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1. Introduction

We introduced an analytical approach for free vibration analysis of a composite rectangular
membrane, composed of two homogeneous regions whose interface is oblique [1]. In the previous
research, a special approach for solving the compatibility condition given along the oblique

interface was presented. The main idea of the special approach was to define a local co-ordinate
system, ðx; yÞ; along the oblique interface so that the x-axis overlaps with the interface. By the use
of the local co-ordinate system, only the single geometric variable x was involved in the
compatibility condition, because all points on the interface satisfy y ¼ 0: Similarly in this paper
dealing with a trapezoidal membrane, local co-ordinate systems are employed to simplify the fixed
boundary conditions for two oblique edges among four edges of a trapezoidal membrane.
Although numerical methods such as the finite element method (FEM) [2,3] and the boundary

element method (BEM) [4,5] can be used to find the eigenvalues and eigenvectors of an
unsymmetric trapezoidal membrane, these methods need a great number of elements to obtain
accurate results and, thus, a large amount of numerical calculation. Note that FEM and BEM
need many elements to obtain fully converged results. To overcome the weak point of these
methods, many analytical methods suitable for the geometric feature of the trapezoidal membrane
have been proposed. In particular, there have been numerous papers on circular, annular,
triangular, rhombic and parallelogram membranes (or plates). However, the literature reveals that
unsymmetric trapezoidal membranes (or plates) have rarely been studied (Note that several papers
have been published for symmetric trapezoidal membranes [6–8]). To the authors’ best knowledge,
only Chopra and Durvasula [9] proposed an analytical method for the free vibration analysis of
simply supported unsymmetric trapezoidal plates. They basically used the Galerkin method in
which an assumed solution satisfies all the boundary conditions (in general, the assumed solution
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does not satisfy the governing differential equation) [10]. Unlike in the Chopra and Durvasula’
case, an assumed solution used in this paper satisfies the governing differential equation but does
not satisfy all the boundary conditions. Our assumed solution does not satisfy the fixed boundary
conditions given at the two oblique edges of a trapezoidal membrane.
In the paper, the sum of the eigensolutions of two semi-infinite membranes, which have infinite

regions in the left and right directions, respectively, as shown in Fig. 2, was employed as the
assumed solution of a trapezoidal membrane. To obtain the system matrix of which the singular
values partially correspond to the eigenvalues of the membrane, the fixed boundary conditions
given at the two oblique edges was applied to the assumed solution. Furthermore, a practical and
intuitive way to remove spurious eigenvalues from the singular values of the system matrix was
developed. Finally, the validity and accuracy of the eigenvalues and mode shapes found by the
proposed method was verified by a comparison test.

2. Theoretical formulation

2.1. Approximate solution of a trapezoidal membrane

A trapezoidal membrane is represented in Fig. 1, where the shape of the membrane is
characterized by base length a; height b; and skew angles (a1 and a2). An assumed solution
W ðX ;Y Þ for the free transverse vibration of the trapezoidal membrane may be expressed as the
sum of two eigensolutions, i.e.,

W ðX ;Y Þ ¼ WIðX ;Y Þ þ WIIðX ;Y Þ; ð1Þ

where WIðX ;Y Þ and WIIðX ;Y Þ represent the eigensolutions of two semi-infinite membranes
illustrated in Fig. 2, respectively. Note that the first semi-infinite membrane is fixed at X ¼ 0;
Y ¼ 0 and Y ¼ b; and the second one at X ¼ a; Y ¼ 0 and Y ¼ b:
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Fig. 1. General trapezoidal membrane of base length a; height b and skew angles (a1 and a2).
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Next, WIðX ;Y Þ and WIIðX ;Y Þ are assumed as

WIðX ;Y Þ ¼ fIðX ÞgIðY Þ; WIIðX ;Y Þ ¼ fIIðX ÞgIIðY Þ: ð2; 3Þ

If Eqs. (2) and (3) are substituted into the governing differential equation of the membrane
ðr2W þ k2W ¼ 0Þ and the fixed boundary conditions for each semi-infinite membrane are
considered, one can obtain

WIðX ;Y Þ ¼
XN

m¼1

AðIÞ
m sin kðIÞ

x X sinmpY=b; ð4Þ

WIIðX ;Y Þ ¼
XN

n¼1

AðIIÞ
n sin kðIIÞ

x ða � X Þsin npY=b; ð5Þ

where kðIÞ
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðmp=bÞ2

q
and kðIIÞ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðnp=bÞ2

q
(k denotes the frequency parameter).

2.2. Applying boundary conditions

The assumed solution W ðX ;Y Þ satisfies not only the governing differential equation but also
the fixed boundary conditions given along the two horizontal edges (OA and BC in Fig. 1) of the
membrane, because both semi-infinite membranes are fixed at Y ¼ 0 and Y ¼ b as illustrated in
Fig. 2. However,W ðX ;Y Þ does not satisfy the fixed boundary conditions given at the two oblique
edges (OC and AB in Fig. 1) of the membrane. For W ðX ;Y Þ to become an approximate solution
for the free vibration of the trapezoidal membrane, W ðX ;Y Þ should satisfy the fixed boundary
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Fig. 2. Two semi-infinite membranes with fixed edges at (a) X ¼ 0; Y ¼ 0 and Y ¼ b; (b) X ¼ a; Y ¼ 0 and Y ¼ b:
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conditions given at the two oblique edges. Therefore, a co-ordinate transformation was applied so
that the fixed boundary conditions at the two oblique edges could be considered. Two local
co-ordinate systems ðx1; y1Þ and ðx2; y2Þ shown in Fig. 1 were employed. The relationship between
local co-ordinate system ðxi; yiÞ and global co-ordinate system ðX ;Y Þ is given by

X

Y

( )
¼

pi �qi

qi pi

" #
xi

yi

( )
þ

Xi

0

( )
; i ¼ 1 or 2; ð6Þ

where pi ¼ cos ai; qi ¼ sin ai; X1 ¼ 0 and X2 ¼ a:

2.2.1. Fixed boundary condition at oblique edge OC

By the use of Eq. (6) with i ¼ 1; the assumed solution W ðX ;Y Þ can be expressed in terms of
local co-ordinate system ðx1; y1Þ as follows:

W ðx1; y1Þ ¼
XN

m¼1

AðIÞ
m sin kðIÞ

x ðp1x1 � q1y1Þsinmpðq1x1 þ p1y1Þ=b

þ
XN

n¼1

AðIIÞ
n sin kðIIÞ

x ða � p1x1 þ q1y1Þsin npðq1x1 þ p1y1Þ=b: ð7Þ

Also, the fixed boundary condition given at oblique edge OC may be expressed as

W ðx1; y1 ¼ 0Þ ¼ 0: ð8Þ

Applying Eq. (8) to Eq. (7) yields

XN

m¼1

AðIÞ
m sinðk

ðIÞ
x p1x1Þsinðmpq1x1=bÞ þ

XN

n¼1

AðIIÞ
n sin kðIIÞ

x ða � p1x1Þsinðnpq1x1=bÞ ¼ 0: ð9Þ

Although the fixed boundary condition has been considered, geometric variable x1 is still
involved in Eq. (9). To remove x1; the s-basis sin spx1=L1 (L1 is the length of OC) is multiplied to
Eq. (9) under the assumption that the oblique edge harmonically vibrates with end points O and C
fixed, and an integration procedure is performed from x1 ¼ 0 to x1 ¼ L1: Then, Eq. (9) leads to

XN

m¼1

SM ðI;1Þ
sm AðIÞ

m þ
XN

n¼1

SM ðII;1Þ
sn AðIIÞ

n ¼ 0; s ¼ 1; 2;y;N; ð10Þ

where SM ðI;1Þ
sm and SM ðII;1Þ

sn are given by

SM ðI;1Þ
sm ¼

Z L1

0

sin kðIÞ
x p1x1 sinðmpq1x1=bÞsinðspx1=L1Þ dx1; ð11Þ

SM ðII;1Þ
sn ¼

Z L1

0

sin kðIIÞ
x ða � p1x1Þsinðnpq1x1=bÞsinðspx1=L1Þ dx1: ð12Þ
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For simplicity, Eq. (10) is rewritten in the matrix equation form

SMðI;1ÞAðIÞ þ SMðII;1ÞAðIIÞ ¼ 0: ð13Þ

2.2.2. Fixed boundary condition at oblique edge AB

Using Eq. (6) with i ¼ 2; the fixed boundary condition at oblique edge AB can be written as

W ðx2; y2 ¼ 0Þ ¼ 0; ð14Þ

and the assumed solution W ðX ;Y Þ can be expressed as

W ðx2; y2Þ ¼
XN

m¼1

AðIÞ
m sin kðIÞ

x ðp2x2 � q2y2 þ aÞsinmpðq2x2 þ p2y2Þ=b

þ
XN

n¼1

AðIIÞ
n sin kðIIÞ

x ð�p2x2 þ q2y2Þsin npðq2x2 þ p2y2Þ=b: ð15Þ

Applying Eq. (14) to Eq. (15) givesXN

m¼1

AðIÞ
m sin kðIÞ

x ðp2x2 þ aÞsinðmpq2x2=bÞ þ
XN

n¼1

AðIIÞ
n sin kðIIÞ

x ð�p2x2Þsinðnpq2x2=bÞ ¼ 0: ð16Þ

As in Section 2.2.1, sin spx2=L2 (L2 is the length of AB) is multiplied to both sides of Eq. (16)
and is integrated from x2 ¼ 0 to x2 ¼ L2: Then, one can obtainXN

m¼1

SMðI;2Þ
sm AðIÞ

m þ
XN

n¼1

SMðII;2Þ
sn AðIIÞ

n ¼ 0; s ¼ 1; 2;yN; ð17Þ

where SM ðI;2Þ
sm and SM ðII;2Þ

sn are given by

SM ðI;2Þ
sm ¼

Z L2

0

sin kðIÞ
x ðp2x2 þ aÞsinðmpq2x2=bÞsinðspx2=L2Þ dx2; ð18Þ

SM ðII;2Þ
sn ¼

Z L2

0

sin kðIIÞ
x ð�p2x2Þsinðnpq2x2=bÞsinðspx2=L2Þ dx2: ð19Þ

Finally, Eqs. (17) is simplified in the matrix equation form

SMðI;2ÞAðIÞ þ SMðII;2ÞAðIIÞ ¼ 0: ð20Þ

2.2.3. System matrix of a trapezoidal membrane
Eqs. (13) and (20) may be written in the single matrix equation

SM2NðkÞA ¼ 0; ð21Þ

where square matrix SM2N of order 2N is termed the system matrix; the system matrix and the
unknown coefficient vector are given by

SM2N ¼
SMðI;1Þ SMðII;1Þ

SMðI;2Þ SMðII;2Þ

" #
; A ¼

AðIÞ

AðIIÞ

( )
: ð22; 23Þ
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Note that SM2N is a function of frequency parameter k because the frequency parameter is
involved in the 4 sub-matrices of SM2N : From the fact that A ¼ 0 unless det½SM2NðkÞ� ¼ 0; the
eigenvalues of a trapezoidal membrane can be calculated from

det½SM2NðkÞ� ¼ 0: ð24Þ

Furthermore, the mode shape of the ith eigenmode for the ith eigenvalue ðLiÞ can be obtained
by plotting Eqs. (1), which is given by Eqs. (4) and (5). Note that unknown coefficients involved in
Eqs. (4) and (5) can be replaced by the ith eigenvector satisfying Eq. (21) for k ¼ Li:

3. Numerical test and discussion

3.1. Singular values of the system matrix

In the numerical test, the proposed method calculated the eigenvalues and mode shapes of an
unsymmetric trapezoidal membrane with a ¼ 2m, b ¼ 1m, a1 ¼ 60	 and a2 ¼ 110	: To find the
roots of Eq. (24), logarithm values of det½SM2NðkÞ� were plotted in the frequency parameter range
of k ¼ 3210 (see Fig. 3). From the fact that the fundamental eigenvalue of the trapezoidal
membrane is larger that that of the rectangular membrane with a ¼ 2m and b ¼ 1m, the
minimum value of the sweeping range (k ¼ 3–10) was determined as 3.
In the determinant curve of Fig. 3, frequency parameter values corresponding to 21 troughs

represent the singular values of SM2NðkÞ; which are summarized in Table 1. The interesting fact
that all the singular values of SM2NðkÞ did not correspond to the eigenvalues of the trapezoidal
membrane will be confirmed in the numerical test. The singular values corresponding to the
eigenvalues of the trapezoidal membrane are termed the correct singular values and the other
singular values are termed the incorrect singular values in the paper.
In Table 1, the singular values of SM2NðkÞ are compared with the eigenvalues of the trapezoidal

membrane calculated by FEM (ANSYS). This comparison reveals that only 8 singular values
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Fig. 3. Logarithm values of det½SM2N ðkÞ� for the trapezoidal membrane ðN ¼ 3Þ:
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Table 1

Comparison between the singular values of SM2N ðkÞ obtained by the proposed method and the eigenvalues of the
trapezoidal membrane computed by FEM (ANSYS)

No. Trapezoidal membrane Rectangular membrane Cut-off frequency

values

Singular values of

SM2N ðkÞ
Eigenvalues by

FEM (607 nodes)

Singular values of

SMrec
2N ðkÞ

Exact eigenvalues

1 3.14 3.14 3.14

2 3.51 3.51 3.51

3 3.81 3.82

4 4.44 4.44 4.44

5 5.28 5.29

6 5.66 5.66 5.66

7 6.28 6.28 6.28

8 6.48 6.48 6.48

9 6.57 6.60

10 7.03 7.03 7.03

11 7.05 7.09

12 7.59 7.64

13 7.85 7.85 7.85

14 8.46 8.46 8.46

15 8.73 8.79

16 8.89 8.89 8.89

17 9.04 9.10

18 9.42 9.42 9.42

19 9.56 9.56 9.56

20 9.68 9.83

21 9.93 9.93 9.93
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Fig. 4. Logarithm values of det½SMrec
2N ðkÞ� for the rectangular membrane ðN ¼ 3Þ:
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among 21 singular values coincide with the eigenvalues of the trapezoidal membrane. Note
that the singular values of SM2NðkÞ consist of 8 correct singular values and 13 incorrect singular
values.

3.2. Removing the incorrect singular values

In the section, an intuitive way for removing the incorrect singular values is devised. First, the
proposed method is employed to find the eigenvalues of the rectangular membrane with a ¼ 2m
and b ¼ 1m, a1 ¼ 0	 and a2 ¼ 0	 in Fig. 1. Then, the eigenvalues of the rectangular membrane
may be obtained from the singular values of the system matrix SMrec

2NðkÞ of the rectangular
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Table 2

Convergence of eigenvalues of the trapezoidal membrane obtained by the proposed method and FEM (ANSYS)

Present

N ¼ 3
Present

N ¼ 4
Present

N ¼ 5
Present

N ¼ 6
FEM

nnd ¼ 1447
FEM

nnd ¼ 859
FEM

nnd ¼ 607
FEM

nnd ¼ 313

L1 3.81 3.81 3.81 3.81 3.81 3.81 3.82 3.82

L2 5.28 5.28 5.28 5.28 5.29 5.29 5.29 5.31

L3 6.57 6.57 6.57 6.57 6.58 6.59 6.60 6.64

L4 7.05 7.06 7.06 7.06 7.07 7.08 7.09 7.13

L5 7.59 7.59 7.60 7.60 7.62 7.63 7.64 7.68

L6 8.73 8.73 8.73 8.73 8.75 8.77 8.79 8.85

L7 9.04 9.03 9.03 9.03 9.06 9.07 9.10 9.16

L8 9.68 9.72 9.73 9.73 9.78 9.81 9.83 10.02

Fig. 7. First eight mode shapes of the trapezoidal membrane by the proposed method for N ¼ 4:
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membrane. Note that the superscript rec of SMrec
2NðkÞ is added to discriminate the system matrix of

the rectangular membrane from that of the trapezoidal membrane.
The singular values of SMrec

2NðkÞ are obtained by plotting logarithm values of det½SM
rec
2NðkÞ� as

shown in Fig. 4. The singular values of SMrec
2NðkÞ are summarized in the 4th column of Table 1,

which shows that they exactly coincide with the incorrect singular values of the trapezoidal
membrane. This interesting fact can be used to remove unwanted troughs corresponding to the
incorrect singular values in Fig. 3. To remove the unwanted troughs, logarithm values of
det½SM2NðkÞ�=det½SMrec

2NðkÞ� are plotted in Fig. 5, which shows that only 8 troughs ðL1 � L8Þ
corresponding to the correct singular values (the eigenvalues of the trapezoidal membrane) have
been generated. The unwanted troughs disappear or are changed into crests in Fig. 5 is because
the singularity of SMrec

2NðkÞ is similar to or higher than that of SM2NðkÞ; respectively.
On the other hand, the exact eigenvalues of the rectangular membrane are compared with the

singular values of SMrec
2NðkÞ in Table 1 (compare the 4th column with 5th column in Table 1) to

confirm whether all the singular values of SMrec
2NðkÞ correspond to the eigenvalues of the
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rectangular membrane. This comparison indicates that only a part of the singular values coincides
with the eigenvalues of the rectangular membrane. The other singular values are termed the cut-off
frequency values, which denote frequency parameter values satisfying kðIÞ

x ¼ 0 or kðIIÞ
x ¼ 0 in

Eqs. (4) and (5).

3.3. Convergence of eigenvalues, and mode shapes

Fig. 6 shows the logarithm values of det½SM2NðkÞ�=det½SMrec
2NðkÞ� for N ¼ 4; 5; and 6 (logarithm

values for N ¼ 3 have been already shown in Fig. 5). A comparison between the proposed method
and the numerical method is summarized in Table 2. In Table 2, the eigenvalues by the numerical
method do not converge easily but the eigenvalues by the proposed method have already
converged even for N ¼ 5: This result confirms that the proposed method has excellent
convergence characteristics. Shown in Fig. 7, the mode shapes of the trapezoidal membrane
obtained by the proposed method agree well with those by the numerical method (see Fig. 8).

4. Conclusions

An effective approach suitable for the free vibration analysis of unsymmetric trapezoidal
membranes was introduced in the paper. The example shows that eigenvalues generated by the
proposed method rapidly converge whereas those by the numerical method (FEM) do not, and
that the proposed method successfully gives accurate mode shapes.
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