 owing to the
presence of the null factors st(x, L,)/2, (u,is,f) =0, i =1,2. Another solution can be derived by
taking, instead of Eq. (18), the functions
z 11 ySy,,2)
Ji @) = N L
(& -k & ¢°(z.0) cosh(zZ)

. i=1,2,3,4.

This leads to the solution ;{,‘;S(z) =3, ADy5S(x,y,w,25), that is for i = 1 e 2 given by

pach
k s
ss@) _ (=17 *! cosh(za,) sm(k x) (=12 s 1 1 S5 s
Lip k cosﬁ(z Z L SV _ 1215 b5 (0. is5) ] (x, 3, 0,i5;),
P » %) P S (S8 S1(E5)° 97 (w,157)
/50 - CipagetCamesyy) SR DR o L L s

cosh(zy, 2)

= L (G- KE) P (wiish)
(22)

Here the notation z;, = , /k]% — w?p/G was introduced. If y = L,/2, since the series are vanishing,

both solutions (21) and (22) bear the same x-dependence for the i = 1 and i = 2 components:
the factor sin(k,x) for ,CIS(/)(x L,/2,w), j=1,2 and the factor cos(k,x) for ng(”(x L,/2, w),
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j = 1,2. Therefore, it is easy to find a linear combination which fulfils the boundary conditions
(13), that are

L, : L,
Xif(l) <x, 5 a)> = sin(k,x), Xgps(l) (x, > a)) =0, (23a)
or
L, L,
Lipto) <X’ > > 0 sz(2)< =% w) = cos(k,x). (23b)

Now consider the first of these two boundary conditions: the i = 1 component of the related
solution is

2G cosh(zy,y) ( w2p> cosh(z,p) \ .
K> L K — P |sin(k
yl”(l) p( P cosh(z1, 2) P 2G Jcosh(z5,2) (kp2)

oSS
+ 3 (~ 178Gy Eypl00) — 21 (5., 0, is;) (24)

= Ly(E5) @?pdp®(w,isy)
where
-5+ {6-%)
& @ = k2 A ()] — K2}

In the limit k— oo, the series in Eq. (24) behaves asymptotically as

fhp@”)::

D (x> 1y Akpyk(x)slgn(x)<L—|x|>cos(sky>

keN keN
where

(.+ G)

_ S(-L/2)
(. +2G)

and 7y.(x)=¢

This quantity may be subtracted in the series when adding its sum which may be performed
analytically. This gives, if [y|<L,/2 and |x|<L/2,

2G w?p
}’1,,(1) (k r1p cosh(zy,y) — ( g 2G>r2p cosh(zzpy)> sin(k,x)
+ (- 1)P+‘A4k sign(x) (—— |x|> drctg<r cos <Ln y))
2
8kp G5(x,p, 0,1s7) . 1/L
+ 1;\1 (- 1)p+k Gs} Epp(0) (55{1)2;;;0)( S,k 5 + Ay(x) s1gn(x)§(5 — |x|) cos(s,fy)] ,

(25a)
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where

t/Lo(x—-L/2) % 2t 1 1

="l tT=—"— ry=———~ and rp=——
’ (1- " cosh(z1,2) " cosh(z3, %)

The other components of this solution are

_4Gk
Yooty = Tpp ks (r1p cOsh(z1py) — ryp cosh(z3y)) cos(kyx)

1 1 —D)2¢(1 + 72
+ (~1y*'8GAk, —arctg(r cos( >> +— (¥l - 3)2e(1 + 9 cos<1y>
L’ Lyl 474 + 222 cos (i—’; y) L,

SS S
S 1050 (X, , w,157) 1 L S
Epp() T+ 24y (x)(———+|x| cos(s3y) |,
KO S Y pdS(,159) s 2 ‘
(25b)

Py 1)ﬁksc;k

keN

SS 2Gk, k22G
A1) = w—2p Z1prp Sinh(z1,y) — =5 22,12 sinh(zz,y) | cos(k,x)

pG

1+ 4 2tsin(Zy
+ (~1y24k, <5 - x>711_10g( (Lz ))

2 1+r2—21sin(Liy)

L
2

SS
235(x,p, ,1s7) — x| .
3 B — Ap(x) 2——sin(spy) |, (25¢)

k |
1 +k O%p
Py (&) 02> (@, is5) Sk

keN

Gs;fEkp( )

2 N2

7) Zoplp sinh(zy, y)) sin(k,x)

kg

Lap1) = e (k Z1pt1p sinh(zy,y) —

27(1 — 1) sin (le y)

1 + 7% + 272 cos (QL—’;y)

4 % 8Gk,A sign(x) (% — |X|>

xfs(x,y, w, 1sk)

(&)’ @?pd (@, is7)

s 3 R, o)

keN

— 24y, (x)sign(x) (% — |x|> sin(s;fy)] ,
(25d)

where k) = k) — w’p/G and k,; = k; — ’p/2G.
Here all the series are umformly convergent at leastas 1/ (sS) ~1/k?; then it is apparent that in
Egs. (25a) and (25b) hmy L Sy => (. )|} 1, = 0, due to the disappearance of the factors
~17 =2

9?5 and %5°. Then it is easy to check that conditions (23a) are fulfilled.
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2.4. Inversion of the Fourier transform

Eqgs. (25) are the formulation which may be better approximated by truncation, but this is not
convenient for inverting Fourier transform from the w variable to the time 7. Another formulation
can be found by going back to Eq. (24). The series therein is denoted by >, . gk(®?p). In the
right-hand side, every function g is to be expanded in a series summation on its poles (see for
example, Ref. [8]):

Cka CkB Cka (26)

2
gr(w”p) = + +
(@%p — ofp)  (@*p — 0jgp) 2 (0Pp — (025)p)

Here o}, and o} are the solutions of (¢,)” = k2 and (&3,)* = k2; the o5 are the roots of the
equation

d)S(w’ 15}5) =0, (27)

and the ¢j; j = a, 4, B are the residues. It may be proved (see Appendix B) that all the solutions
of Eq. (27) are real, so that they may be easily found by numerical methods, going step by step on
the real axes. These solutions represent all the singularities of the y3,) and y3,, in Egs. (25¢) and
(25d), that is all the “resonance frequencies” since the singularities r;,, for j = 1,2 which occur for
Zpplo/2 = in(k +1/2), j=1,2 and k= 1,2, ..., are cancelled by the singularities of the term
Ej,(w). After the substitution of Eq. (26) into Eq. (24) has been performed, the series

D -
2

keN (w2p kap) (w p— win)’

may be summed analytically, its sum being just the opposite of the first term of Eq. (24). This
leads to the formula

. L
sin(k,x), if y= —|—72
SS_
Lip(n) = (— l)kﬂ’Skask Ep (0 ),{ls(x LV, 35 isY) 1 £y <2 (28)
ke 7 y A~
S L&) T TG 085 is8) [0 — (@) ] 2
where
(@33)p : (@5)p
UW = fl(lsks S) _T_ G — (s ) and ézka = ﬁz(ls;f, (U}g;?) = kG — (s /f)z;

> o . .
CbUS) (157390)) = 6_Cd)(lslf’w)’ { = w’p.

The series in Eq. (28) is not uniformly convergent. This is a consequence of the fact that, taking
into account the previous observation on Eq. (25), it can be found that

. L,
sin(k,x) = ,glp(l)< 5 ) hrrLl /lp(l)(x Y, ) = hm Z (.)# Z llm( )=0

67 keN keN }67
aeN aeN
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All the solutions in the same formulation of Eq. (28) can be found likewise:

S e (%) =1,2,3,4 N
BB, Cip( Hka\ X 1=1,254, PE . L
Xy, ) = : it <=2 (29
GERO 2 Dy By =12 Buk=sa Sy @

(if y= +L,/2, Egs. (13) must be used) where

+k B B, kB] 2 A(w282)2p B 2 (wf;BZ)Zp BIBZ BB,
BB (x,y) = (_1)p 4Gk Sk ( 14 )+ 26(+2G) (kp ) -2 (x Y, 0y, 1sk 7)
ip(Vko\7> V) — 3 x
R e v VL e R T L e | e ey

: 2 MR ) ,
(_1)p+k B]2SB_ (kfl) + 2G(l+2G) (k]ff]) BlB_(x y, w]lj;Bz ISk )

LyE5y (wBle) p\LEREY — () 1P = 1) pB(wP B, isP)

2n 2n 1 2n 1 2n
kS =k, =" K== - S=—""(k+= 4 —=""f
14 4 Lps P L <p+2>a Sk L2 +2 > Sk L2
BB,

wy, * are the roots of »P (o, 1sk2) =0, qﬁw (w,z2) = (6/8C)¢B‘ (w,2), { = &?p,

BBy _ (CUB]BZ) P (s32)2 gBiB _ Bl&) P 32)2
lka (;b 4 2G) k7> 2ko G Sk )

¢P1 is defined by &5 = 1 and ¢4 = —1.

The coefficients elp( s for Bz A and k = O 1r1V01V1ng the term s = 0, are of the kind 0/0,
due to the coincidence of one of the roots w A of P> (a)g;A,lso) = 0 with that of the term
[ %f(a))] — (kBl) = O that is w? p /G = (kBl) The ratio 0/0 therein must be intended as a limit
for s>si =0 dnd w’p/ G—>(kB‘) It can be confirmed that the equivalence between Eq. (29) and
the formulation of the solutlons of the kind (25) is preserved for all the symmetry indices B; and
B, only if the two limits, in the variables s and w, are performed according to the formula

BIA y ( 1)p4GkBls (k11)91 )2 + ;gf/{f:);g} (k]lfl)z _ ((US%)ZP BlA(x y, Q)(S) IS)
€ip(102 (%> ¥) = 2 _ By (22 (1B B
0 L& (@)’p\ & — (k') (&= ("] ) o ((s),is(5)

|l [lo@s)
51: ;L+2G_S2, 62: T_Sz,

and w(s) is the function defined by ¢® (w(s),is) = 0 and the condition
. [o)Fp
lim =22 A P
e
The same limit must be performed for the coefficients eil(fm(x, »).
For the solutions XB‘A = A, S, which are antisymmetrised in the y variable, the factor

)k
cosh(zL,/2) must be repiaced by sinh(zL,/2) in all the formulas like Eq. (18). This leads to the
factors depending on k;‘ instead of k, in the boundary conditions (13). The inversion of

BB

in which

= (k")
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hyperbolic sinus and cosinus with respect to the same y symmetry leads to solutions with
boundary conditions for y; = u, and y, = 7 instead than u, and o,.

In Eq. (29) the Fourier transform from the angular frequency w to the time ¢ can be performed
analytically. Taking into account Eq. (10), the general solution of Egs. (1) and (2) with the
boundary conditions (3) and (4) is

D) g
ESEESY Z ZZ / ﬁ‘ﬁ’(z)’”— (w2t — n)dn. (30)

peN BB, k=—w o koc

Eq. (30) represents the more compact formulation of the solutions, but sometimes its
truncations are not good approximations because of both the non-uniformity of the convergence
near the edges, both the fact that it is a double series with high density of autofrequency levels. A
better convergence can be obtained by substituting with expansion (26) the following equation:

2 2 2
Cieg@ CiB( Z Cleg

2
gr(w°p) = gr(0) + + :
i p(@*p — 0 ,p)  wigp(’p — 0fgp) R 0p,p(@07p — ©F,p)

The results are

+ o0

k=+w
Gy = Do) + Hpe )+ > Mp(ap) + > D elipa(x.0)

k=—o0 k=—o0 aeN ( kS) (w2 (a)ks) p)

(32)

where
cosh(k,y)
osh (kp 3 )

cosh(k,y) L
Wkp)k <yt h(k,y) — tgh (k 5 ))sm(k X),

P2

I'y(x,y) = sin(k,x) + A

H,(x,y) = (— 1)’ Adk, sign(x) <— — |x|> arctg (r cos (; y)),
2

k Kok 4 A5 Skx cosh(sgx) — (4Sk + 2ALCys?) sinh(syx)
L, (Sk Cr + S;S %)

Hip(x, ) =(—1yF cos(sy))

1 /L
_ +k T . = S
+ (—=1yY = Akpyk(x) sign(x) s,f (2 |x|> cos(sy)),

with

kslzc . SL SL
ka:m, Sk:smh<sk§ ,  Cr = cosh 7 )

and so on for the other XZBI(BZ Here the summation of the leading terms in the series were

performed analytically, as is done in Eq. (25). In Eq. (32) the static solution @ = 0, may be
obtained directly by neglecting the last series, therefore the resonance frequencies w,ff are not
involved and it is not required to find the numerical roots of Eq. (27). If the Fourier transform

back to the 7 variable is performed taking into account Eq. (32) instead then Eq. (29), then in the
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right term of Eq. (30) the term

2 + o0 Ble
B[B B]B7 B\ B; lp(])k“ ’y) B|B7
S 503 b suten 35 (mten -3 B aro.

BB, peN j=1 k=—0o0 oeN

must be summed, in which I B(‘ gz(x, ), HB 15 (x y) and IT f};g?)(x, y) are the terms corresponding to

I'y(x,y), Hy(x,y), and IIi,(x, ) related to the other symmetries By, B, and the other solutions,
(/) = 1,2. Term (33) is vanishing if the series summations are completed, but this makes the
convergence faster when the series are truncated.

A faster convergence can be obtained by substituting with Eq. (31) the next pole expansion [§]:

cra(@?p)? cep(@?p)?
(07,,0) (@2 — 07 p) (07 gp)* (02 — @ 5p)

B@P) =g0) + 0P 550+

Ckoc(wzp)z
LD e

(@7 p) (?p — wf,p)

which gives rather cumbersome solutions which may be useful for low frequencies, taking the
corrections to the first order in w?p and neglecting the terms of the wBl B> resonance frequencies.

3. Results
As an example for the discussion of numerical results, the solution Xﬁfl)(x, y,w), i=1,...,5is
considered. The related boundary conditions (13) are
Xfﬁl) <x, %, w) = sin (2% x), Xgls(l) (X, %, a)) =0, [x] <§, (34)
together with
n(£500) =0 By (£500) =0, i< (9)

The displacement tensor components uy = y7;, and u, = ,(;1%} are continuous functions, unlike
the strain tensor components ¢, = Xfls(l),r = 411y and o = x5y;, Which are discontinuous in the
vertices. The discontinuities can be investigated by means of analytical methods. Eq. (14),
together with boundary conditions (34), implies that

oL\ _4GG (o
i (750 ) = (0 +2G) L L)

: L —4G(G + 1) 2n
SS 2
lim 7510 (x w> i+2G L’

and therefore that
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At the same time, it follows from Eq. (35) that
L
lim 35 (Zy,0 ) =0.
A X51(1) 3 y
Y=

Therefore, the vertex value }ggf(l)(L/ 2,L,/2,w) is not determined. Likewise, the following
discontinuities can be found taking into account that in Egs. (25) the summations are uniformly

convergent:

. L, . L —4G(L+ G)
hn} ng(l) <x,7, w) =0, lle2 X;ﬁl) (E,y, co) = th
xﬂj y—)T

. L —8G(1+ G) k . L

,SS =2 _ —ouvT )R ss (& _

2 o ("’ 2 ’“’) 26 = L X““)(z’y’ °’> >
’ 2

In spite of these discontinuities, the solution has a well defined physical meaning. It must be
referred to a rectangle with the vertices removed as in Fig. 1. Let ¢ be the length of the cut /, = AB,
h the thickness of the rectangle in the z direction, n, and n, the components of the vector normal
to the edge. Then the components f, f, of the external force acting on the cut are given by

fo= h/ ox(x,y, w)ng + (X, y, w)n, d,
l.':

5= h/l ay(x,y, w)n, + 1(x, y, w)n, d/,

and are vanishing as ¢—0 due to the finiteness of the discontinuities in the stress tensor. As a
consequence, the boundary conditions (34) and (35) are preserved in the limit. However the
convergence of the summations in the neighbourhood of the discontinuities is slow, and therefore
numerical results obtained by series truncation must not be taken too close to the removed
vertices.

In the following, results are given in terms of non-dimensional quantities. Co-ordinates are
represented by X =x/L, y =y/L,. Angular frequency is represented by the quantity & =
V/p/Y Lo, where Y is the Young modulus, given by
3% +2G A+ G

4G

Y=G = :
242G ) +2G

Fig. 1. Removal of the vertices from the rectangle.
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Table 1
Non-dimensional values for the lowest resonance frequencies of the solution symmetric in the x and y direction

~SS
ko

k\o 1 2 3 4 5 6 7 8 9

0 3.396 4814 6.275 8.428 10.715 12.528 16.032 17.066 20.234
1 8.138 10.628 13.382 14.442 15.555 16.906 18.807 20.859 22.668
2 13.530 15.769 17.812 20.441 23.223 24.071 24.875 26.302 27.603
3 18.941 21.403 22.882 24.991 27.525 30.317 33.056 33.699 34.341
4 24.353 27.200 28.329 30.029 32.169 34.642 37.357 40.214 42.861
5 29.765 33.065 33.966 35.368 37.187 39.346 41.779 44.427 47.234

2
15
1
0.5
0
-0.5
-1

.15 I I I I
0.5 -0.3 -0.1 0.1 0.3 0.5

x/L

Fig. 2. The shape of the components of the fundamental solution with symmetry SS; )Zflfl); i=1,...,5,asa function of
the transversal coordinate x, for & = 1.325 and y = 0.29.

To deal with non-dimensional stress and displacement tensors, the first of boundary conditions
(34) must be rewritten as u, = 3 11(1) = Ay sin(%* x), in which the amplitude 4, satisﬁes Ay =1and
has the dimension of a length. Then the non-dimensional quantltles 7= 711(1) /Ay 2=
(L/ YAO)le(l) 73 = 131(1)/A0 74 = (L/ YAO)X41(1) and 5 = (L/ YAO)/Csm) are defined. The shape of
the rectangle and the elastic properties of the material are determined by the non-dimensional
values Ly/L = 0.6725 and /G = 0.6. The lower resonance frequencies are shown in Table 1. The
graph in Fig. 2 represents the solution for @ = 1.325 and y = 0.29, taken from Eq. (25) with the &
summation truncated to the value k,,,, = 65. To check how the numerical approximation fulfils
the equations of the elasticity, it is useful to introduce the following non-dimensional quantities

= 10,155 + 0SS — 155,/ GIL/ Ao,

LZ
ss 2.8 ss
2 = 10y )51y + PO X310 T ax%41(1)/G|ﬂ,

A
A N SS Y
g3 = ay}531(1) + 7+ 2G5xX11(1) 126G £21(1) L/ Ao,
4G(1+ G) A L’
A Ss 2 2).ss sS
g4 = ay%41(1) + ( 1+2G Oy + pw )Xll(l) +ﬂ~—|— 2G5xX21(1) A Y
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-0.5 -0.3 -0.1 0.1 0.3 0.5
x/L
Fig. 3. The graph shows how the solution iﬁ%); i=1,...,5, truncated in its series expansion, fulfils the equations of

elasticity g; =0, i =1, ...,4 for ® = 1.325,  =0.29, —0.5<%<0.5.

10?

K= 40
10 :

0.38 0.4 0.42 0.44 0.46 0.48 0.5
x/L

Fig. 4. Fulfilment of the g4 = 0 equation (see Fig. 3) in proximity to the edge of the rectangle x/L = 0.5. The series in
the solution have been truncated to k.. = 5,10,20,40 and 65.

Then Egs. (15) can be written as g; = 0, i = 1,2, 3,4. These equations, together with Eq. (14), are
equivalent to the elasticity equations (1) and (2). Hereafter derivatives 0, and 0, are calculated by
means of finite increments on the x and y variables. As was mentioned in Section 2, if |x|<L/2,
the convergence in the k series is determined by the goniometrical factors which behave as
(o)
if k tends to infinity; meanwhile, if x = + L/2, the convergence is determined by algebraic factors
and can be expressed in powers of k. It follows that the quantity g4 is convergent in the internal
points, but not on the edge, due to the presence of the term 62 which behaves like k*(2r/ L,)*. For
the other ¢; it must be taken into account that close to the edge, the 0, term makes the
convergence weaker than that of the Zflf]). Therefore, the errors in the g variables are greater than
those in the y (as can be confirmed by comparing the results in Fig. 3 with the stability in Fig. 5).
Numerical results for the g; if = 0.29 obtained by truncation of the series to k., = 65 are shown
in Fig. 3. The g4 values corresponding to x = + L/2 are not reported in Fig. 3 because they are
not convergent. The convergence of g4 to zero near the edge and its k,,,, dependence is shown in
Fig. 4. The solutions taken from Eq. (25) by truncation have a convergence which is faster inside
than on the edge. The graphics in Fig. 5 show the convergence in kax of 777, %311, and 735;, on
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Fig. 5. Convergence of the components of the solution )Zﬁfl) on the edge x = L/2 as a function of the truncation value
Kmaxs ¥ = 0.29, & = 1.325. Absolute value of the errors are reported: Ag; = |7i(kimax) — Ji(kimax = 65)|.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Kmax

Fig. 6. Convergence of ;Zgls(l) = ¢, to the boundary condition ¢, =0 on the edge x = L/2 as a function of the
truncation value k.
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Fig. 7. Error in the approximation of the fundamental solution on the edge x = L/2 as a function of the truncation
value oax; kmax = 10, § = 0.29, @ = 1.325, according to Eq. (32). Errors Ay; are computed from Ay; = 7i(onax) —
Fi(kmax = 65) in which yi(k,.x = 65) is taken from Eq. (25) and is considered equivalent to the unknown exact value.

the edge x = L/2 for y = 0.29. Errors are evaluated subtracting the k., = 65 approximation
instead of the unknown exact value. Errors in fff(l) are not reported in Fig. 5 since this component
vanishes exactly for every order of approximation. Due to the 0, term in Eq. (14), the ;ng(l)
convergence on the edge is slow, as shown in Fig. 6. This is not a problem for the applications
since the edge value is known to be vanishing from the boundary conditions, while for the values

in the inner points the convergence is faster. Fig. 7 shows the approximation for truncation in
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Fig. 8. The shape of the components of the fundamental solution with symmetry SS; )El.slfl); i=1,...,5,asa function of

the transversal coordinate x, for @ = 3.773, = 0.29.

Fig. 9. Convergence of the components of the solution )El.slfl) on the edge x = L/2 as a function of the truncation value
Kmax>» ¥ = 0.29; @ = 3.77. Absolute values where used: Ay; = |i(kmax) — fi(kmax = 101)].

Eq. (32), for ke = 10 and 0 <o, < 10, 0,4, being the value to which the o series is truncated. If
Omax > 8 the approximation is in the same order as that for k.. = 10 in Fig. 5. Therefore
increasing o,,,,, values will not improve convergence if there are not increments in k... In Figs. 8
and 9 the value @ = 3.773 was investigated while the other parameters are the same as in Fig. 2.
This is to check the approximation for frequencies exceeding the first resonance of Table 1. Fig. 8
shows the solution for k., =75 while Fig. 9 shows the convergence on the edge for
0 < kymax < 100.

4. Concluding remarks

An analytical solution involving double series summation, both on the resonance frequencies
and on the length wave numbers of the free edges has been derived. Some formulations of the
solution which are more suitable for the static problem, for low frequencies and for numerical
series truncation are discussed. A 10-term truncation is sufficient to give an approximation in the
order of one part per thousand. If the Fourier transform must be performed back to the time
variable, then a 50-term truncation is required to achieve the same result. The relevance of the
solution presented in this paper for the applications is briefly discussed. Suppose that the elastic
rectangle acts as a damper lying between two extended bodies A; and A, which are in contact with
the y = L,/2 and y = —L,/2 edges. This is the situation for which the free boundary conditions
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on the other two edges were introduced. For the determination of the time evolution of the
system, the rectangle cannot be replaced by a simple spring as long as the frequency of the motion
of the system is within the range of the resonance frequencies of the rectangle or if the asymmetry
with respect to the x = 0 axis of the rectangle makes the exchange of torque with the A; and A,
bodies to be not negligible. This situation occurs, for instance, in the case in which the rectangle
models the felt lying between the wooden core of a piano hammer and the string, as long as the
longitudinal string vibrations are involved. To this extent, the elastic rectangle can be presented as
a direct generalization of the concept of spring. If the inputs of the rectangle from A; and A, are
known at the time ¢, that is if the boundary conditions P,(?) = ¢,(¢) and s.(¢) = u,(¢) are given,
then Eq. (30) gives the outputs of the rectangle u,(z + A¢) and (¢ + Af) at the time ¢ + Az. Taking
these outputs, the next stage inputs P, (¢ + At) = 0,(t + A?) and s,(f + At) = u,(t + Af) can be
determined from the dynamical properties of the bodies A; and A,. Then the dynamics of the
whole system is obtained using a time step integration. Therefore there is no need to introduce a
space lattice model for the rectangle and there are no problems in convergence if the frequencies
are close to the resonance frequencies of the rectangle, since Eq. (30) behaves well even for those
frequencies. If Eq. (30) is re-written as

1) = — % /_; C(ll)peTRRSin(wR(l — 1)) dn,

where ¢(¢1) represents the inputs from A; and A2, y(¢) represents the outputs of the rectangle, eg
and wg represent the amplitudes and resonance frequencies eg,‘(?)zka and wf;Bz, which can be
computed once and for all before the time iteration to be performed, then it is apparent that the

time iteration can be performed by the simple recursion formulae

11+ A1) = 7(0) = > =X (cos(@rnir(0) + sin(@rbr()AL,
(R)

Lir(t + Ar) = I1g(t) + cos(wri)c(t)At,

Lir(t 4+ At) = Lg(?) + sin(wgt)c(t)At,

which require only a short computation time when employed in a numerical simulation. For a
better convergence a term (33) can be added. In this term the coefficient of ¢(#) does not depend on
t, then its computation time will also be fast.

Appendix A

This Appendix provides the proof of the modified Fourier formula:
k=+o ) 1
S =>" akel(H?)x if |x|<m,
k=—o
where

Y . 1 ,
ax = L7 i) F(x)dx’.
2n

-7
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This formula is required for the Fourier expansions in Egs. (10). Taking into account the identity

= ei(kq%)x KE in((n+3)x)
2 T

it is apparent that

zn: are (F8)* _ p(v) = % / Tdeen IO =N) e A

sin (%)

A straightforward calculation gives
. . 1 k
1/ e (=) Sm((”.+ 5)(% - X)) d r_ Z "+2 / e‘i(k%)x/ dx' = i 1 (_1)1 ei(’“’%)x.
2n J_, s1n(%) — 27T - o (kJrZ)
The latter series may be evaluated by considering
1 ei (h%)x

z+ 1 sin(nz)’

@(2) =

and then using the residue theory methods for the summation of all the residues, which gives

oD ),
N M

Thus Eq. (A.1) reads

nli)n?n i Clkei (k+%) f(x) hn}v 2171:/71 e% (x—x’)Sin((”l + )(X - )){f(xl) —f(X)) dx'.

sin(%5%)

This expression may be rearranged as

N Y A 1
ly nll,né 7 /Y ) sin < (n + —> y> V. (y)dy, (A2)

where Y .(y) = Sm(} 2)( f(x —y)—f(x))is a limited function in the neighborhood of y = 0. It is well
known (see for example, Ref. [9]) that the limit in (A.2) is vanishing if the function ,(y) admits a
finite number of intervals which is monotone and has a finite number of discontinuities.

Appendix B

In order to prove that all the roots of Eqs. (27) are real, it must be written in terms of the
variable { = w?p:

P50 = SO+ P50 =

L (SV2)?
sro-caw(af) o=y (o),

where
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SO =g G BO= /-6

As a consequence of the residue theory
¢
¢*(0)

where the integral is taken on a closed path, ng and np are the number of roots and poles of the

function ¢° delimited by the path. If the integration path is rectangular, with edges { = +{, and
{ = +i{y, with {,€R such that {y> (4 + 2G)z3, the inequality can be stated as

d¢ = nr(9®) — np(¢®), (B.1)

B (O1 <130, (B.2)

if it is assumed not to be & ({o)L/2n=n + 3 or & (o)L/2n=n with neN. So the inequality
90 1‘ 1 B3
PO |72 (2

holds on the integration path. Now consider the equation

SO R
0= / d1og(d(0) = A log(¢),

where A is the variation of the function (which is not a single-valued one) on the closed path. It is
apparent that A log(q5§) = Alog(¢®) + A log((,bg/qﬁs) — Alog(¢®), as a consequence of
Alog(d)f / %) = iA arg(¢§/ $%) = 0, where the variation of the argument is vanishing, since the
quantity ¢§(C)/ $5(0) does not go round the origin, being confined in the neighborhood of the
z =1 of the complex plane as can be argued from the condition (B.3). It follows

¢° (C) ¢35 © 4 d.
¢° (C) $3(0)
and
nr(¢°) — np(¢°) = nr(¢3) — np(¢h3). (B.4)

It can be easily verified that »n R(cb§) =2+ [%} where the 2 is determined by the double root of
the factor ({/2G — si)z, and [x] represents the greatest integer which is less then x. It is apparent

that
e G e e

therefore, taking into account equation (B.4) the number of roots of ¢°

et =2+ [P [22]

Now the number of the real roots of the same function is to be found. If

fl(g)—’%<n+l>_ or 62({)—»%(11—1-%)_, with neN,

2

(B.5)
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then ¢5(0)— + oo, while if

2n N* 2n I .
él(C)af<n+§> or éz(C)af<n+§> , with neN,
then ¢5({)—» — o0.

This means that in the intervals ]a;, b;[ in which the function ¢’ is continuous, the left-hand term
always has the value —oo: ¢(¢;) = —o0 and the right-hand term always has the value
+00: ¢(b;) = +o0; therefore there is at least one root for every +oo. As far as the first + oo is
concerned, which occurs for & ({) = n/L, it should be noted that in the former value of the
variable { = Gs,%, the function takes a negative value d)S (0)<0, so that even in this case there is a
former root. It follows, for the number ngg of real roots:

L 1 EHEL 1

sys [S1CL T 2o 1

nRR(® )/[ w T2 o)

As a consequence of Eq. (B.2), it is known that the root that precedes the last infinite is near to the
point &,({)L/2n = n, so it is possible to substitute

[€2(8o)L/2m + 1/2] by [E2(lo)L/2n] + 1.
It is apparent that another root may be found for { = 0, therefore

n)z2+ [PS0E ] [G0L]

2 21

Comparing this with equation (B.5) one can infer that all the roots are real.
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