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1. Introduction

Recently, the need arose, in the context of a research work, to know the relationship between
the fundamental matrices of a linear mechanical system with n degrees-of-freedom (d.o.f.), the
state vector of which is usually defined in two different forms. As is known, some authors define it
as the (2n � 1) vector of the n generalized co-ordinates and the n generalized velocities [1–3],
whereas some others define it in the reverse order [4,5]. The desired relationship was not found in
the literature. Although it is acknowledged that the contribution of this study does not solve a
very complex problem, it is nevertheless thought that the simple result established in the present
letter can be helpful for those working in this area.

2. Theory

As is known, the free vibrations of a discrete linear mechanical system with n d.o.f. is governed
in the physical space by the following matrix differential equation of order two:

M.q þD’qþ Kq ¼ 0; ð1Þ

where M, D and K denote the (n � n) mass, damping and stiffness matrices, respectively. q(t)
represents the (n � 1) vector of the generalized co-ordinates to describe the position of the
mechanical system .This differential equation can equivalently be written in the so-called state-
space form

’x ¼ Ax; ð2Þ
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where the (2n � 1) state vector x(t) and the 2n � 2n system matrix A are defined as

x ¼ qT?’qT
� �T

; ð3Þ

A ¼

0 ^ I

? ? ?

�M�1K ^ �M�1D

2
64

3
75; ð4Þ

I being the (n � n) unit matrix.
The general solution of the differential Eq. (2) can be written as [2]

xðtÞ ¼ UðtÞx0; ð5Þ

where x0 denotes the initial state vector and the (2n � 2n) fundamental matrix is defined as

UðtÞ ¼ XeLtX�1; ð6Þ

where the modal matrix X and eLt are defined as

X ¼ *x1;y; *x2n½ �; eLt ¼ diagðelj tÞ ðj ¼ 1;y; 2nÞ: ð7Þ

Here lj and *xj denote the jth eigenpair corresponding to the eigenvalue problem regarding (2).
Now, let it be assumed that the state vector is defined as

x0 ¼ ’qT^qT
� �T

ð8Þ

such that the state-space equation reads now

’x0 ¼ A0x0: ð9Þ

The counterparts of Eqs. (4)–(6) are

A0 ¼

�M�1D ^ �M�1K

? ? ?

I ^ 0

2
64

3
75; ð10Þ

x0ðtÞ ¼ U0ðtÞx00; ð11Þ

U0ðtÞ ¼ X0eLtX0�1: ð12Þ

where the modal matrix X0 consists of the new 2n eigenvectors *x0j of the eigenvalue problem,
corresponding to (9).

The following (2n � 2n) matrix be introduced

Q ¼

0 ^ I

? ? ?

I ^ 0

2
64

3
75: ð13Þ

It can easily be shown that Q is orthogonal and is equal to its own inverse. It can further be shown
that the modal matrices of both representations are interrelated by

X0 ¼ QX: ð14Þ
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If this is substituted into Eq. (12),

U0ðtÞ ¼ QXeLtX�1Q ð15Þ

is obtained. Considering Eq. (6), the last formula reduces to

U0ðtÞ ¼ QUðtÞQ; ð16Þ

which represents the desired result.
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