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Abstract

An analytical solution for the elastic plane dynamic problem of a rectangle is presented. The following
boundary conditions were considered: two free edges, arbitrary normal pressure and shear displacement on
the two other edges. By means of space and time Fourier transform, the solution is reduced to a set of
fundamental solutions which are related to different symmetries. The solutions are expressed by means of
infinite summation series involving implicit real roots. The inversion of the time Fourier transform and the
numerical convergence of the solutions are discussed. As regards the applications, the solution is a tool for
computations involving some kind of shock-absorber.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Since the publication of Leissa’s work [1] the problem of the vibrations of rectangles has been
extensively investigated [2,3]. Most of the publications deal with bending vibrations because of
their vital role in several applications, all of them making use of numerical methods. The effect of
longitudinal displacement on the bending modes was examined by Leissa [4] to the second order.
The so-called plane dynamic problem deals exclusively with longitudinal vibrations. A well-
known analytical method for the solution of the plane static problem for circumference and other
shapes, but not for rectangles, was found by Muskhelishvili [5]; however it is not extendable to the
dynamic problem. Some formulae for the dynamic problem may be found in Radok [6], but there
is no method for inserting the boundary conditions. In the literature there are no analytical
solutions for the rectangle plane problem corresponding to rather general boundary conditions,
even for the static case.
This paper deals with the analytical solution of the plane dynamic problem for a rectangle with

two free edges and with normal pressure and tangential displacement boundary conditions on the
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other edges. Boundary conditions may easily be replaced by normal displacement and tangential
pressure, but not by normal and tangential pressure, which would be the most important case for
practical applications. However, the solution presented can be used in order to obtain a linear
combination in which the normal pressure is given and the tangential pressure is approximated by
numerical methods. The generalization from two free edges to edges with constant pressure is
trivial.

2. Formulation and solution of the problem

2.1. Boundary conditions

The plane stress problem (see for example, Ref. [7]), involves bodies with small thickness and
constant section in the z direction. The external z ¼ constant surfaces are free and the mean value
in the z direction of the external pressures acting on the other sides is orthogonal to the z axes; this
means that the external force per unit length of the boundary lies in the xy plane. Then the
dynamical equations of the theory of the elasticity can be reduced to a two-dimensional
formulation:

@sx

@x
ðx; y;oÞ þ

@t
@y

ðx; y;oÞ ¼ �ro2uxðx; y;oÞ;

@t
@x

ðx; y;oÞ þ
@sy

@y
ðx; y;oÞ ¼ �ro2uyðx; y;oÞ; ð1Þ

where

sx t

t sy

 !
;

is the stress tensor in the xy plane. The stress tensor is connected to the displacements ux and uy by
the equations

sxðx; y;oÞ ¼ ðlþ 2GÞ
@ux

@x
ðx; y;oÞ þ l

@uy

@y
ðx; y;oÞ;

syðx; y;oÞ ¼ ðlþ 2GÞ
@uy

@y
ðx; y;oÞ þ l

@ux

@x
ðx; y;oÞ;

t ¼ G
@ux

@y
ðx; y;oÞ þ

@uy

@x
ðx; y;oÞ

� �
; ð2Þ

where l and G are the modified Lam!e coefficients for the plane stress problem which may be
expressed in terms of the three-dimensional Lam!e coefficients l� and m: l ¼ 2l�m=ðl� þ 2mÞ;
G ¼ m: In Eqs. (1), r is the mass density and o is the variable of the time Fourier transform that is
understood to be performed. Hereafter, Eqs. (1) and (2) are defined on a rectangular shaped
domain delimited by the edges x ¼ 7L=2 and y ¼ 7L2=2: Usually, the boundary conditions are
given in terms of the stress tensor or in terms of the displacements. In the first case, sx and t are
given on the x ¼ 7L=2 edges while sy and t are given on the y ¼ 7L2=2 edges. In the second
case, ux and uy are given on the four edges. There are thus eight boundary conditions.
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Unfortunately, a solution with boundary conditions of this kind is not available. In order to find
solutions, the eight boundary conditions must be replaced. It is supposed to have zero pressure on
two edges

sx 7
L

2
; y;o

� �
¼ 0; ð3aÞ

t 7
L

2
; y;o

� �
¼ 0; ð3bÞ

while normal pressure Py1ðx;oÞ;Py2ðx;oÞ and tangential displacement sx1ðx;oÞ; sx2ðx;oÞ on the
other two edges are given by

sy x;
L2

2
;o

� �
¼ Py1ðx;oÞ; sy x;�

L2

2
;o

� �
¼ �Py2ðx;oÞ;

ux x;
L2

2
;o

� �
¼ sx1ðx;oÞ; ux x;�

L2

2
;o

� �
¼ sx2ðx;oÞ: ð4Þ

The following notation is adopted for uniformity reasons

w1 ¼ ux; w2 ¼ sy; w3 ¼ uy; w4 ¼ t; w5 ¼ sx:

2.2. Space symmetries

It is useful to introduce the x and y axes reversal operators #Px and #Py in order to deal with
boundary conditions assigned on opposite edges. #Px and #Py are defined by

#Pxw1ðx; y;oÞ ¼ �w1ð�x; y;oÞ; #Pyw1ðx; y;oÞ ¼ w1ðx;�y;oÞ;
#Pxw2ðx; y;oÞ ¼ w2ð�x; y;oÞ; #Pyw2ðx; y;oÞ ¼ w2ðx;�y;oÞ;
#Pxw3ðx; y;oÞ ¼ w3ð�x; y;oÞ; #Pyw3ðx; y;oÞ ¼ �w3ðx;�y;oÞ;
#Pxw4ðx; y;oÞ ¼ �w4ð�x; y;oÞ; #Pyw4ðx; y;oÞ ¼ �w4ðx;�y;oÞ;
#Pxw5ðx; y;oÞ ¼ w5ð�x; y;oÞ; #Pyw5ðx; y;oÞ ¼ w5ðx;�y;oÞ: ð5Þ

Transformations for the boundary conditions can be taken from Eqs. (4) and (5)

#PxPyiðx;oÞ ¼ Pyið�x;oÞ; i ¼ 1; 2; #Pxsxiðx;oÞ ¼ �sxið�x;oÞ; i ¼ 1; 2;

#PyPy1ðx;oÞ ¼ �Py2ðx;oÞ; #PyPy2ðx;oÞ ¼ �Py1ðx;oÞ;
#Pysx1ðx;oÞ ¼ sx2ðx;oÞ; #Pysx2ðx;oÞ ¼ sx1ðx;oÞ: ð6Þ

Symmetrized and antisymmetrized quantities gðx; yÞ are denoted by

gSS ¼
ð1þ PxÞð1þ PyÞ

4
g; gSA ¼

ð1þ PxÞð1� PyÞ
4

g;

gAS ¼
ð1� PxÞð1þ PyÞ

4
g; gAA ¼

ð1� PxÞð1� PyÞ
4

g
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so that

#Pxg
SB2 ¼ gSB2 ; #Pxg

AB2 ¼ �gAB2 ; #PygB1S ¼ gB1S; #PygB1A ¼ �gB1A

with Bj ¼ S;A for j ¼ 1; 2: ð7Þ

Since Eqs. (1) and (2) are linear and invariant under space axis reversals the solution can be
decomposed with wi ¼ wSS

i þ wSA
i þ wAS

i þ wAA
i ¼

P
B1;B2

wB1B2

i ; with Bj ¼ S;A for j ¼ 1; 2 and
i ¼ 1; 2; 3; 4; 5:
Boundary conditions are now

wB1B2

2 x;
L2

2
;o

� �
¼ PB1B2

y1 ðx;oÞ wB1B2

1 x;
L2

2
;o

� �
¼ sB1B2

x1 ðx;oÞ; ð8Þ

and

wB1B2

4

L

2
; y;o

� �
¼ wB1B2

5

L

2
; y;o

� �
¼ 0; ð9Þ

while for y ¼ �L2=2 and x ¼ �L=2 are identically satisfied, as a consequence of Eqs. (5)–(7). As
an example, this may be checked for the wB1B2

2 component

wB1B2

2 x;�
L2

2
;o

� �
¼ 7 #Pyw

B1B2

2 x;
L2

2
;o

� �
¼ 7 #PyP

B1B2

y1 ðx;oÞ ¼ �PB1B2

y2 ðx;oÞ:

The next step is to expand Eq. (8) in Fourier series

PS;B2

y1 ðx;oÞ ¼
X
pX0

cSB2

p;ð2ÞðoÞ cosðkpxÞ; sS;B2

x1 ðx;oÞ ¼
X
p>0

cSB2

p;ð1ÞðoÞ sinðkpxÞ;

PA;B2

y1 ðx;oÞ ¼
X
pX0

cAB2

p;ð2ÞðoÞ sinðk
A
p xÞ; sA;B2

x1 ðx;oÞ ¼
X
pX0

cAB2

p;ð1ÞðoÞ cosðk
A
p xÞ; ð10Þ

where kp ¼ ð2p=LÞp and kA
p ¼ ð2p=LÞ p þ 1

2

� �
: It should be noted that the series involving kA

p are
modified Fourier series; however it can be demonstrated (see Appendix A) that the usual inversion
formulae hold

cAB2

p;ð2ÞðoÞ ¼
2

L

Z L=2

�L=2
PAB2

y1 ðx;oÞ sinðkA
p xÞ dx and cAB2

p;ð1ÞðoÞ ¼
2

L

Z L=2

�L=2
sAB2

x1 ðx;oÞ cosðkA
p xÞ dx: ð11Þ

(The reasons for taking kA
p instead of kp in two equations are connected to further developments

and cannot be elucidated at this stage.) Then the solutions are given by

wi ¼
X
pAN

X
B1B2

cB1B2

p;ð1Þ ðoÞw
B1B2

ipð1Þ ðx; y;oÞ þ cB1B2

p;ð2Þ ðoÞw
B1B2

ipð2Þ ðx; y;oÞ; ð12Þ
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in which the functions wB1B2

ipð jÞ ; j ¼ 1; 2; B1;B2 ¼ A; S satisfy both the boundary conditions

wSB2

1pð1Þ x;
L2

2
;o

� �
¼ sinðkpxÞ wSB2

2pð1Þ x;
L2

2
;o

� �
¼ 0;

wSB2

1pð2Þ x;
L2

2
;o

� �
¼ 0 wSB2

2pð2Þ x;
L2

2
;o

� �
¼ cosðkpxÞ;

wAB2

1pð1Þ x;
L2

2
;o

� �
¼ cosðkA

p xÞ wAB2

2pð1Þ x;
L2

2
;o

� �
¼ 0;

wAB2

1pð2Þ x;
L2

2
;o

� �
¼ 0 wAB2

2pð2Þ x;
L2

2
;o

� �
¼ sinðkA

p xÞ ð13Þ

and conditions (9). Therefore the functions wB1B2

ipð jÞ are the fundamental solutions to which all the
other solutions may be constructed.

2.3. The fundamental solutions

This sub-paragraph deals with the fundamental solutions wB1B2

ipð jÞ defined from conditions (9) and
(13). Eqs. (1) and (2) can be considered as differential equations with respect to the y variable.
Since there are no @yw5 terms, w5 must be considered as a dependent variable:

sx ¼ w5 ¼
l

ðlþ 2GÞ
w2 þ

4GðG þ lÞ
ðlþ 2GÞ

@xw1: ð14Þ

Taking into account Eq. (14), Eqs. (1) and (2) can be rewritten as

@ywi ¼ Aijwj; A ¼

0 0 �@x
1

G

0 0 �ro2 �@x

�l
ðlþ 2GÞ

@x

1

ðlþ 2GÞ
0 0

�4Gðlþ GÞ
ðlþ 2GÞ

@2x � o2r
� �

�l
ðlþ 2GÞ

@x 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð15Þ

with 1pi; jp4:
Following Eqs. (5), a solution with symmetry wSS

i can be found by putting

wSS
1 ðx; y;oÞ ¼ c1ðo; zÞ sinðxxÞ coshðzyÞ; wSS

2 ðx; y;oÞ ¼ c2ðo; zÞ cosðxxÞ coshðzyÞ;

wSS
3 ðx; y;oÞ ¼ c3ðo; zÞ cosðxxÞ sinhðzyÞ; wSS

4 ðx; y;oÞ ¼ c4ðo; zÞ sinðxxÞ sinhðzyÞ: ð16Þ

The substitution of Eqs. (16) into Eq. (15) leads to a system of algebraic equations in the ci

variables which admits non-trivial solutions only for the two eigenvalues

x1 ¼ x1ðz;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ

o2r
ðlþ 2GÞ

s
; x2 ¼ x2ðz;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ

o2r
G

s
:
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The two corresponding solutions wi bear the same y dependence, and therefore it is easy to obtain
a linear combination for which Eq. (3b) holds; this combination is given by

wSS
1 ðx; y;o; zÞ ¼ x1x2 � z2 þ

o2r
2G

� �
sin x2

L

2

� �
sinðx1xÞ þ z2 sin x1

L

2

� �
sinðx2xÞ

� �
coshðzyÞ;

wSS
2 ðx; y;o; zÞ ¼ 2Gx2 z2 �

lo2r
2Gðlþ 2GÞ

� �
z2 þ

o2r
2G

� �
sin x2

L

2

� �
cosðx1xÞ

�

� x1x2z
2 sin x1

L

2

� �
cosðx2xÞ

�
coshðzyÞ;

wSS
3 ðx; y;o; zÞ ¼ zx2 z2 þ

o2r
2G

� �
sin x2

L

2

� �
cosðx1xÞ � x1x2 sin x1

L

2

� �
cosðx2xÞ

� �
sinhðzyÞ;

wSS
4 ðx; y;o; zÞ ¼ 2Gzx1x2 z2 þ

o2r
2G

� �
�sin x2

L

2

� �
sinðx1xÞ þ sin x1

L

2

� �
sinðx2xÞ

� �
sinhðzyÞ: ð17aÞ

Eq. (3a), and taking into account Eq. (14), leads to the equation fSðz;oÞ ¼ 0; where

fSðo; zÞ ¼ z2x1 sin x1
L

2

� �
cos x2

L

2

� �
�

z2 þ o2r
2G

� �2
sin x2 L

2

� �
x2

cos x1
L

2

� �
:

There are infinite complex roots zS
a ; a ¼ 71;72;73y for this equation. Therefore there are

an infinity of solutions wSS
i depending on a complex parameter zS

a : w
SS
i ¼ wSS

i ðx; y;o; zS
a Þ:Hereafter

the functions are referred to complex variables so that, for instance: sinðizyÞ ¼ i sinhðzyÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ o2r=2G

p
¼ 7i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2 � o2r=2G

p
and so on. Likewise solutions bearing the other symmetries

can be found:

wSA
i ðx; y;o; zÞ ¼

i

z
@ywSS

i ðx; y;o; zÞ;

wAS
1 ðx; y;o; zÞ ¼ x1x2 � z2 þ

o2r
2G

� �
cos x2

L

2

� �
cosðx1xÞ þ z2 cos x1

L

2

� �
cosðx2xÞ

� �
coshðzyÞ;

wAS
2 ðx; y;o; zÞ ¼ 2Gx2 � z2 �

lo2r
2Gðlþ 2GÞ

� �
z2 þ

o2r
2G

� �
cos x2

L

2

� �
sinðx1xÞ

�

þ x1x2z
2 cos x1

L

2

� �
sinðx2xÞ

�
coshðzyÞ;

wAS
3 ðx; y;o; zÞ ¼ zx2 � z2 þ

o2r
2G

� �
cos x2

L

2

� �
sinðx1xÞ þ x1x2 cos x1

L

2

� �
sinðx2xÞ

� �
sinhðzyÞ;

wAS
4 ðx; y;o; zÞ ¼ 2Gzx1x2 z2 þ

o2r
2G

� �
�cos x2

L

2

� �
cosðx1xÞ þ cos x1

L

2

� �
cosðx2xÞ

� �
sinhðzyÞ;

wAA
i ðx; y;o; zÞ ¼

i

z
@ywAS

i ðx; y;o; zÞ: ð17bÞ
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The solutions compatible with condition (3a) are given by wSA
i ¼ wSA

i ðx; y;o; zS
a Þ; wAB2

i ¼
wAB2

i ðx; y;o; zA
a Þ; here the zA

a are the roots of the equation

fAðo; zÞ ¼ z2x1 cos x1
L

2

� �
sin x2

L

2

� �
�

z2 þ o2r
2G

� �2
cos x2 L

2

� �
x2

sin x1
L

2

� �
¼ 0:

Now boundary conditions (13) must be taken into account. The first to be considered is the
solution wSS

ipð1Þðx; y;oÞ: The functions

f
ð1Þ

ip ðzÞ ¼
z

ðx21 � k2
pÞ

1

x22

1

fSðz;oÞ

wSS
i ðx; y;o; zÞ
cosh z L2

2

� � ; i ¼ 1; 2; 3; 4; ð18Þ

are invariant under the substitutions x1/� x1 and x2/� x2; therefore they are single-valued
functions in the complex variable z: The integrals

R
CR

f
ð1Þ

ip ðzÞ dz have a vanishing limit if the
integration path CR tends to infinity avoiding the neighbourhood of the poles of the function. In
fact, if jxjoL=2 and jyjoL2=2 the goniometrical and hyperbolical functions which takes place in
the numerator through the wSS

i approach infinity faster than those that take place in the
denominator through the factor fS: The limit to be performed is of the kind of the limits of the
ratios

sin x2 L
2

� �
sinðx1xÞ

sin x1 L
2

� �
cos x2 L

2

� �; coshðzyÞ

cosh z L2

2

� �;
and so on. It should be noted that at least one of these two ratios has an exponential convergence
for z-N in the complex plane. In the other case, x ¼ 7L=2 or y ¼ 7L2=2 the functions f

ð1Þ
ip ðzÞ

are convergent at least as 1=z2; even on the real and imaginary axis. As a consequence of the
residue theory it is apparent thatX

zS
a

resf f
ð1Þ

ip ðzÞg ¼ �
X

all the
other poles

resf f
ð1Þ

ip ðzÞg: ð19Þ

The left side of this equation can be written asX
a

Að1Þ
pa w

SS
i ðx; y;o; zS

a Þ; ð20Þ

with

Að1Þ
pa ¼

zS
a

½ðxS
1aÞ

2 � k2
p


1

ðxS
2aÞ

2

1

@zf
Sðo; zS

a Þ

1

cosh zS
a

L2

2

� �;
and

xS
1a ¼ xS

1aðoÞ ¼ x1ðz
S
a ;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS

a Þ
2 þ

o2r
ðlþ 2GÞ

s
; xS

2a ¼ xS
2aðoÞ ¼ x2ðz

S
a ;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS

a Þ
2 þ

o2r
G

s
:
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Series (20) is a solution for which both conditions (3) hold, since zS
a is a root of the function

fSðo; zÞ: This solution is denoted by wSSð1Þ
ip ðx; y;oÞ; and can be taken from the right-hand side of

Eq. (19), obtaining, if i ¼ 1 and i ¼ 2;

wSSð1Þ
1p ¼

ð�1Þpþ1kp

k2
p �

o2r
lþ2G

þ o2r
2G

coshðz1pyÞ sinðkpxÞ

cosh z1p
L2

2

� �
�

XþN

k¼�N

ð�1Þk2
L2

sS
k

ðxS
1kÞ

2 � k2
p

1

ðxS
2kÞ

2

1

fSðo; isS
k Þ

wSS
1 ðx; y;o; isS

k Þ;

wSSð1Þ
2p ¼

ð�1Þp2G k2
p �

o2r
2G

� �
k2

p �
o2r
lþ2G

þ o2r
2G

coshðz1pyÞ cosðkpxÞ

cosh z1p
L2

2

� �
�

XþN

k¼�N

ð�1Þk2
L2

sS
k

ðxS
1kÞ

2 � k2
p

1

ðxS
2kÞ

2

1

fSðo; isS
k Þ

wSS
2 ðx; y;o; isS

k Þ: ð21Þ

Here the following notations were adopted

sS
k ¼

2p
L2

k þ
1

2

� �
; xS

1k ¼ x1ðis
S
k ;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2r

lþ 2G
� ðsS

k Þ
2

s
;

xS
2k ¼ x2ðis

S
k ;oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2r
G

� ðsS
k Þ

2

s
; z1p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p �
o2r

lþ 2G

s
:

It should be noted that the terms involving series in Eqs. (21) vanish if y ¼ L2=2 owing to the
presence of the null factors wSS

i ðx;L2=2;o; isS
k Þ ¼ 0; i ¼ 1; 2: Another solution can be derived by

taking, instead of Eq. (18), the functions

f
ð2Þ

ip ðzÞ ¼
z

ðx22 � k2
pÞ

1

x22

1

fSðz;oÞ

wSS
i ðx; y;o; zÞ
cosh z L2

2

� � ; i ¼ 1; 2; 3; 4:

This leads to the solution wSSð2Þ
ip ¼

P
a Að2Þ

pa w
SS
i ðx; y;o; zS

a Þ; that is for i ¼ 1 e 2 given by

wSSð2Þ
1p ¼

ð�1Þpþ1

kp

coshðz2pyÞ sinðkpxÞ

cosh z2p
L2

2

� � �
XþN

k¼�N

ð�1Þk2
L2

sS
k

½ðxS
2kÞ

2 � k2
p


1

ðxS
2kÞ

2

1

fSðo; isS
k Þ

wSS
1 ðx; y;o; isS

k Þ;

wSSð2Þ
2p ¼ ð�1Þp2G

coshðz2pyÞ cosðkpxÞ

cosh z2p
L2

2

� � �
XþN

k¼�N

ð�1Þk2
L2

sS
k

½ðxS
2kÞ

2 � k2
p


1

ðxS
2kÞ

2

1

fSðo; isS
k Þ

wSS
2 ðx; y;o; isS

k Þ:

ð22Þ

Here the notation z2p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � o2r=G
q

was introduced. If y ¼ L2=2; since the series are vanishing,

both solutions (21) and (22) bear the same x-dependence for the i ¼ 1 and i ¼ 2 components:

the factor sinðkpxÞ for wSSð jÞ
1p ðx;L2=2;oÞ; j ¼ 1; 2 and the factor cosðkpxÞ for wSSð jÞ

2p ðx;L2=2;oÞ;
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j ¼ 1; 2: Therefore, it is easy to find a linear combination which fulfils the boundary conditions
(13), that are

wSS
1pð1Þ x;

L2

2
;o

� �
¼ sinðkpxÞ; wSS

2pð1Þ x;
L2

2
;o

� �
¼ 0; ð23aÞ

or

wSS
1pð2Þ x;

L2

2
;o

� �
¼ 0 wSS

2pð2Þ x;
L2

2
;o

� �
¼ cosðkpxÞ: ð23bÞ

Now consider the first of these two boundary conditions: the i ¼ 1 component of the related
solution is

wSS
1pð1Þ ¼

2G

o2r
k2

p

coshðz1pyÞ

cosh z1p
L2

2

� �� k2
p �

o2r
2G

� �
coshðz2pyÞ

cosh z2p
L2

2

� �
 !

sinðkpxÞ

þ
X
kAN

ð�1Þpþk8GkpsS
k EkpðoÞ

wSS
1 ðx; y;o; isS

k Þ

L2ðx
S
2kÞ

2o2rfSðo; isS
k Þ
; ð24Þ

where

EkpðoÞ ¼
k2

p �
o2r

ðlþ2GÞ þ
o2r
2G

n o
f½xS

1kðoÞ

2 � k2

pg
�

k2
p �

o2r
2G

n o
f½xS

2kðoÞ

2 � k2

pg
:

In the limit k-N; the series in Eq. (24) behaves asymptotically as

X
kAN

ð:::ÞE
X
kAN

ð�1Þpþkþ1 8

L2s
S
k

LkpgkðxÞ signðxÞ
L

2
� jxj

� �
cosðsS

k yÞ;

where

L ¼
ðlþ GÞ
ðlþ 2GÞ

and gkðxÞ ¼ esS
k
ðjxj�L=2Þ:

This quantity may be subtracted in the series when adding its sum which may be performed
analytically. This gives, if jyjoL2=2 and jxjoL=2;

wSS
1pð1Þ ¼

2G

o2r
k2

pr1p coshðz1pyÞ � k2
p �

o2r
2G

� �
r2p coshðz2pyÞ

� �
sinðkpxÞ

þ ð�1Þpþ1L4kp signðxÞ
L

2
� jxj

� �
1

p
arctg t� cos

p
L2

y

� �� �

þ
X
kAN

ð�1Þpþk 8kp

L2
GsS

k EkpðoÞ
wSS
1 ðx; y;o; isS

k Þ

ðxS
2kÞ

2o2rfSðo; isS
k Þ

þ LgkðxÞ signðxÞ
1

sS
k

L

2
� jxj

� �
cosðsS

k yÞ

" #
;

ð25aÞ
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where

t ¼ ep=L2ðjxj�L=2Þ; t� ¼
2t

ð1� t2Þ
; r1p ¼

1

cosh z1p
L2

2

� � and r2p ¼
1

cosh z2p
L2

2

� �:
The other components of this solution are

wSS
2pð1Þ ¼

�4G2kp

o2r
k2

p2Gðr1p coshðz1pyÞ � r2p coshðz2pyÞÞ cosðkpxÞ

þ ð�1Þpþ18GLkp
1

p
arctg t� cos

p
L2

y

� �� �
þ

1

L2

jxj � L
2

� �
2tð1þ t2Þ

1þ t4 þ 2t2 cos 2p
L2

y
� � cos p

L2
y

� �2
4

3
5

þ
X
kAN

ð�1Þpþk 8Gkp

L2
sS

k EkpðoÞ
wSS
2 ðx; y;o; isS

k Þ

ðxS
2kÞ

2o2rfSðo; isS
k Þ

þ 2LgkðxÞ
1

sS
k

�
L

2
þ jxj

� �
cosðsS

k yÞ

" #
;

ð25bÞ

wSS
3pð1Þ ¼ �

2Gkp

o2r
z1pr1p sinhðz1pyÞ �

k2
p2G

k2
pG

z2pr2p sinhðz2pyÞ

 !
cosðkpxÞ

þ ð�1Þp2Lkp
L

2
� jxj

� �
1

p
log

1þ t2 þ 2t sin p
L2

y
� �

1þ t2 � 2t sin p
L2

y
� �

0
@

1
A

þ
X
kAN

ð�1Þpþk 8kp

L2
GsS

k EkpðoÞ
wSS
3 ðx; y;o; isS

k Þ

ðxS
2kÞ

2o2rfSðo; isS
k Þ

� LgkðxÞ
L
2 � jxj

sS
k

sinðsS
k yÞ

" #
; ð25cÞ

wSS
4pð1Þ ¼

4G2

o2r
k2

pz1pr1p sinhðz1pyÞ �
ðk2

p2GÞ
2

k2
pG

z2pr2p sinhðz2pyÞ

 !
sinðkpxÞ

þ
ð�1Þp

L2
8GkpL signðxÞ

L

2
� jxj

� � 2tð1� t2Þ sin p
L2

y
� �

1þ t4 þ 2t2 cos 2p
L2

y
� �

þ
X
kAN

ð�1Þpþk 8Gkp

L2
sS

k EkpðoÞ
xSS
4 ðx; y;o; isS

k Þ

ðxS
2kÞ

2o2rfSðo; isS
k Þ

� 2LgkðxÞsignðxÞ
L

2
� jxj

� �
sinðsS

k yÞ

" #
;

ð25dÞ

where k2
pG ¼ k2

p � o2r=G and k2
p2G ¼ k2

p � o2r=2G:
Here all the series are uniformly convergent, at least as 1=ðsS

k Þ
2E1=k2; then it is apparent that in

Eqs. (25a) and (25b) lim
y-7

L2

2

P
ð:::Þ ¼

P
ð:::Þj

y¼
L2

2

¼ 0; due to the disappearance of the factors

wSS
1 and wSS

2 : Then it is easy to check that conditions (23a) are fulfilled.
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2.4. Inversion of the Fourier transform

Eqs. (25) are the formulation which may be better approximated by truncation, but this is not
convenient for inverting Fourier transform from the o variable to the time t: Another formulation
can be found by going back to Eq. (24). The series therein is denoted by

P
kAN gkðo2rÞ: In the

right-hand side, every function gk is to be expanded in a series summation on its poles (see for
example, Ref. [8]):

gkðo2rÞ ¼
ckA

ðo2r� o2
kArÞ

þ
ckB

ðo2r� o2
kBrÞ

þ
X
aAN

cka

ðo2r� ðoSS
ka Þ

2rÞ
: ð26Þ

Here o2
kA and o2

kB are the solutions of ðxS
1kÞ

2 ¼ k2
p and ðxS

2kÞ
2 ¼ k2

p; the oSS
ka are the roots of the

equation

fSðo; isS
k Þ ¼ 0; ð27Þ

and the ckj; j ¼ a;A;B are the residues. It may be proved (see Appendix B) that all the solutions
of Eq. (27) are real, so that they may be easily found by numerical methods, going step by step on
the real axes. These solutions represent all the singularities of the wSS

3pð1Þ and wSS
4pð1Þ in Eqs. (25c) and

(25d), that is all the ‘‘resonance frequencies’’ since the singularities rjp; for j ¼ 1; 2 which occur for
zjpL2=2 ¼ ipðk þ 1=2Þ; j ¼ 1; 2 and k ¼ 1; 2;y; are cancelled by the singularities of the term
EkpðoÞ: After the substitution of Eq. (26) into Eq. (24) has been performed, the seriesX

kAN

ckA

ðo2r� o2
kArÞ

þ
ckB

ðo2r� o2
kBrÞ

;

may be summed analytically, its sum being just the opposite of the first term of Eq. (24). This
leads to the formula

wSS
1pð1Þ ¼

sinðkpxÞ; if y ¼ 7
L2

2P
kAN
aAN;

ð�1Þkþp8GkpsS
k

L2ðoSS
ka Þ

2rðxSS
2kaÞ

2
EkpðoSS

ka Þ
wSS
1 ðx; y;oSS

ka ; is
S
k Þ

fS0

o ðo
SS
ka ; is

S
k Þ

1

½o2r� ðoSS
ka Þ

2r

if jyjo

L2

2
;

8>>><
>>>:

ð28Þ

where

xSS
1ka ¼ x1ðis

S
k ;o

SS
ka Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoSS

ka Þ
2r

lþ 2G
� ðsS

k Þ
2

s
and xSS

2ka ¼ x2ðis
S
k ;o

SS
ka Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoSS

ka Þ
2r

G
� ðsS

k Þ
2

s
;

fS0

o ðis
S
k ;oÞ ¼

@

@z
fðisS

k ;oÞ; z ¼ o2r:

The series in Eq. (28) is not uniformly convergent. This is a consequence of the fact that, taking
into account the previous observation on Eq. (25), it can be found that

sinðkpxÞ ¼ wSS
1pð1Þ x;

L2

2
;o

� �
¼ lim

y-
L2

2

wSS
1pð1Þðx; y;oÞ ¼ lim

y-
L2

2

X
kAN
aAN

ð:::Þa
X
kAN
aAN

lim
y-

L2

2

ð:::Þ ¼ 0:
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All the solutions in the same formulation of Eq. (28) can be found likewise:

wB1B2

ipð jÞ ðx; y;oÞ ¼
XþN

k¼�N

X
a

eB1B2

ipð jÞkaðx; yÞ

ðo2r� ðoB1B2

ka Þ2rÞ
;

i ¼ 1; 2; 3; 4; pAN

j ¼ 1; 2; B1;B2 ¼ S;A
if jyjo

L2

2
; ð29Þ

(if y ¼ 7L2=2; Eqs. (13) must be used) where

eB1B2

ipð1Þkaðx; yÞ ¼
ð�1Þpþk4GkB1

p sB2

k

L2ðx
B1B2

2ka Þ2ðoB1B2

ka Þ2r

ðkB1
p Þ2 þ

lðoB1B2
ka Þ2r

2Gðlþ2GÞ

½ðxB1B2

1ka Þ2 � ðkB1
p Þ2


�
ðkB1

p Þ2 �
ðoB1B2

ka Þ2r
2G

½ðxB1B2

2ka Þ2 � ðkB1
p Þ2


0
@

1
AwB1B2

i ðx; y;oB1B2

ka ; isB2

k Þ

f
B0
1

o ðoB1B2

ka ; isB2

k Þ
;

eB1B2

ipð2Þkaðx; yÞ ¼
ð�1ÞpþkeB12sB2

k

L2ðx
B1B2

2ka Þ2ðoB1B2

ka Þ2r

ðkB1
p Þ2 þ

lðo
B1B2
ka Þ2r

2Gðlþ2GÞ

½ðxB1B2

1ka Þ2 � ðkB1
p Þ2


�
ðkB1

p Þ2

½ðxB1B2

2ka Þ2 � ðkB1
p Þ2


0
@

1
AwB1B2

i ðx; y;oB1B2

ka ; isB2

k Þ

f
B0
1

o ðoB1B2

ka ; isB2

k Þ
;

kS
p ¼ kp ¼

2p
L

p; kA
p ¼

2p
L

p þ
1

2

� �
; sS

k ¼
2p
L2

k þ
1

2

� �
; sA

k ¼
2p
L2

k

oB1B2

ka are the roots of fB1ðo; isB2

k Þ ¼ 0; f
B0
1

o ðo; zÞ ¼ ð@=@zÞfB1ðo; zÞ; z ¼ o2r;

xB1B2

1ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoB1B2

ka Þ2r
ðlþ 2GÞ

� ðsB2

k Þ2

s
; xB1B2

2ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoB1B2

ka Þ2r
G

� ðsB2

k Þ2

s
;

eB1 is defined by eS ¼ 1 and eA ¼ �1:
The coefficients eB1A

ipð jÞ0a; for B2 ¼ A and k ¼ 0; involving the term sA
0 ¼ 0; are of the kind 0=0;

due to the coincidence of one of the roots oB1A
0a of fB1ðoB1A

0a ; isA
0 Þ ¼ 0 with that of the term

½xB1A
20a ðoÞ


2 � ðkB1
p Þ2 ¼ 0; that is o2r=G ¼ ðkB1

p Þ2: The ratio 0=0 therein must be intended as a limit
for s-sA

0 ¼ 0 and o2r=G-ðkB1
p Þ2: It can be confirmed that the equivalence between Eq. (29) and

the formulation of the solutions of the kind (25) is preserved for all the symmetry indices B1 and
B2 only if the two limits, in the variables s and o; are performed according to the formula

eB1A
ipð1Þ0aðx; yÞ ¼ lim

s-0

ð�1Þp4GkB1
p s

L2x
2
2ðoðsÞÞ

2r

ðkB1
p Þ2 þ lðoðsÞÞ2r

2Gðlþ2GÞ

½x21 � ðkB1
p Þ2


�
ðkB1

p Þ2 � ðoðsÞÞ2r
2G

½x22 � ðkB1
p Þ2


0
@

1
AwB1A

i ðx; y;oðsÞ; isÞ

fB1

o ðoðsÞ; isðsÞÞ
;

in which

x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½oðsÞ
2

lþ 2G
� s2

s
; x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½oðsÞ
2

G
� s2

s
;

and oðsÞ is the function defined by fB1ðoðsÞ; isÞ ¼ 0 and the condition

lim
s-0

½oðsÞ
2r
G

¼ ðkB1
p Þ2:

The same limit must be performed for the coefficients eB1A
ipð2Þ0aðx; yÞ:

For the solutions wB1A
ipð jÞ; B1 ¼ A;S; which are antisymmetrised in the y variable, the factor

coshðzL2=2Þ must be replaced by sinhðzL2=2Þ in all the formulas like Eq. (18). This leads to the
factors depending on kA

p instead of kp in the boundary conditions (13). The inversion of
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hyperbolic sinus and cosinus with respect to the same y symmetry leads to solutions with
boundary conditions for w3 ¼ uy and w4 ¼ t instead than ux and sy:
In Eq. (29) the Fourier transform from the angular frequency o to the time t can be performed

analytically. Taking into account Eq. (10), the general solution of Eqs. (1) and (2) with the
boundary conditions (3) and (4) is

wiðx; y; tÞ ¼ �
X
pAN

X
B1B2

XþN

k¼�N

X
a

X2
j¼1

Z t

�N

cB1B2

pð jÞ ðt1Þ
eB1B2

ipð jÞkaðx; yÞ

roB1B2

ka

sinðoB1B2

ka ðt � t1ÞÞ dt1: ð30Þ

Eq. (30) represents the more compact formulation of the solutions, but sometimes its
truncations are not good approximations because of both the non-uniformity of the convergence
near the edges, both the fact that it is a double series with high density of autofrequency levels. A
better convergence can be obtained by substituting with expansion (26) the following equation:

gkðo2rÞ ¼ gkð0Þ þ
ckAo2r

o2
kArðo

2r� o2
kArÞ

þ
ckBo2r

o2
kBrðo

2r� o2
kBrÞ

þ
X
aAN

ckao2r
o2

karðo
2r� o2

karÞ
: ð31Þ

The results are

wSS
1pð1Þ ¼ Gpðx; yÞ þHpðx; yÞ þ

XþN

k¼�N

Pkpðx; yÞ þ
Xk¼þN

k¼�N

X
aAN

eSS
1pð1Þkaðx; yÞ

o2

ðoSS
ka Þ

2ðo2r� ðoSS
ka Þ

2rÞ
; ð32Þ

where

Gpðx; yÞ ¼
coshðkpyÞ

cosh kp
L2

2

� � sinðkpxÞ þ L
coshðkpyÞ

cosh kp
L2

2

� � kp y tghðkpyÞ �
L2

2
tgh kp

L2

2

� �� �
sinðkpxÞ;

Hpðx; yÞ ¼ ð�1Þpþ1L4kp signðxÞ
L

2
� jxj

� �
1

p
arctg t� cos

p
L2

y

� �� �
;

Pkpðx; yÞ ¼ ð�1Þpþk Kpk

L2

4LsS
k Skx coshðsS

k xÞ � ð4Sk þ 2LLCksS
k Þ sinhðs

S
k xÞ

SkCk þ sS
k

L
2

� � cosðsS
k yÞ

þ ð�1Þpþk 4

L2
LkpgkðxÞ signðxÞ

1

sS
k

L

2
� jxj

� �
cosðsS

k yÞ;

with

Kpk ¼
kps2k

ðk2
p þ ðsS

k Þ
2Þ2

; Sk ¼ sinh sS
k

L

2

� �
; Ck ¼ cosh sS

k

L

2

� �
;

and so on for the other wB1B2

ipð jÞ : Here the summation of the leading terms in the series were
performed analytically, as is done in Eq. (25). In Eq. (32) the static solution o ¼ 0; may be
obtained directly by neglecting the last series, therefore the resonance frequencies oSS

ka are not
involved and it is not required to find the numerical roots of Eq. (27). If the Fourier transform
back to the t variable is performed taking into account Eq. (32) instead then Eq. (29), then in the
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right term of Eq. (30) the term

X
B1B2

X
pAN

X2
j¼1

GB1B2

pð jÞ ðx; yÞ þHB1B2

pð jÞ ðx; yÞ þ
XþN

k¼�N

PB1B2

kpð jÞðx; yÞ þ
X
aAN

eB1B2

ipð jÞkaðx; yÞ

rðoB1B2

ka Þ2

 !" #
cB1B2

pð jÞ ðtÞ; ð33Þ

must be summed, in which GB1B2

pð jÞ ðx; yÞ; H
B1B2

pð jÞ ðx; yÞ and PB1B2

kpð jÞðx; yÞ are the terms corresponding to
Gpðx; yÞ; Hpðx; yÞ; and Pkpðx; yÞ related to the other symmetries B1; B2 and the other solutions,
ð jÞ ¼ 1; 2: Term (33) is vanishing if the series summations are completed, but this makes the
convergence faster when the series are truncated.
A faster convergence can be obtained by substituting with Eq. (31) the next pole expansion [8]:

gkðo2rÞ ¼ gkð0Þ þ o2r
@gk

@ðo2rÞ
ð0Þ þ

ckAðo2rÞ2

ðo2
kArÞ

2ðo2r� o2
kArÞ

þ
ckBðo2rÞ2

ðo2
kBrÞ

2ðo2r� o2
kBrÞ

þ
X
aAN

ckaðo2rÞ2

ðo2
karÞ

2ðo2r� o2
karÞ

which gives rather cumbersome solutions which may be useful for low frequencies, taking the
corrections to the first order in o2r and neglecting the terms of the oB1B2

ka resonance frequencies.

3. Results

As an example for the discussion of numerical results, the solution wSS
i1ð1Þðx; y;oÞ; i ¼ 1;y; 5 is

considered. The related boundary conditions (13) are

wSS
11ð1Þ x;

L2

2
;o

� �
¼ sin

2p
L

x

� �
; wSS21ð1Þ x;

L2

2
;o

� �
¼ 0; jxjo

L

2
; ð34Þ

together with

wSS
41ð1Þ 7

L

2
; y;o

� �
¼ 0; wSS

51ð1Þ 7
L

2
; y;o

� �
¼ 0; jyjo

L2

2
: ð35Þ

The displacement tensor components ux ¼ wSS
11ð1Þ and uy ¼ wSS

31ð1Þ are continuous functions, unlike
the strain tensor components sy ¼ wSS

21ð1Þ; t ¼ wSS
41ð1Þ and sx ¼ wSS

51ð1Þ which are discontinuous in the
vertices. The discontinuities can be investigated by means of analytical methods. Eq. (14),
together with boundary conditions (34), implies that

wSS
51ð1Þ x;

L2

2
;o

� �
¼
4GðG þ lÞ
ðlþ 2GÞ

2p
L
cos

2p
L

x

� �
;

and therefore that

lim
x-

L
2

wSS
51ð1Þ x;

L2

2
;o

� �
¼

�4GðG þ lÞ
lþ 2G

2p
L
:
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At the same time, it follows from Eq. (35) that

lim
y-

L2

2

wSS
51ð1Þ

L

2
; y;o

� �
¼ 0:

Therefore, the vertex value wSS
51ð1ÞðL=2;L2=2;oÞ is not determined. Likewise, the following

discontinuities can be found taking into account that in Eqs. (25) the summations are uniformly
convergent:

lim
x-

L
2

wSS
21ð1Þ x;

L2

2
;o

� �
¼ 0; lim

y-
L2

2

wSS
21ð1Þ

L

2
; y;o

� �
¼

�4Gðlþ GÞ
ðlþ 2GÞ

k1;

lim
x-

L
2

wSS
41ð1Þ x;

L2

2
;o

� �
¼

�8Gðlþ GÞ
ðlþ 2GÞ

k1

p
; lim

y-
L2

2

wSS
41ð1Þ

L

2
; y;o

� �
¼ 0:

In spite of these discontinuities, the solution has a well defined physical meaning. It must be
referred to a rectangle with the vertices removed as in Fig. 1. Let e be the length of the cut le ¼ AB;
h the thickness of the rectangle in the z direction, nx and ny the components of the vector normal
to the edge. Then the components fx; fy of the external force acting on the cut are given by

fx ¼ h

Z
le

sxðx; y;oÞnx þ tðx; y;oÞny dl;

fy ¼ h

Z
le

syðx; y;oÞny þ tðx; y;oÞnx dl;

and are vanishing as e-0 due to the finiteness of the discontinuities in the stress tensor. As a
consequence, the boundary conditions (34) and (35) are preserved in the limit. However the
convergence of the summations in the neighbourhood of the discontinuities is slow, and therefore
numerical results obtained by series truncation must not be taken too close to the removed
vertices.
In the following, results are given in terms of non-dimensional quantities. Co-ordinates are

represented by #x ¼ x=L; #y ¼ y=L2: Angular frequency is represented by the quantity #o ¼ffiffiffiffiffiffiffiffiffiffi
r=Y

p
Lo; where Y is the Young modulus, given by

Y ¼ G
3l� þ 2G

l� þ 2G
¼ 4G

lþ G

lþ 2G
:
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Fig. 1. Removal of the vertices from the rectangle.
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To deal with non-dimensional stress and displacement tensors, the first of boundary conditions
(34) must be rewritten as ux ¼ wSS

11ð1Þ ¼ A0 sin
2p
L

x
� �

; in which the amplitude A0 satisfies A0 ¼ 1 and
has the dimension of a length. Then the non-dimensional quantities #w1 ¼ wSS

11ð1Þ=A0 #w2 ¼
ðL=YA0ÞwSS

21ð1Þ #w3 ¼ wSS
31ð1Þ=A0 #w4 ¼ ðL=YA0ÞwSS

41ð1Þ and #w5 ¼ ðL=YA0ÞwSS
51ð1Þ are defined. The shape of

the rectangle and the elastic properties of the material are determined by the non-dimensional
values L2=L ¼ 0:6725 and l=G ¼ 0:6: The lower resonance frequencies are shown in Table 1. The
graph in Fig. 2 represents the solution for #o ¼ 1:325 and #y ¼ 0:29; taken from Eq. (25) with the k
summation truncated to the value kmax ¼ 65: To check how the numerical approximation fulfils
the equations of the elasticity, it is useful to introduce the following non-dimensional quantities

#g1 ¼ j@ywSS
11ð1Þ þ @xwSS

31ð1Þ � wSS
41ð1Þ=GjL=A0;

#g2 ¼ j@ywSS
21ð1Þ þ ro2wSS

31ð1Þ þ @xwSS
41ð1Þ=Gj

L2

A0Y
;

#g3 ¼ @ywSS
31ð1Þ þ

l
lþ 2G

@xwSS
11ð1Þ �

1

lþ 2G
wSS
21ð1Þ

%%%%
%%%%L=A0;

#g4 ¼ @ywSS
41ð1Þ þ

4Gðlþ GÞ
lþ 2G

@2x þ ro2

� �
wSS
11ð1Þ þ

l
lþ 2G

@xwSS
21ð1Þ

%%%%
%%%% L2

A0Y
:
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Table 1

Non-dimensional values for the lowest resonance frequencies of the solution symmetric in the x and y direction

#oSS
ka

k\a 1 2 3 4 5 6 7 8 9

0 3.396 4.814 6.275 8.428 10.715 12.528 16.032 17.066 20.234

1 8.138 10.628 13.382 14.442 15.555 16.906 18.807 20.859 22.668

2 13.530 15.769 17.812 20.441 23.223 24.071 24.875 26.302 27.603

3 18.941 21.403 22.882 24.991 27.525 30.317 33.056 33.699 34.341

4 24.353 27.200 28.329 30.029 32.169 34.642 37.357 40.214 42.861

5 29.765 33.065 33.966 35.368 37.187 39.346 41.779 44.427 47.234
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Fig. 2. The shape of the components of the fundamental solution with symmetry SS; #wSS
i1ð1Þ; i ¼ 1;y; 5; as a function of

the transversal coordinate x; for #o ¼ 1:325 and #y ¼ 0:29:
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Then Eqs. (15) can be written as #gi ¼ 0; i ¼ 1; 2; 3; 4: These equations, together with Eq. (14), are
equivalent to the elasticity equations (1) and (2). Hereafter derivatives @x and @y are calculated by
means of finite increments on the x and y variables. As was mentioned in Section 2, if jxjoL=2;
the convergence in the k series is determined by the goniometrical factors which behave as

e
�2p

L2
k

L
2
�jxj

� �
;

if k tends to infinity; meanwhile, if x ¼ 7L=2; the convergence is determined by algebraic factors
and can be expressed in powers of k: It follows that the quantity #g4 is convergent in the internal
points, but not on the edge, due to the presence of the term @2x which behaves like k2ð2p=L2Þ

2: For
the other #gi it must be taken into account that close to the edge, the @x term makes the
convergence weaker than that of the #wSS

i1ð1Þ: Therefore, the errors in the #g variables are greater than
those in the #w (as can be confirmed by comparing the results in Fig. 3 with the stability in Fig. 5).
Numerical results for the #gi if #y ¼ 0:29 obtained by truncation of the series to kmax ¼ 65 are shown
in Fig. 3. The #g4 values corresponding to x ¼ 7L=2 are not reported in Fig. 3 because they are
not convergent. The convergence of #g4 to zero near the edge and its kmax dependence is shown in
Fig. 4. The solutions taken from Eq. (25) by truncation have a convergence which is faster inside
than on the edge. The graphics in Fig. 5 show the convergence in kmax of #wSS

11ð1Þ; #w
SS
21ð1Þ and #wSS

31ð1Þ on
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Fig. 3. The graph shows how the solution #wSS
i1ð1Þ; i ¼ 1;y; 5; truncated in its series expansion, fulfils the equations of

elasticity #gi ¼ 0; i ¼ 1;y; 4 for #o ¼ 1:325; #y ¼ 0:29; �0:5p #xp0:5:

0.38 0.4 0.42 0.44 0.46 0.48 0.5
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g
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1 
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10-4

Fig. 4. Fulfilment of the #g4 ¼ 0 equation (see Fig. 3) in proximity to the edge of the rectangle x=L ¼ 0:5: The series in
the solution have been truncated to kmax: ¼ 5; 10; 20; 40 and 65.
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the edge x ¼ L=2 for #y ¼ 0:29: Errors are evaluated subtracting the kmax ¼ 65 approximation
instead of the unknown exact value. Errors in #wSS

41ð1Þ are not reported in Fig. 5 since this component
vanishes exactly for every order of approximation. Due to the @x term in Eq. (14), the #wSS

51ð1Þ
convergence on the edge is slow, as shown in Fig. 6. This is not a problem for the applications
since the edge value is known to be vanishing from the boundary conditions, while for the values
in the inner points the convergence is faster. Fig. 7 shows the approximation for truncation in
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Fig. 6. Convergence of #wSS
51ð1Þ � #sx to the boundary condition #sx ¼ 0 on the edge x ¼ L=2 as a function of the

truncation value kmax:
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Fig. 5. Convergence of the components of the solution #wSS
i1ð1Þ on the edge x ¼ L=2 as a function of the truncation value

kmax; #y ¼ 0:29; #o ¼ 1:325: Absolute value of the errors are reported: D#wi ¼ j#wiðkmaxÞ � #wiðkmax ¼ 65Þj:
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Fig. 7. Error in the approximation of the fundamental solution on the edge x ¼ L=2 as a function of the truncation

value amax; kmax ¼ 10; #y ¼ 0:29; #o ¼ 1:325; according to Eq. (32). Errors D#wi are computed from D#wi ¼ #wiðamaxÞ �
#wiðkmax ¼ 65Þ in which #wiðkmax ¼ 65Þ is taken from Eq. (25) and is considered equivalent to the unknown exact value.
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Eq. (32), for kmax ¼ 10 and 0oamaxo10; amax being the value to which the a series is truncated. If
amax > 8 the approximation is in the same order as that for kmax ¼ 10 in Fig. 5. Therefore
increasing amax values will not improve convergence if there are not increments in kmax: In Figs. 8
and 9 the value #o ¼ 3:773 was investigated while the other parameters are the same as in Fig. 2.
This is to check the approximation for frequencies exceeding the first resonance of Table 1. Fig. 8
shows the solution for kmax ¼ 75 while Fig. 9 shows the convergence on the edge for
0okmaxo100:

4. Concluding remarks

An analytical solution involving double series summation, both on the resonance frequencies
and on the length wave numbers of the free edges has been derived. Some formulations of the
solution which are more suitable for the static problem, for low frequencies and for numerical
series truncation are discussed. A 10-term truncation is sufficient to give an approximation in the
order of one part per thousand. If the Fourier transform must be performed back to the time
variable, then a 50-term truncation is required to achieve the same result. The relevance of the
solution presented in this paper for the applications is briefly discussed. Suppose that the elastic
rectangle acts as a damper lying between two extended bodies A1 and A2 which are in contact with
the y ¼ L2=2 and y ¼ �L2=2 edges. This is the situation for which the free boundary conditions
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Fig. 9. Convergence of the components of the solution #wSS
i1ð1Þ on the edge x ¼ L=2 as a function of the truncation value

kmax; #y ¼ 0:29; #o ¼ 3:77: Absolute values where used: D#wi ¼ j#wiðkmaxÞ � #wiðkmax ¼ 101Þj:
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Fig. 8. The shape of the components of the fundamental solution with symmetry SS; #wSS
i1ð1Þ; i ¼ 1;y; 5; as a function of

the transversal coordinate x; for #o ¼ 3:773; #y ¼ 0:29:
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on the other two edges were introduced. For the determination of the time evolution of the
system, the rectangle cannot be replaced by a simple spring as long as the frequency of the motion
of the system is within the range of the resonance frequencies of the rectangle or if the asymmetry
with respect to the x ¼ 0 axis of the rectangle makes the exchange of torque with the A1 and A2

bodies to be not negligible. This situation occurs, for instance, in the case in which the rectangle
models the felt lying between the wooden core of a piano hammer and the string, as long as the
longitudinal string vibrations are involved. To this extent, the elastic rectangle can be presented as
a direct generalization of the concept of spring. If the inputs of the rectangle from A1 and A2 are
known at the time t; that is if the boundary conditions PyðtÞ ¼ syðtÞ and sxðtÞ ¼ uxðtÞ are given,
then Eq. (30) gives the outputs of the rectangle uxðt þ DtÞ and tðt þ DtÞ at the time t þ Dt: Taking
these outputs, the next stage inputs Pyðt þ DtÞ ¼ syðt þ DtÞ and sxðt þ DtÞ ¼ uxðt þ DtÞ can be
determined from the dynamical properties of the bodies A1 and A2: Then the dynamics of the
whole system is obtained using a time step integration. Therefore there is no need to introduce a
space lattice model for the rectangle and there are no problems in convergence if the frequencies
are close to the resonance frequencies of the rectangle, since Eq. (30) behaves well even for those
frequencies. If Eq. (30) is re-written as

wðtÞ ¼ �
X
ðRÞ

Z t

�N

cðt1Þ
eR

roR

sinðoRðt � t1ÞÞ dt1;

where cðt1Þ represents the inputs from A1 and A2; wðtÞ represents the outputs of the rectangle, eR

and oR represent the amplitudes and resonance frequencies eB1B2

ipð jÞka and oB1B2

ka ; which can be
computed once and for all before the time iteration to be performed, then it is apparent that the
time iteration can be performed by the simple recursion formulae

wðt þ DtÞ ¼ wðtÞ �
X
ðRÞ

eR

r
ðcosðoRtÞI1RðtÞ þ sinðoRtÞI2RðtÞÞDt;

I1Rðt þ DtÞ ¼ I1RðtÞ þ cosðoRtÞcðtÞDt;

I2Rðt þ DtÞ ¼ I2RðtÞ þ sinðoRtÞcðtÞDt;

which require only a short computation time when employed in a numerical simulation. For a
better convergence a term (33) can be added. In this term the coefficient of cðtÞ does not depend on
t; then its computation time will also be fast.

Appendix A

This Appendix provides the proof of the modified Fourier formula:

f ðxÞ ¼
Xk¼þN

k¼�N

ake
i kþ1

2

� �
x if jxjop;

where

ak ¼
1

2p

Z p

�p
e�i kþ1

2

� �
x0

f ðx0Þ dx0:
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This formula is required for the Fourier expansions in Eqs. (10). Taking into account the identityXn

�n

ei kþ1
2

� �
x ¼ ei

x
2
sin n þ 1

2

� �
x

� �
sin x

2

� � ;

it is apparent thatXn

�n

ake
i kþ1

2

� �
x � f ðxÞ ¼

1

2p

Z p

�p
e
i
2
ðx�x0Þ sin n þ 1

2

� �
ðx � x0Þ

� �
sin x�x0

2

� � f ðx0Þ dx0 � f ðxÞ: ðA:1Þ

A straightforward calculation gives

1

2p

Z p

�p
e
i
2
ðx�x0Þ sin n þ 1

2

� �
ðx � x0Þ

� �
sin x�x0

2

� � dx0 ¼
Xn

�n

1

2p
ei kþ1

2

� �
x

Z p

�p
e�i kþ1

2

� �
x0
dx0 ¼

Xn

�n

1

p
ð�1Þk

k þ 1
2

� � ei kþ1
2

� �
x:

The latter series may be evaluated by considering

jðzÞ ¼
1

z þ 1
2

ei zþ1
2

� �
x

sinðpzÞ
;

and then using the residue theory methods for the summation of all the residues, which gives

lim
n-N

Xn

�n

1

p
ð�1Þk

k þ 1
2

� � ei kþ1
2

� �
x ¼ 1:

Thus Eq. (A.1) reads

lim
n-N

Xn

�n

ake
i kþ1

2

� �
x � f ðxÞ ¼ lim

n-N

1

2p

Z p

�p
e
i
2
ðx�x0Þsin n þ 1

2

� �
ðx � x0Þ

� �
sin x�x0

2

� � ð f ðx0Þ � f ðxÞÞ dx0:

This expression may be rearranged as

lim
n-N

1

2p

Z xþp

x�p
sin n þ

1

2

� �
y

� �
cxðyÞ dy; ðA:2Þ

where cxðyÞ ¼
e

iy
2

sinðy=2Þð f ðx � yÞ � f ðxÞÞ is a limited function in the neighborhood of y ¼ 0: It is well
known (see for example, Ref. [9]) that the limit in (A.2) is vanishing if the function cxðyÞ admits a
finite number of intervals which is monotone and has a finite number of discontinuities.

Appendix B

In order to prove that all the roots of Eqs. (27) are real, it must be written in terms of the
variable z ¼ o2r:

fSðzÞ ¼ fS
1 ðzÞ þ fS

2 ðzÞ ¼ 0;

where

fS
1 ðzÞ ¼ x1 tg x1

L

2

� �
; fS

2 ðzÞ ¼
z
2G

� ðsS
k Þ

2
� �2

s2kx2
tg x2

L

2

� �
;
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x1ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z

lþ 2G
� ðsS

k Þ
2

r
; x2ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
G
� ðsS

k Þ
2

r
:

As a consequence of the residue theoryZ
fS0

ðzÞ

fSðzÞ
dz ¼ nRðf

SÞ � nPðf
SÞ; ðB:1Þ

where the integral is taken on a closed path, nR and nP are the number of roots and poles of the
function fS delimited by the path. If the integration path is rectangular, with edges z ¼ 7z0 and
z ¼ 7iz0; with z0AR such that z0bðlþ 2GÞz2k; the inequality can be stated as

jfS
1 ðzÞj5jfS

2 ðzÞj; ðB:2Þ

if it is assumed not to be x1ðz0ÞL=2pDn þ 1
2
or x2ðz0ÞL=2pDn with nAN: So the inequality

fS
2 ðzÞ

fSðzÞ
� 1

%%%%
%%%%o1

2
: ðB:3Þ

holds on the integration path. Now consider the equationZ
fS0

ðzÞ

fSðzÞ
dz ¼

Z
d logðfSðzÞÞ ¼ D logðfSÞ;

where D is the variation of the function (which is not a single-valued one) on the closed path. It is
apparent that D logðfS

2 Þ ¼ D logðfSÞ þ D logðfS
2=f

SÞ ¼ D logðfSÞ; as a consequence of

D logðfS
2=f

SÞ ¼ iD argðfS
2=f

SÞ ¼ 0; where the variation of the argument is vanishing, since the
quantity fS

2 ðzÞ=f
SðzÞ does not go round the origin, being confined in the neighborhood of the

z ¼ 1 of the complex plane as can be argued from the condition (B.3). It followsZ
fS0

ðzÞ

fSðzÞ
dz ¼

Z
fS0

2 ðzÞ

fS
2 ðzÞ

dz;

and

nRðf
SÞ � nPðf

SÞ ¼ nRðf
S
2 Þ � nPðf

S
2 Þ: ðB:4Þ

It can be easily verified that nRðf
S
2 Þ ¼ 2þ x2ðz0ÞL

2p

h i
where the 2 is determined by the double root of

the factor ðz=2G � s2kÞ
2; and ½x
 represents the greatest integer which is less then x: It is apparent

that

nPðf
S
2 Þ ¼

x2ðz0ÞL
2p

þ
1

2

� �
and nPðf

SÞ ¼
x1ðz0ÞL
2p

þ
1

2

� �
þ

x2ðz0ÞL
2p

þ
1

2

� �
;

therefore, taking into account equation (B.4) the number of roots of fS is

nRðf
SÞ ¼ 2þ

x1ðz0ÞL
2p

þ
1

2

� �
þ

x2ðz0ÞL
2p

� �
: ðB:5Þ

Now the number of the real roots of the same function is to be found. If

x1ðzÞ-
2p
L

n þ
1

2

� ��

or x2ðzÞ-
2p
L

n þ
1

2

� ��

; with nAN;
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then fSðzÞ-þN; while if

x1ðzÞ-
2p
L

n þ
1

2

� �þ

or x2ðzÞ-
2p
L

n þ
1

2

� �þ

; with nAN;

then fSðzÞ-�N:
This means that in the intervals 
ai; bi½ in which the function fs is continuous, the left-hand term

always has the value �N: fðaiÞ ¼ �N and the right-hand term always has the value
þN: fðbiÞ ¼ þN; therefore there is at least one root for every þN: As far as the first þN is
concerned, which occurs for x2ðzÞ ¼ p=L; it should be noted that in the former value of the
variable z ¼ Gs2k; the function takes a negative value fSðzÞo0; so that even in this case there is a
former root. It follows, for the number nRR of real roots:

nRRðf
SÞX

x1ðz0ÞL
2p

þ
1

2

� �
þ

x2ðz0ÞL
2p

þ
1

2

� �
:

As a consequence of Eq. (B.2), it is known that the root that precedes the last infinite is near to the
point x2ðzÞL=2p ¼ n; so it is possible to substitute

½x2ðz0ÞL=2pþ 1=2
 by ½x2ðz0ÞL=2p
 þ 1:

It is apparent that another root may be found for z ¼ 0; therefore

nRRðf
SÞX2þ

x1ðz0ÞL
2p

þ
1

2

� �
þ

x2ðz0ÞL
2p

� �
:

Comparing this with equation (B.5) one can infer that all the roots are real.
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