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Abstract

It is proved that chaotic dynamical systems have D1-singularity. Due to such singularity and its
periodicity in Hausdorff metric spaces, a chaotic dynamical system induces a Hilbert iterated system, which
was discovered at the end of the 19th century. This implies that the most puzzling discovery in nature in the
20th century can be put into deep correspondence with that in thoughts in the 19th century. All this is
verified by the numerical experiments of chaotic vibrations of a beam and a tension-slack oscillator.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Chaos is one of the most puzzling discoveries in the 20th century. Chaotic motion has attracted
wide attention in modern science and technology [1–35], and has been found in various fields, such
as atmospheric science, classical mechanics, civil engineering and so on. To understand such
strange phenomenon, numerous researchers investigated it by means of different methods, from
different points of view. In computer simulations Thompson and Ghaffari [7] observed the
phenomenon of period doubling route to chaos of the impact oscillator in the marine structural
dynamics. Shaw and Holmes [8] studied the stability, bifurcations and chaos of the system by
examining the eigenvalues of the Jacobian matrix of the Poincar!e map. Kim and Noah [17]
developed a modified harmonic balance/Fourier transform to analyze the stability, bifurcations
and chaos of a impact system. Lu [4,5] observed the periodic behavior of chaotic oscillators in
Hausdorff metric spaces.

In this paper it is rigorously proved that any chaotic dynamical systems have D1-singularity.
Although chaotic dynamical systems are non-periodic in Euclidean metric spaces, the researches
[4,5] showed that they are periodic in the Hausdorff metric space. We find that the D1-singularity
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and the periodicity of chaotic dynamical systems in the Hausdorff metric space induce a Hilbert
iterated system, which was discovered in 1891 [36]. It is well known that the Hilbert iterated
system is one of the most famous examples in the critical investigation of geometry at the end of
the 19th century, which played important roles in the development of many mathematical
branches in the 20th century. Thus, the work presented here build a bridge between the most
puzzling discovery in nature in the 20th century and that in thoughts in the 19th century. To verify
the theory, we observe the Hilbert phenomena hidden in the chaotic vibrations of a buckled beam
and a tension-slack oscillator. The results of the experiments confirm the predictions.

2. Non-autonomous dynamical systems and Hausdorff phase spaces

Because this research is based on the study of non-autonomous dynamical systems in Hausdorff
metric spaces (HMS), here, it is necessary to give a brief review of some results in the work
presented by Lu.

First, let us introduce the main idea of the work [4,5]. One of the most important properties of
chaotic systems is that the responses of the deterministic systems to periodic excitation are non-
periodic. This is in conflict with the traditional belief that there should exist periodic elements in
the responses of a deterministic dynamical system to periodic external excitation. However, we
have to recognize that the behavior of a dynamical system is always observed in a specific phase
space. From physical point of view, a phase space is a logic one in which the object is observed in
some manner. An object can be observed from different points of view, i.e., the same system can
be investigated in different phase spaces. Since dynamical systems were framed by Issac Newton,
they have been investigated in Euclidean metric space all along. The existence of chaotic systems
shows that Euclidean metric spaces may no longer be suitable for the observation of the behavior
of chaotic oscillators. The experiment results showed that chaotic dynamical systems are periodic
in HMS.

Let ðL;mÞ be a metric space. fðt; t0; �Þ; t; t0;AR; denotes a double parameter family of Cb maps
of the metric space ðL; mÞ onto itself.

Definition 1. fðt; t0; �Þ is called a (continuous) non-autonomous dynamical system (or a non-
autonomous flow) in the metric space ðL;mÞ; if it satisfies

fð0; t0; pÞ ¼ p; pAL; t0AR;

fðs þ r; t0; pÞ ¼ f½s; t0 þ r;fðr; t0; pÞ�; pAL; s; r; t0AR:

(
ð1Þ

Particularly, if t; s; r; t0AN; f is called a discrete, non-autonomous dynamical system in ðL; mÞ:
ðL;mÞ is called a phase space of f (see Ref. [4]).

When the problem is independent of t0; fðt; t0; �Þ reduces to fðt; �Þ; which is the subject of the
modern theory of dynamical systems [28]. Both of the continuous autonomous and non-
autonomous dynamical systems were suggested to be called flow by Refs. [4,5].

Most of dynamical problems in various fields, such as physics, mechanics, civil engineering and
so on, are described by following non-autonomous differential equations in the n-dimensional
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Euclidean metric space ðRn; dÞ;
dX

dt
¼ FðX; tÞ; ð2Þ

where X ¼ ½x1; x2;y; xn�TARn is the state vector, F ¼ ½f1; f2;y; fn�T:
If f is the solution of Eq. (2), it can be proved that f satisfies that [5]

fð0; t0; pÞ ¼ p; pARn; t0AR;

fðs þ r; t0; pÞ ¼ f½s; t0 þ r;fðr; t0; pÞ�; pARn; s; r; t0AR:
ð3Þ

This implies that Eq. (2) describes a flow in Euclidean metric space. To make a good observation
of chaotic flow, it is necessary to find another metric space and prove that the solution f of Eq. (2)
also satisfies Eq. (1) in the new metric space.

Let Hn be the collection of all non-empty closed subsets of Rn: From the point of view of the
observers in Rn; a point of Hn may be a set containing numerous points of Rn: The distance
between pðARnÞ and AðAHnÞ is defined as

Rðp;AÞ ¼ inffdðp; rÞ; rAAg: ð4Þ

The Hausdorff distance between two points A;BAHn is defined as

rðA;BÞ ¼ supfsup½Rðp;AÞ; pAB�; sup½Rðq;BÞ; qAA�g: ð5Þ

ðHn; rÞ is a complete metric space. This metric space was often used by F. Hausdorff (1868–1942).
Thus, Lu [4] called it a Hausdorff metric space.

Theorem 2. If f is a flow in the Euclidean metric space ðRn; dÞ; then, it is also a flow in the
corresponding Hausdorff metric space ðHn;rÞ (see Ref. [4]).

Proof. The definition of the Hausdorff metric space shows that, if AAHn; then ACRn: Therefore,
Eq. (3) leads to

fð0; t0;AÞ ¼ ffð0; t0; pÞ : pAAg

¼fp : pAAg ¼ A; t0AR;AAHn; ð6Þ

fðr þ s; t0;AÞ ¼ ffðr þ s; t0; pÞ : pAAg

¼ff½s; t0 þ r;fðr; t0; pÞ� : pAAg

¼f½s; t0 þ r;fðr; t0;AÞ�; s; r; t0AR; AAHn: ð7Þ

Eqs. (1), (6) and (7) show that non-autonomous flows in Euclidean metric spaces are also ones in
Hausdorff metric spaces. This conclusion is also valid for an autonomous flow. &

In summary, to explore the behavior of chaotic oscillators in a new space, we proceeded in three
steps. First, we defined a double parameter family of maps satisfying a specific condition in a
general metric space as a dynamical system (a flow) in the metric space.

Secondly, a real oscillator can be described by an ordinary differential equation in a
n-dimensional Euclidean metric space. The n-dimensional differential equation can be
mathematically summarized in a double parameter family of the maps in n-dimensional
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Euclidean metric space. It can be proved that such maps satisfy the specific condition in the
Euclidean metric space. This implies that a real oscillator determines a flow in Euclidean space.

At last, we found a non-Euclidean space—Hausdorff metric space—and proved that a flow in the
Euclidean metric space also satisfies the specific condition in the Hausdorff metric space. This means
that a real oscillator also determines a flow in the Hausdorff metric space. Although chaotic motion is
non-period in the Euclidean metric space, but it has perfect periodicity in the Hausdorff metric space.

In the modern theory of dynamical systems, non-autonomous systems are always made
autonomous by redefining time as a new dependent variable, and a dynamical system is defined as a
single parametric family of maps. Refs. [4,5] suggested that a dynamical system should be defined as
a double parameter family of maps. This modification which may seem a trivial matter at first
glance is, in fact, a very important step in the exploration of chaos. It led us to the discovery of the
periodicity of chaotic systems, and now also help us to find the Hilbert phenomenon in chaos.

3. The Hilbert phenomenon in chaotic motions

The discussions in the above section showed that a n-dimensional dynamical problem not only
describes a map in Rn; but also describes a map in Hn: In this section we will reveal an important
property of the map described by a chaotic oscillator, i.e., the Hilbert phenomenon hidden in chaos.

Before investigating the Hilbert phenomena in chaotic vibrations, we have to clear that natural
phenomena may be divided into two categories: those that can be observed with certainty and
those that can be observed with a probability. The phenomena which can be observed with
certainty may also be divided into two categories: those that can be observed in any cases and
those that can be observed with the probability equal to one. The former may be referred to as a
‘‘math-certainty phenomenon’’, while the latter may be referred to as a ‘‘physics-certainty
phenomenon’’. From physical point of view, there is no difference between these two kinds of
phenomena. However, one has to pay attention to the difference, if trying to reveal a physical
phenomenon by mathematical methods. The Hilbert phenomenon existing in chaotic motion is a
physics-certainty phenomenon, but not a math-certainty phenomenon.

We have to do some mathematical preparation to present a statistical experiment investigating
the Hilbert phenomenon in chaos. In this paper C is said to be a simple curve, if C is Cr

and homeomorphic to a line segment. Let LðCÞ denote the length of a simple curve C: Because
f satisfies Eq. (3), we have

p0 ¼ fð0; t0; p0Þ ¼ fð
r; t0 þ r; pÞ; ð8Þ

where p ¼ fðr; t0; p0Þ; p0ARn: This shows that ffðt; t0; �Þ; t; t0ARg is a double parameter family of
Cr homeomorphisms of Rn onto itself. Therefore, fðt; t0;CÞ is homeomorphic to C for any given
t; t0AR: This implies that Lð�Þ can also be applied to fðt; t0;CÞ:

Let us consider a statistical experiment that one observes the limit

lim
t-N

L½fðt; t0;CÞ�
L½C�

; ð9Þ

after choosing at random a simple curve C from Un; UnCRn: EN denotes the event that the limit
(9) is infinity. EN is a sample point of the statistical experiment.
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Definition 3. The dynamical system f has D1-singularity on Un; if (i) the probability of the event
EN occurring is one; (ii) for any p; qAC; tAR;

d½fðt; t0; pÞ;fðt; t0; qÞ�oConstant; ð10Þ

where dð�Þ is the Euclidean distance between two points.

Although D1-singularity is very strange, the following theorem demonstrates that any chaotic
dynamical systems have such D1-singularity.

Theorem 4. The dynamical system f has D1-singularity on Un; if it is chaotic on Un:

Proof. Because f is chaotic on Un; Eq. (10) is satisfied.
Tpð�Þ denotes the tangent space of a manifold at point p: Dfpðt; t0; �Þ is the linear mapping

induced by f which maps Tpð�Þ into Tfðt;t0;pÞð�Þ: jj � jj denotes the Euclidean norm of a vector. Let

LpðfÞ ¼ fq : lpð~eeqpÞp0; qARng; pAUn; ð11Þ

where ~eeqp ¼ ~eeq 
~eep; ~eep ¼ ½x1ðpÞ;x2ðpÞ;y;xnðpÞ�T; xiðpÞ is the co-ordinate of the point p; ~eeq ¼
½x1ðqÞ; x2ðqÞ;y; xnðqÞ�T; xiðqÞ is the co-ordinate of the point q; lpð~eeqpÞ is the Lyapunov exponent
relative to p and ~eeqp: Because f is chaotic on Un; it has at least one positive Lyapunov exponent.
This shows that the dimension of LpðfÞ is less than n:

If f has only one positive Lyapunov exponent, then LpðfÞ is ðn 
 1Þ-dimensional. After f and p
are given, LpðfÞ is fixed. Thus, f induces a mapping

Ff : Rn � Rn
2-R: ð12Þ

Let

Sf ¼ fðy1;y; y2n
1Þ : yi ¼ xiðpÞ; i ¼ 1;y; n;

ynþj ¼ xjðqÞ; j ¼ 1;y; n 
 2;

y2n
1 ¼ Ffðp; qÞ; pAUn; qARn
2g: ð13Þ

Sf is a ð2n 
 2Þ-dimensional sub-manifold of R2n
1: When n ¼ 2; Ff is a mapping from R2 onto
R; and Sf is a surface in R3:

Consider a point p on Sf: Let pu be the projection from p to Rn: puAUn � p describes a line in
Rn; which passes through the point pu and is in the direction in which the Lyapunov exponent at
pu is less than or equal to zero. yiðpÞ; i ¼ 1; 2;y; n; describe the position of pu in Un: yiðpÞ;
i ¼ n þ 1; n þ 2;y; 2n 
 1; describe the direction of the line.

Now let us consider a curve C in Rn: TpðCÞ is fixed after the curve C and p are given. Thus, after
picking up a curve C from Rn; we obtain a mapping

Fc : C-Rn
1: ð14Þ

Let

Cc ¼ fðy1;y; y2n
1Þ : yi ¼ xiðpÞ; i ¼ 1;y; n;

ynþj ¼ xj½FcðpÞ�; j ¼ 1;y; n 
 1; pACg: ð15Þ

Cc is a curve in R2n
1: A point p on Cc describes a Tpu
ðCÞ; where pu is the projection from p to Un;

puAC:
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If CcCSf; then for any point pAC; TpðCÞ is in the direction in which the Lyapunov exponent
of f at p is less than or equal to zero.

Choose at random a point p from Un: Cp is the collection of all curves in Un; which pass
through p: Choose at random a curve C from Cp: Let

gpðCÞ ¼ sup½g ¼ ~aa � ~bb=ðjj~aajj jj~bbjjÞ;~aaATpðCÞ; ~bbALpðfÞ�: ð16Þ

Because LpðfÞ is ðn 
 1Þ-dimensional, the probability that gpðCÞo1 is one. Thus, we have at least a
point p on Cc; such that the probability of the event

Rðp;SfÞ > 0; ð17Þ

occurring is one, after choosing at random a curve C from Un: Therefore, we have at least a
segment Cg in C; such that the event

Ccg
-Sf ¼ F; ð18Þ

occurs with certainly (i.e., with probability equal to one).
Eq. (18) shows that, for any given t0AR; there exists tm > t0 such that

jjDfpðt0; t0;~eeÞjjojjDfpðtm; t0;~eeÞjj; pACg;~eeATpðCgÞ: ð19Þ

After dividing Cg into n 
 1 segments, we obtain n points pi; i ¼ 1; 2;y; n; on Cg: We have

L½fðtm; t0;CgÞ� ¼ lim
n-N

Xn

i¼1

jjXðfðtm; t0; piÞÞ 
 Xðfðtm; t0; pi
1ÞÞjj

¼ lim
n-N

Xn

i¼1

jjDfpi
1
½tm; t0; ðXðpiÞ 
 Xðpi
1ÞÞ�jj; ð20Þ

where XðpÞ ¼ ½x1ðpÞ; x2ðpÞ;y;xnðpÞ�T: Eqs. (19) and (20) show that, for any given t0AR; there
exists tm > t0 such that

L½fðtm; t0;CgÞ� > lim
n-N

Xn

i¼1

jjDfpi
1
½t0; t0; ðXðpiÞ 
 Xðpi
1ÞÞ�jj

¼L½fðt0; t0;CgÞ�: ð21Þ

Thus, if f is chaotic, then the probability of the event EN occurring is unity.
If the number of the positive Lyapunov exponents is larger than 1, then the dimension of LpðfÞ is

less than or equal to n 
 2: Eq. (18) is still true in this case. Thus, the above conclusion is also true.
In summary, if f is chaotic, then it is D1-singular. &

Now let us give a intuitive description of the singularity of a flow. If f has D1-singularity in Un;
then, after choosing at random a simple curve C from Un; one will find with certainty that

(a) for any t; fðt; t0;CÞ is a curve without any break, adhesion or intersection, i.e., the curve

fðt; t0;CÞ is homeomorphic to C;
(b) the curve fðt; t0;CÞ is bounded;
(c) the length of the curve fðt; t0;CÞ tends to infinity as t increases;

Definition 3 can be easily generalized. Vkð�Þ denotes the k-dimensional volume of a
k-dimensional sub-manifold of Rn: V2ðM2Þ is the area of a surface M2: The dynamical system
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f is Dk-singular, if (i) the probability of the event

lim
t-N

Vk½fðt; t0;MkÞ�

Vk½Mk�
¼ N; ð22Þ

occurring is one, where Mk is a k-dimensional, random sub-manifold of Rn; (ii) for any p; qAMk;
tAR; Eq. (10) is satisfied.

If f has D2-singularity, and if S is a simple surface chosen at random from Un; then fðt; t0;SÞ is
a bounded, smooth surface without any break, adhesion or intersection, whose area tends to
infinity as t increases.

(a)–(c) describe an incredible phenomenon. It reminds us of the famous mathematical
phenomenon ‘‘created’’ by D. Hilbert. It is well known that the Hilbert curve [36] was one of the
most famous examples in the critical investigation of geometry at the end of the 19th century. In
1891 Hilbert created a strange iterated system Hið�Þ: Hi has the following properties:

(a’) for any i; HiðLÞ is a curve without any break, adhesion or intersection, where L is a line segment,
i.e., Hið�Þ is a homeomorphism on R2;

(b’) HiðLÞ is bounded;
(c’) The length of HiðLÞ will tend to infinity as i increases;
(d’) fHiðLÞ; i ¼ 1; 2; 3;yg is a Cauchy sequence in the Hausdorff metric space.

The evolution of the Hilbert curve HiðLÞ is shown in Fig. 1.
Although chaotic motion is non-periodic in the Euclidean space, it is periodic in the Hausdorff

metric space. Th denotes the period of chaotic f in the Hausdorff metric space. Let

jið�Þ ¼ fðiTh; t0; �Þ: ð23Þ

ji is a iterated system induced by f: It has the following properties:

(a’’) for any i; jiðt; t0;CÞ is a curve without any break, adhesion or intersection, i.e., the curve jiðCÞ
is homeomorphic to C;

(b’’) the curve jiðCÞ is bounded;
(c’’) the length of the curve jiðCÞ tends to infinity as i increases;
(d’’) fjiðCÞ; i ¼ 1; 2; 3;yg is a Cauchy sequence in the Hausdorff metric space.

ARTICLE IN PRESS

Fig. 1. The evolution of the Hilbert curve HiðLÞ:

L.Y. Lu, Z.H. Lu / Journal of Sound and Vibration 272 (2004) 55–68 61



(a’)–(d’) and (a’’)–(d’’) show that ji is the Hilbert system hidden in chaotic motion. Please note
that Hilbert system is ‘‘created’’ in the mind in the 19th century, while chaos is ‘‘discovered’’ in
nature in the 20th century. The deep correspondence between them is really surprising.

4. Numerical experiments

To verify the predictions made above, we investigated many chaotic dynamical systems. The
experiment results confirmed the predictions. Here we present the results of the observations of
the Hilbert phenomenon in chaotic vibrations of a beam and a piecewise linear system.

Chaotic vibrations of beams are one of the most important examples of chaos in solids and
structures. They attracted considerable interest in the past and continue to do so [9–12]. Consider
a cantilevered beam shown in Fig. 2. In this example two magnets are moved toward the free end
of a ferromagnetic cantilevered beam until the straight position becomes unstable. The single
mode equation is a form of Duffing’s equation which, in non-dimensional form, becomes

d2x

dt2
þ z

dx

dt



1

2
xð1 
 x2Þ ¼ Fe sinot; ð24Þ

where xðtÞ is the non-dimensional amplitude of the first bending mode of the beam.
Let y ¼ dx=dt: Eq. (24) can be rewritten as

dX

dt
¼ FðX; tÞ; ð25Þ

where X ¼ ½x; y�TAR2; FðX; tÞ ¼ ½f1; f2�T; and

f1 ¼ y;

f2 ¼ 
zy þ 1
2
xð1
 x2Þ þ Fe sinot:

(
ð26Þ

The discussions in Section 2 show that Eq. (25) describes a non-autonomous flow in R2; i.e., its
solution fbðt; t0; �Þ satisfies Eq. (3). Moreover, Theorem 2 shows that fbðt; t0; �Þ is not only a non-
autonomous flow in the Euclidean space R2; but also one in the Hausdorff metric space H2: This
implies that the vibrations of the beam shown in Fig. 2 describe a non-autonomous flow in R2 andH2:

The analysis of the Poincar!e maps, phase trajectories, Lyapunov exponents of system (25) shows
that fb is chaotic when z ¼ 0:165; Fe ¼ 0:21 and o ¼ 1: CL denotes a line segment fðx; yÞ : x ¼
y; 0pxp1g: fbðt; t0;CLÞ is the image of CL under fb: If CL is taken as a set of initial states, i.e, any
point on CL is taken as an initial condition of Eq. (24), then, fbðt; t0;CLÞ is the set of the states of
system (24) at time t0 þ t: The discussions in the above section predicted that fbðt; t0;CLÞ has the
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properties (a)–(c), i.e., it is a bounded curve without any break, adhesion or intersection, whose
length will tend to infinity as t increases. To verify the prediction, we observe the evolution of the
curve. Figs. 3(a), (b) and 4(a) are respectively the images of the initial set CL under fb at time 0:5Te;
Te; 3Te; where Te ¼ 2p=o is the period of the external excitation, t0 ¼ 0: Physically speaking, a
point in fbð3Te; 0;CLÞ represents the state of system (24) at time 3Te: Fig. 4(b) is the enlargement of
a small window on fbð3Te; 0;CLÞ: One can observe such interesting phenomenon for any given time
interval t; as long as his computer is powerful enough. As the time interval increases, the length of
the curve tends to infinity. Figs. 5(a) and (b) show the curves fbð25:5Te; 0;CLÞ and fbð30Te; 0;CLÞ:
The curve with infinite length ‘‘covers’’ an area in the phase space.

Our experiments showed that when z ¼ 0:165; Fe ¼ 0:21 and o ¼ 1; the chaotic system (24) is
periodic with Te in the Hausdorff metric space, i.e., Th ¼ Te: Let

cb
i ð�Þ ¼ fbðiTe; 0; �Þ: ð27Þ

That fb is periodic with Te in the Hausdorff metric space shows that, for any e > 0 there exists
SbAH2 and N satisfying

r½Sb;cb
i ðCLÞ�oe; ð28Þ

where Sb is the strange invariant set [4]. This implies that cb
i ðCLÞ; i ¼ 1; 2; 3;y; is a Cauchy

sequence in the Hausdorff metric space. Fig. 6 shows the evolution process of the sequence
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Fig. 3. The curve fbðt; 0;CLÞ (a) t ¼ 0:5Te; (b) t ¼ Te:

Fig. 4. The fbðt; 0;CLÞ (a) t ¼ 3Te; (b) the enlargement of a small window on fbð3Te; 0;CLÞ:
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cb
i ðCLÞ; i ¼ 1; 2; 3;y: All this shows that cb

i ðCLÞ has the properties (a’’)–(d’’). It is a Hilbert
system induced by the chaotic vibrations of the beam shown in Fig. 2.

As a second example, let us observe the Hilbert phenomenon hidden in a chaotic piecewise
linear system. Piecewise linear models are used as an approximation to dynamical problems in
various engineering fields. Many researches showed that a piecewise linear oscillator may exhibit
strongly chaotic motion [6–8,13–17]. Lu et al. [6] studied the bifurcation and chaos of a simple
piecewise linear system called tension-slack oscillator. The periodic behavior of its chaotic motion
in Hausdorff spaces was investigated by Lu et al. [5]. Here, we will observe the Hilbert
phenomenon induced by the chaotic tension-slack oscillator.

Consider a typical tension-slack oscillator shown in Fig. 7. A mass m is attached to a spring of
stiffness k and a linear dashpot with damping factor c; where k ¼ k1 when the spring is stretched,
and k ¼ k2 when the spring is compressed. k1bk2: When the system is externally excited by a
harmonic base movement, the non-dimensional equation of motion may be written as

dX

dt
¼ FðX; tÞ; ð29Þ

where

FðX; tÞ ¼
y


2zy 
 yx þ Fe sinotþ ð1
 yÞ

( )
; ð30Þ
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Fig. 5. The curve fbðt; 0;CLÞ (a) t ¼ 25:5Te; (b) t ¼ 30Te:

Fig. 6. The Hilbert phenomenon induced by the chaotic vibrations of the beam.
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X ¼ ½x; y�TAR2; y ¼ dx=dt; y ¼ 1 when xX
 1; y ¼ k2=k1 when xo
 1; z ¼ c=ð2m
ffiffiffiffiffiffiffiffiffiffiffi
k1=m

p
Þ;

o ¼ O=
ffiffiffiffiffiffiffiffiffiffiffi
k1=m

p
; Dd ¼ mg=k1; x ¼ z=Dd; Fe ¼ o2FA=Dd; t ¼ ot is the non-dimensional time

parameter, O is the frequency of external excitation, z is the additional dynamical displacement,
FA is the amplitude of external excitation.

System (29) describes a non-autonomous flow fsðt; t0; �Þ in R2 and H2: fs is chaotic when
z ¼ 0:025; k2 ¼ 0; Fe ¼ 2 and o ¼ 0:7: Similar to the above discussions, fsðt; t0;CLÞ is also a
bounded curve without any break, adhesion or intersection, whose length will tend to infinity as t
increases. Figs. 8(a), (b), 9(a), 10(a) and (b) are respectively the images of the initial set CL under
fs at time 3Te; 3:5Te; 7Te; 32:5Te; 35Te; where Te ¼ 2p=o is the period of the external excitation,
t0 ¼ 0: Fig. 9(b) is the enlargement of a small window on fsð7Te; 0;CLÞ:

Let

cs
i ð�Þ ¼ fsðiTe; 0; �Þ: ð31Þ
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Fig. 7. A tension-slack oscillator.

Fig. 8. The curve fbðt; 0;CLÞ (a) t ¼ 3Te; (b) t ¼ 3:5Te:
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The work [5] shows that when z ¼ 0:025; k2 ¼ 0; Fe ¼ 2 and o ¼ 0:7; the chaotic system (29) is
periodic with Te in the Hausdorff metric space. This means that cs

i ðCLÞ; i ¼ 1; 2; 3;y; is a
Cauchy sequence in the Hausdorff metric space. Fig. 11 shows the evolution process of the
sequence cs

i ðCLÞ; i ¼ 3; 6; 9; 12; 35: All these show that cs
i ðCLÞ is a Hilbert system induced by the

chaotic tension-slack oscillator.

ARTICLE IN PRESS

Fig. 9. The fbðt; 0;CLÞ (a) t ¼ 7Te; (b) the enlargement of a small window on fbð7Te; 0;CLÞ:

Fig. 10. The curve fbðt; 0;CLÞ (a) t ¼ 32:5Te; (b) t ¼ 35Te:

Fig. 11. The Hilbert phenomenon induced by the chaotic tension-slack oscillator.
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5. Conclusions and discussions

In this paper we proved that any chaotic dynamical systems have D1-singularity. Such
singularity and the periodicity of chaotic dynamical systems in Hausdorff metric spaces induce a
very strange iterated system similar to the Hilbert mapping discovered in 1891 by imagination.
This implies that there is a significant relationship between the most puzzling discovery in nature
in the 20th century and in thoughts in the 19th century. It is well known that the Hilbert iterated
system was one of the most important examples in the critical investigation of geometry at the end
of the 19th century, which led to the development of many mathematical branches in the 20th
century. Thus, the Hilbert phenomenon hidden in chaos is worth thinking over. In the near future
we will investigate the fractal dimension of the Hilbert phenomenon induced by chaotic motion.

In addition, we believe that chaotic systems having D2-singularity exist in nature, although they
have not been found so far.
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