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Abstract

A theoretical study is presented on the hydroelastic vibration of two identical rectangular plates coupled
with a bounded fluid. It is assumed that the plates are clamped along the plate edges and an ideal fluid is
surrounded by the two rectangular plates and a rigid rectangular container. The velocity potential satisfying
the fluid boundary conditions is expanded in terms of a finite Fourier series and the modal displacements of
the plates are also expanded by the finite Fourier series for the compatibility requirement along the
contacting surface between the plates and the fluid. Two transverse vibration modes, in-phase and out-of-
phase, are observed in the symmetric fluid-coupled structure. Each in-phase mode is assumed as a
combination of the beam modes in air, but every out-of-phase mode is assumed as a combination of
polynomials satisfying the plate boundary condition and fluid volume conservation. The coupled natural
frequencies are obtained from the relationship between the reference kinetic energy of the structure
including the fluid and the maximum strain energy of the two plates. The proposed analytical method was
found to be in good agreement with the results of a three-dimensional finite element analysis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally known that the natural frequency of a structure in contact with a fluid, or
immersed in a fluid, decreases significantly compared to the natural frequency of the
corresponding dry mode. This problem is referred to as the fluid–structure interaction problem.
For this problem, many investigators have suggested some approximate solutions which have
been used to predict the changes in the natural frequencies of the structure in the fluid. In recent
literature, there has been renewed interest in the problem of plates vibrating in contact with water.
This is stimulated by new technical applications and also by the availability of powerful numerical
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tools based on the finite element and boundary element methods that make numerical solutions of
fluid–structure interaction problems possible. However, the use of the finite element method or the
boundary element method requires enormous amounts of time for modelling and computation.
Rectangular plates vibrating in contact with fluid have recently been studied. Kim [1] derived an

expression in terms of a series for the added virtual fluid mass of a simply supported rectangular
plate which is chordwise finite and lengthwise semi-finite by using the Mathieu function. Kwak [2]
studied the free vibrations of rectangular plates in contact with water on one side. In his numerical
approach based on a piecewise division, beam functions were used as admissible functions, and
the fluid was assumed to be unbounded. Fu and Price [3] studied the dry and wet dynamic
characteristics of a vertical and horizontal cantilever plate by adopting a finite element
discretization. Maylan [4] presented a forced vibration of an arbitrary thin plate floating on the
surface of an infinite fluid using the Rayleigh–Ritz method. Muthuverrappan et al. also studied
the free vibration of a cantilever square plate [5] and a cantilever rectangular plate [6] immersed in
water, and they investigated the effect of the boundary conditions of the plate on the added mass
of the fluid [7] using the finite element method. The finite element displacement method for a
modal analysis of a plate in contact with fluid was developed by Hori et al. [8]. Haddara and Cao
[9] studied the dynamic response of submerged rectangular plates. They derived an approximate
expression of the modal added masses for cantilever rectangular plates and verified the theory by
an experiment. Tayler and Ohkusu [10] suggest expressions for the free–free rectangular plates in
terms of the sinusoidal eigenmodes of a pinned–pinned beam and rigid body modes. Asymptotic
and numerical analyses of unsteady hydroelastic behavior of a floating plate due to given external
loads were presented by Korobkin [11]. The main parameters in this paper were plate length and
duration of the external loads. Liang et al. [12] suggested a simple procedure to determine the
natural frequencies and mode shapes of submerged cantilever plates based on an empirical added
mass formulation. Jeong [13] suggested an analytical method to calculate the coupled natural
frequencies of two identical circular plates coupled with an ideal fluid, and verified the method by
finite element analysis.
This paper describes a further application of the hydroelasticity theory [13] to the fluid–coupled

rectangular plates, and deals with the coupling effect of contacting fluid on the free vibration
characteristics of two identical rectangular plates supported by a rectangular rigid container filled
with incompressible and frictionless fluid. Here it was assumed that the rectangular plates are
clamped at their edges. The wet dynamic displacements of the plate are assumed to be the dry
modal functions of a rectangular plate for the in-phase modes, and for the out-of-phase modes,
they are assumed to be a polynomial function satisfying the boundary conditions and fluid volume
conservation. The natural frequencies of both the in-phase modes and the out-of-phase modes can
be obtained by theoretical calculations and finite element analyses for the fluid-coupled system.

2. Theoretical background

2.1. Formulation for rectangular plates

Fig. 1 represents two identical rectangular plates coupled with a fluid, where a; b and h

represent the width, length and thickness of the rectangular plates, respectively. For the
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theoretical formulation, the following assumptions are made: (a) the fluid motion is small; (b) the
fluid is incompressible, inviscid and irrotational; (c) the gravity has an insignificant effect on the
plate deflection curve; (d) the rectangular plates are made of linearly elastic, homogeneous, and
isotropic material; and (e) the shear deformation and rotary inertia are negligible. The equation of
motion for the transverse displacement, wj; of these rectangular plates is

Dr4wj þ rhwj;tt ¼ Pj; j ¼ 1; 2; ð1Þ

and E is the Young’s modulus of the plates. In this equation, D ¼ E h3=12 ð1� m2Þ is the
flexural rigidity of the rectangular plates; r, m; and Pj are the plate density, the Poisson’s ratio and
hydrodynamic pressure on the rectangular plates, respectively. The upper rectangular plate is
referred to with a subscript ‘‘1’’, while the lower one is denoted by a subscript ‘‘2.’’ In addition,

r4 ¼
@4

@x4
þ

2@4

@y2@y2
þ

@4

@y4
; ð2Þ

is the bi-harmonic operator in the Cartesian co-ordinates x and y:
Using Rayleigh’s quotients, we can obtain the frequency equations [5]

o2
0 ¼ ðVp=T�

p Þair; o2
w ¼ fVp=ðT�

p þ T�
wÞgfluid ; ð3a;bÞ

where o0 is the natural frequency of the plate in air, ow is the fluid-coupled natural frequency, T �
p

and Vp are the reference kinetic energy and maximum strain energy, respectively, and T �
w is the

reference kinetic energy of the fluid due to the plate motion. It is necessary to find the appropriate
mode shapes of the two plates in air and in contact with a fluid in order to calculate the kinetic
and strain energies. However, it is very difficult to describe the wet mode shapes exactly in closed
mathematical forms using Eq. (1). Therefore, each wet mode shape can be used as an appropriate
admissible function Wmn; where m and n indicate the number of nodal lines with respect to the
width and the length (m ¼ 0; 1, 2,y; n ¼ 0; 1, 2,y). The choice of an admissible function is very
important to simplify the calcuations and to guarantee convergence to the actual solution. The
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dynamic displacements, w1 and w2, can be assumed in the form of

w1ðx; y; tÞ ¼ Wmnðx; yÞ expðiotÞ for the upper plate; ð4aÞ

w2ðx; y; tÞ ¼ qmnWmnðx; yÞ expðiotÞ for the lower plate; ð4bÞ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and o is the circular natural frequency of the plate. The admissible function,

Wmnðx; yÞ can be assumed as the eigenfunctions of the beams in air which satisfy the clamped
boundary condition along the edges.

2.2. Natural frequency of a rectangular plate in air

When we consider the geometric boundary conditions along the edge of the plates, the slope
and the displacement must be zero for the clamped boundary conditions, that is,

@Wmn

@x

����
x¼0

¼ Wmnjx¼0¼
@Wmn

@x

����
x¼a

¼ Wmnjx¼a¼ 0; ð5aÞ

@Wmn

@y

����
y¼0

¼ Wmnjy¼0¼
@Wmn

@y

����
y¼b

¼ Wmnjy¼b¼ 0: ð5bÞ

Therefore, the dynamic transverse displacement of the plates in air for the clamped edges can be
assumed as a multiplication of clamped beam mode functions in air:

Wmnðx; yÞ ¼ cosh
lmx

a

� �
� cos

lmx

a

� �
� sm sinh

lmx

a

� �
� sin

lmx

a

� �� �� 	

� cosh
lny

b

� �
� cos

lny

b

� �
� sn sinh

lny

b

� �
� sin

lny

b

� �� �� 	
: ð6Þ

The coefficients, when m ¼ 1; 2, 3,y, lm ¼ 4:73004; 7.85320, 10.99561, 14.13717, 17.27876,
ð2m þ 1Þp=2 (m>4) and sm ¼ 0:98250; 1.00078, 0.99997, 1.00000 (m > 3); for n; the coefficients ln

and sn are same. The trial function Wmn; is linearly independent, orthogonal and constitute a
complete set.
The maximum potential energy of a rectangular plate can be computed with the admissible

modal function

Vp ¼
D

2

Z b

0

Z a

0

@2Wmn

@x2

� �2

þ
@2Wmn

@y2

� �2

þ2m
@2Wmn

@x2

� �
@2Wmn

@y2

� � 
þ2ð1� mÞ

@2Wmn

@x @y

� �2
!
dx dy:

ð7Þ

The maximum potential energy of the rectangular plate can be calculated by substitution of
Eqs. (4) and (6) into Eq. (7) and integrating term by term. As the modal displacement is
normalized, the reference kinetic energy of the plate is given as

T�
p ¼

1

2
rh

Z b

0

Z a

0

W 2
mn dx dy ¼

1

2
rhab: ð8Þ

The natural frequency of the rectangular plate in air can be calculated by substituting the results
of Eqs. (7) and (8) into Eq. (3a).
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2.3. Velocity potential

First of all, the fluid motion must be defined in order to find the fluid-coupled natural
frequencies and wet mode shapes of the two plates in contact with the fluid. Here we consider the
fluid which is surrounded with the rectangular plates and rigid container walls. The three-
dimensional oscillatory fluid flow can be described with the velocity potential. The facing side of
the rectangular plates is contacted with a non-viscous and incompressible fluid. The fluid
oscillation due to vibration of the plates can be described using the spatial velocity potential that
satisfies the Laplace equation:

r2Fðr; y;x; tÞ ¼ 0: ð9Þ

It is possible to separate the function F with respect to x and y by observing that the container
supporting the edges of the plates is assumed to be rigid, as in the case of the completely contacted
rectangular plates. Thus, the general solution of Eq. (9) is

Fðx; y; z; tÞ ¼ iofðx; y; zÞ expðiotÞ: ð10Þ

When we consider the symmetry of the fluid velocities for the in-phase and out-of-phase
vibration modes, the velocity potential will require the following symmetric conditions:

@fðx; y;�zÞ
@z

¼
@fðx; y; zÞ

@z
for the in-phase mode; ð11aÞ

@fðx; y; zÞ
@z

¼ 0 at z ¼ 0 for the out-of-phase mode: ð11bÞ

Hence, the spatial velocity potential fðx; y; zÞ satisfying Eq. (9) can be written as the following

fðx; y; zÞ ¼ x00z þ
XN
r¼1

xr0 cosðarxÞ sinhðarzÞ þ
XN
s¼1

x0s cosðbsyÞsinhðbszÞ

þ
XN
r¼1

XN
s¼1

xrs cosðarxÞ cosðbsyÞ sinhðgrszÞ for the in-phase modes; ð12aÞ

fðx; y; zÞ ¼ x00z þ
XN
r¼1

xr0cosðarxÞ coshðarzÞ þ
XN
s¼1

x0s cosðbsyÞ coshðbszÞ

þ
XN
r¼1

XN
s¼1

xrs cosðarxÞ cosðbsyÞcoshðgrszÞ for the out-of-phase modes; ð12bÞ

where x00; xr0; x0s and xrs are the unknown coefficients which can be determined by the
compatibility requirement of the fluid–structure interaction and

ar ¼ rp=a; bs ¼ sp=b; grs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r þ b2s

q
: ð13a-cÞ
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The boundary condition along the rigid container wall assures the zero fluid velocity, is
given by

@f
@x

����
x¼0

¼
@f
@x

����
x¼a

¼ 0 at x ¼ 0 and x ¼ a of the rigid container wall; ð14aÞ

@f
@y

����
y¼0

¼
@f
@y

����
y¼b

¼ 0 at y ¼ 0 and y ¼ b of the rigid container wall: ð14bÞ

Eqs. (12a) and (12b) automatically satisfy the fluid boundary condition described by Eqs. (14a)
and (14b).

2.4. Method of solution

In Eqs. (4a) and (4b), the coefficient qmn can be determined by the symmetry of the modal
displacements

qmn ¼ 1 for the in-phase modes; ð15aÞ

qmn ¼ �1 for the out-of-phase modes: ð15bÞ

The compatibility condition at the interface where the fluid contacts the plate surfaces is used to
determine the unknown coefficients, x00; xr0; x0s and xrs of fluid motion in Eqs. (12a) and (12b). As
the fluid displacement and the plate displacement must be equal in the transverse direction at the
arbitrary interface surface between the fluid and the plate, the compatibility condition at the fluid
interface with the plates yields

Wmn ¼
@f
@z

at z ¼ d=2; ð16aÞ

Wmn ¼
@f
@z

at z ¼ �d=2: ð16bÞ

Substitution of Eqs. (6), (12a) and (12b) into Eqs. (16a) and (16b) gives the following equations
for the in-phase modes:

cosh
lmx

a

� �
� cos

lmx

a

� �
� sm sinh

lmx

a

� �
� sin

lmx

a

� �� �� 	

� cosh
lny

b

� �
� cos

lny

b

� �
� sn sinh

lny

b

� �
� sin

lny

b

� �� �� 	

¼ x00 þ
XN
r¼1

xr0ar cosðarxÞ coshðard=2Þ þ
XN
s¼1

x0sbs cosðbsyÞ coshðbsd=2Þ

þ
XN
r¼1

XN
s¼1

xrsgrs cosðarxÞ cosðbsyÞ coshðgrsd=2Þ; ð17aÞ
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and for the out-of-phase modes:

cosh
lmx

a

� �
� cos

lmx

a

� �
� sm sinh

lmx

a

� �
� sin

lmx

a

� �� �� 	

� cosh
lny

b

� �
� cos

lny

b

� �
� sn sinh

lny

b

� �
� sin

lny

b

� �� �� 	

¼ x00 þ
XN
r¼1

xr0ar cosðarxÞ sinhðard=2Þ þ
XN
s¼1

x0sbs cosðbsyÞ sinhðbsd=2Þ

þ
XN
r¼1

XN
s¼1

xrsgrs cosðarxÞ cosðbsyÞ sinhðgrsd=2Þ: ð17bÞ

Expanding the sinusoidal functions and hyperbolic functions in the left side of Eqs. (17a) and
(17b) into a finite Fourier series gives

coshðlmx=aÞ ¼ am0 þ
XN
r¼1

amr cosðarxÞ; cosðlmx=aÞ ¼ bm0 þ
XN
r¼1

bmr cosðarxÞ;

sinhðlmx=aÞ ¼ cm0 þ
XN
r¼1

cmr cosðarxÞ; sinðlmx=aÞ ¼ gm0 þ
XN
r¼1

gmr cosðarxÞ; ð18a2dÞ

with

am0 ¼ sinhðlmÞ=lm; bm0 ¼ sinðlmÞ=lm;

cm0 ¼ fcoshðlmÞ � 1g=lm; gm0 ¼ f1� cosðlmÞg=lm; ð19a2dÞ

amr ¼
2lm sinhðlmÞð�1Þr

ðprÞ2 þ l2m
; bmr ¼

sinðpr � lmÞ
pr � lm

þ
sinðpr þ lmÞ
pr þ lm

;

cmr ¼
2lmfcoshðlmÞð�1Þr � 1g

ðprÞ2 þ l2m
; gmr ¼

cosðpr � lmÞ � 1

pr � lm

� 	
�

cosðpr þ lmÞ � 1

pr þ lm

� 	
: ð20a2dÞ

Similarly, the Fourier coefficients in the y direction can also be defined. The finite Fourier series
expansion of the modal displacement shown in Eq. (6) gives

Wmnðx; yÞ ¼ L00 þ
XN
r¼1

Lmr0 cosðarxÞ þ
XN
s¼1

Ln0s cosðbsyÞ þ
XN
r¼1

XN
s¼1

Lmnrs cosðarxÞ cosðbsyÞ: ð21Þ

Therefore, the velocity potential of the fluid can be written explicitly by arranging Eqs. (17a) and
(17b), (18a–d) and (21). In Eqs. (18)–(21), the sum on r and s must be stopped for numerical
computation, at an integer value large enough to give the required accuracy.
Now, it is necessary to know the reference kinetic energies of the plates and the contained fluid

to calculate the coupled natural frequencies of the rectangular plates in contact with the fluid.
Using the hypothesis of irrotational movement of the fluid, the reference kinetic energy of the fluid
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can be evaluated from its boundary motion

T�
F ¼ 1

2
r0

Z a

0

Z b

0

ð@fðx; y; zÞ=@zÞz¼d=2 fðx; y; d=2Þ dx dy

þ 1
2
r0

Z a

0

Z b

0

ð@fðx; y; zÞ=@zÞz¼�d=2 fðx; y;�d=2Þ dx dy; ð22Þ

where r0 is the mass density of fluid. Application of Eqs. (16a) and (16b) into Eq. (22)
reduces to

T�
F ¼ � 1

2
r0

Z b

0

Z a

0

Wmnfðx; y; d=2Þ dx dy þ
Z b

0

Z a

0

Wmnfðx; y;�d=2Þ dx dy

� �
: ð23Þ

The reference kinetic energy of the two rectangular plates will be twice the value given in Eq. (8).
That is

T�
p ¼ r h a b: ð24Þ

The maximum potential energy of the two plates also can be computed as twice of the kinetic
energies of the eigenfunctions in Eq. (7). The fluid-coupled natural frequencies can be obtained by
using Eq. (3b) which shows a relationship between the reference kinetic energies and the
maximum potential energy.

2.5. Improved solution for out-of-phase modes

Instead of the dry beam functions of Eq. (6), normalized polynomial functions are introduced
for the out-of-phase wet modes, because several beam functions of Eq. (6) cannot satisfy the fluid-
volume conservation. The normalized polynomial functions are also the admissible functions
satisfying all the plate boundary conditions of Eqs. (5a) and (5b) and fluid-volume conservation of
Eq (26). The admissible functions are plotted in Fig. 2:

X0ðxÞ ¼
1

A0

x

a

� �2
�2

x

a

� �3
þ

x

a

� �4� 	
¼

Q0ðxÞ
A0

;

X1ðxÞ ¼
1

A1

1

2

x

a

� �2
�2

x

a

� �3
þ
5

2

x

a

� �4
�

x

a

� �5� 	
¼

Q1

A1
;

X2ðxÞ ¼
1

A2

3

14

x

a

� �2
�
10

7

x

a

� �3
þ
45

14

x

a

� �4
�3

x

a

� �5
þ

x

a

� �6� 	
¼

Q2

A2
;

X3ðxÞ ¼
1

A3
�

3

32

x

a

� �2
þ
7

8

x

a

� �3
�
95

32

x

a

� �4
þ
75

16

x

a

� �5
�
7

2

x

a

� �6
þ

x

a

� �7� 	
¼

Q3

A3
; ð25a2dÞ

Z a

0

XkðxÞ dx ¼ 0; k ¼ 0; 1; 2; 3;y; ð26Þ

where Akðk ¼ 0; 1; 2; 3;yÞ is a factor for the mode normalization

Ak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ a

0

fQkðxÞg
2 dx

s
: ð27Þ
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The polynomial functions YkðyÞ (k ¼ 0; 1, 2, 3y) in the y direction also can be similarily defined.
However, the first modal function X0ðxÞ need not satisfy Eq. (25) because the other modal
function YkðyÞ will compensate the fluid-volume conservation in the y direction. The transverse
modal function for the out-of-phase wet modes can be defined by a multiplication of x and y
directional polynomial functions:

Wmnðx; yÞ ¼ XmðxÞYnðyÞ: ð28Þ

The modal functions approximated by Eqs. (25a–d) and (28) can also be expressed in terms of a
Fourier series expansion using the finite Fourier transformation as described in

x

a

� �2
¼
1

3
þ 4

XN
m¼1

ð�1Þm

ðmpÞ2
cos

mpx

a

� �
;

x

a

� �3
¼
1

4
þ 6

XN
m¼1

2½1� ð�1Þm


ðmpÞ4
þ

ð�1Þm

ðmpÞ2

� 	
cos

mpx

a

� �
;

x

a

� �4
¼
1

5
þ 8

XN
m¼1

½�6þ ðmpÞ2
ð�1Þm

ðmpÞ4
cos

mpx

a

� �
;
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x

a

� �5
¼
1

6
þ 10

XN
m¼1

24fð�1Þm � 1g

ðmpÞ6
þ

fðmpÞ2 � 12gð�1Þm

ðmpÞ4

� 	
cos

mpx

a

� �
;

x

a

� �6
¼
1

7
þ 12

XN
m¼1

½120� 20ðmpÞ2 þ ðmpÞ4
ð�1Þm

ðmpÞ6
cos

mpx

a

� �
;

x

a

� �7
¼
1

8
þ 14

XN
m¼1

720f1� ð�1Þmg

ðmpÞ8
þ

f360� 30ðmpÞ2 þ ðmpÞ4gð�1Þm

ðmpÞ6

� 	
cos

mpx

a

� �
: ð29a2fÞ

The admissible functions of Eqs. (25a–d) and (28) can be transformed into Eq. (21) by using
Eqs. (29a–f). Using the compatibility condition of Eqs. (16a) and (16b), relationships between the
coefficients, L00; Lmr0; Ln0s; Lmnrs and x00; xr0; x0s; xrs can be obtained. The maximum potential
energy of the two plates can be computed using the assumed polynomial functions of Eqs. (25a–d)
and YkðyÞ and the reference kinetic energy of the fluid can be obtained by Eqs. (22) and (28). For
this case, the fluid-coupled natural frequencies can easily be calculated according to the same
process in Section 2.4.

3. Example and discussion

3.1. An example model for theoretical calculation and finite element analysis

On the basis of the preceding analysis, in order to find the natural frequencies of two identical
rectangular plates in air or coupled with the bounded fluid by the rigid container wall, Eqs. (3a)
and (3b) is calculated using the commercially available software, Mathcad (version 2000
Professional) [14]. The frequency equation derived in the preceding sections involves an infinite
series of algebraic terms. In the theoretical calculation, the finite Fourier expansion terms r and s
are set at 900, which give a converged solution.
In order to check the validity of the theory, a finite element analysis was carried out for the

bounded fluid-coupled system using ANSYS, release 5.7 finite element software [15]. A finite
element model is constructed with the same plate geometry, boundary conditions and material
properties used in the theoretical calculation. The plates are made of aluminum having an area of
240mm� 320mm and a thickness of 2mm. The distance between the rectangular plates, d; is
40mm. The physical properties of the material are as follows: Young’s modulus=69.0GPa, the
Poisson ratio=0.3, and mass density=2700 kg/m3. Water is used as the fluid in contact with the
plates, having a density of 1000 kg/m3. The viscosity and compressibility of water are neglected in
both the theoretical calculation and the finite element analysis.
The finite element analysis was performed to obtain the natural frequencies and mode shapes of

the two identical rectangular plates coupled with bounded fluid. Here the three-dimensional
model consisted of three-dimensional contained fluid elements (FLUID80) and elastic shell
elements (SHELL63). The fluid element ‘FLUID80’ with eight nodes has three degrees of freedom
at each node and it is particularly well suited for calculating hydrostatic pressures and fluid–
structure interactions. The shell element ‘SHELL63’ with four nodes has six degrees of freedom:
translation in three directions and rotations about three axes. The fluid movement along the rigid
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walls is restricted to the normal direction only in order to realize Eqs. (14a) and (14b). The vertical
velocity of the fluid element nodes adjacent to each surface of the wetted rectangular plates
coincides to those of the rectangular plates so that the finite element model can simulate Eqs. (16a)
and (16b). Each rectangular plate is identically meshed and divided into 1200 (40� 30) elastic shell
elements and the fluid region consists of 6000 (40� 30� 5) fluid elements with connectivity to the
plate elements. A clamped boundary condition along each plate edge is applied in the finite
element model to constrain against displacements and rotations. The finite element analysis used a
block Lanczos method to extract 50 modal frequencies and corresponding mode shapes.

3.2. Comparison of theoretical and finite element results

The theoretical natural frequencies of the rectangular plate in air are listed and compared with
the FEM results in Table 1. The discrepancy between the theoretical and FEM results is less than
0.7% in the range of 0pnp3 and 0pmp3: It shows that the combination of the beam modes can
approximate the plate mode shapes excellently for the rectangular plate in air with the clamped
boundary condition.
All the transverse vibration modes can be classified into two categories according to the relative

moving directions between the two plates during vibration; that is, in-phase and out-of-phase
modes. The fluid-coupled natural frequencies of the plates with d ¼ 40mm for the out-of-phase
and in-phase modes are listed in Tables 2 and 3, respectively, in the range of 0pnp3 and
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Table 1

Comparison of FEM and theoretical natural frequencies (Hz) for a clamped rectangular plate in air

Mode Natural frequency (Hz)

n m FEM Theory Discrepancy (%)

0 0 242.6 243.4 0.33

1 407.5 409.1 0.52

2 677.6 681.3 0.55

3 1047.3 1053.0 0.54

1 0 570.8 573.3 0.44

1 722.3 726.9 0.64

2 978.2 984.2 0.61

3 1336.5 1345.5 0.67

2 0 1069.9 1074.2 0.40

1 1216.0 1223.5 0.62

2 1462.5 1470.3 0.53

3 1810.6 1820.0 0.52

3 0 1736.3 1742.4 0.35

1 1879.9 1891.1 0.60

2 2121.3 2133.0 0.55

3 2463.1 2474.9 0.48
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0pmp3: It was found that the theoretical natural frequencies of the in-phase mode agree well,
within a 3% error range, with the finite element predictions as shown in Table 3 indicating that the
dry beam functions can accurately approximate the in-phase modes. As shown in Table 3, the dry
beam mode approximation underestimates the fluid virtual added mass with the error increasing
with the mode number. On the other hand, the maximum deviation of the theoretical natural
frequency from the finite element result for the out-of-phase modes is about 25% in the same
mode range. This shows that the approximation based on the dry beam functions is inappropriate
for the out-of-phase modes, because the dry beam functions cannot satisfy the fluid-volume
conservation for several modes, for example, n ¼ 2 or m ¼ 2:However, as the number of modes in
the dry beam mode approximation method increases, the discrepancy reduces gradually because
the difference between the real mode shape and approximated admissible function decreases.
The polynomial functions of Eqs. (25a–d) satisfying the plate boundary conditions and fluid-

volume conservation give more accurate results for the out-of-phase modes as shown in Table 2.
Figs. 3 and 4 obtained from the finite element analysis illustrate a comparison between the in-
phase and out-of-phase mode shapes. There is little difference between the in-phase mode shapes
and the corresponding dry mode shapes because the in-phase modes are free from the fluid-
volume conservation requirement. Hence we can get excellent theoretical result for the in-phase
modes by the dry beam mode approximation. On the other hand, for the out-of-phase modes,
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Table 2

FEM and theoretical natural frequencies (Hz) of two identical rectangular plates coupled with fluid for the out-of-phase

modes

Mode Coupled natural frequency (Hz)

n m Beam mode approximation Polynomial approximation

FEM Theory Discrepancy (%) Theory Discrepancy (%)

0 0 N/A N/A N/A N/A N/A

1 58.6 61.2 4.44 59.4 1.36

2 155.0 194.6 25.55 159.4 2.84

3 310.1 249.4 �19.57 287.2 �7.38

1 0 104.0 108.4 4.23 106.6 2.50

1 167.6 176.6 5.37 170.1 1.49

2 286.2 278.5 �2.69 281.3 �1.71

3 463.2 447.6 �3.37 465.9 0.58

2 0 301.7 356.1 18.03 307.8 2.02

1 389.2 322.7 �17.09 381.9 �1.88

2 510.7 542.9 6.31 494.5 �3.17

3 719.3 654.9 �8.95 710.5 �1.22

3 0 625.0 511.3 �18.19 593.4 �5.06

1 722.9 660.9 �8.58 725.6 0.37

2 883.3 825.9 �6.50 890.7 �0.84

3 1106.9 1060.8 �4.16 1122.5 1.41

K.-H. Jeong et al. / Journal of Sound and Vibration 272 (2004) 539–555550



some distorted mode shapes can be found in Fig. 4, because the plate must be deformed to satisfy
the fluid-volume conservation requirement. This is especially the case for the 10th serial
mode (510.7Hz) which is the most distorted mode from the dry mode and corresponds to the
ðm; nÞ ¼ ð2; 2Þ mode consisting of a combination of the special modal function similar to the third
polynomial function in Fig. 2.
The coupled natural frequency of the two plates in contact with fluid is always less than the

corresponding natural frequency of the plate in air, due to a contribution of the virtual added
mass to the motion of the plates. Hence, the normalized natural frequency, defined as the natural
frequency of a structure in contact with a fluid divided by the corresponding natural frequency of
the structure in air, always lies between unity and zero as shown in Table 4.
The out-of-phase mode with n ¼ 0 and m ¼ 0 cannot appear because this mode violates the

fluid-volume conservation for the bounded-fluid case. The first fluid-coupled natural frequency
(n ¼ 0; m ¼ 1) for the out-of-phase mode is reduced to about 24% of the dry mode natural
frequency. For the corresponding in-phase mode, however, the natural frequency has been
reduced to about 34% of the dry mode value. It was observed that most of the normalized natural
frequency decreases with an increase of mode number m; but increases with an increase of the
mode n:
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Table 3

FEM and theoretical natural frequencies (Hz) for two identical rectangular plates coupled with fluid for the in-phase

modes

Mode Coupled natural frequency (Hz)

n m Beam mode approximation

FEM Theory Discrepancy(%)

0 0 113.3 114.1 0.71

1 192.5 194.5 1.04

2 326.5 330.9 1.35

3 516.1 524.7 1.67

1 0 272.4 275.4 1.10

1 348.4 353.9 1.58

2 479.6 488.5 1.86

3 668.8 683.8 2.24

2 0 525.9 533.3 1.41

1 603.0 614.7 1.94

2 735.4 751.4 2.18

3 926.7 949.9 2.50

3 0 882.8 898.4 1.77

1 962.8 985.1 2.32

2 1099.0 1127.6 2.60

3 1294.5 1332.5 2.94
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1st (113.3 Hz) 2nd (192.5 Hz) 3rd (272.4 Hz) 4th (326.5 Hz)

5th (348.4 Hz) 6th (479.6 Hz) 7th (516.1 Hz) 8th (525.9 Hz)

9th (603.0 Hz) 10th (668.8 Hz) 11th (735.4 Hz) 12th(764.8 Hz)

13th (882.8 Hz) 14th (918.8 Hz) 15th (926.7 Hz) 16 th(962.8 Hz)

Fig. 3. In-phase mode shapes for two rectangular plates coupled with fluid (FEM results).

K.-H. Jeong et al. / Journal of Sound and Vibration 272 (2004) 539–555552



ARTICLE IN PRESS

1st (58.6 Hz) 2nd (104.0 Hz) 3rd (155.0 Hz) 4th (167.6 Hz)

5th (286.2 Hz) 6th(301.7 Hz) 7th (310.1 Hz) 8th (389.2 Hz)

9th (463.2 Hz) 10th (510.7 Hz) 11th (562.0 Hz) 12th (625.0 Hz)

13th (709.8 Hz) 14th (719.3 Hz) 15th (722.9 Hz) 16th (858.4 Hz)

Fig. 4. Out-of-phase mode shapes for two rectangular plates coupled with fluid (FEM results).
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4. Conclusions

An analytical method to estimate the natural frequencies of two identical rectangular plates
coupled with an ideal fluid is developed by using a finite Fourier series expansion method. It has
been shown that there are two contrastive modes: the so-called out-of-phase and in-phase modes.
All natural frequencies of the in-phase modes can be predicted well by the dry beam modes, but
the natural frequency of the out-of-phase mode cannot be estimated precisely. However, the
theoretical prediction for the out-of-phase mode can be improved by using the polynomials
satisfying the plate boundary condition and fluid-volume conservation. The accuracy of the
proposed analytical method has been verified by good agreement with results of a detailed three-
dimensional finite element analysis.

References

[1] K.C. Kim, J.S. Kim, The effect of the boundary condition on the added mass of a rectangular plate, Journal of the

Society of Naval Architects of Korea 15 (1978) 1–11 (in Korean).

[2] M.K. Kwak, Hydroelastic vibration of rectangular plates, Transactions of the American Society of Mechanical

Engineers, Journal of Applied Mechanics 63 (1996) 110–115.

[3] Y. Fu, W.G. Price, Interactions between a partially or totally immersed vibrating cantilever plate and the

surrounding fluid, Journal of Sound and Vibration 118 (1987) 495–513.

ARTICLE IN PRESS

Table 4

Normalized natural frequencies for two identical rectangular plates coupled with the fluid

Mode Normalized natural frequency

n m In-phase modes Out-of-phase modes

0 0 0.4670 N/A

1 0.3372 0.2415

2 0.3052 0.2715

3 0.2972 0.1786

1 0 0.6693 0.2555

1 0.4823 0.2320

2 0.3944 0.2354

3 0.3558 0.2464

2 0 0.7761 0.4452

1 0.6164 0.3979

2 0.5028 0.3492

3 0.4369 0.3391

3 0 0.8429 0.5968

1 0.7204 0.5409

2 0.6070 0.4878

3 0.5256 0.4494

K.-H. Jeong et al. / Journal of Sound and Vibration 272 (2004) 539–555554



[4] M.H. Maylan, The forced vibration of a thin plate floating on an infinite liquid, Journal of Sound and Vibration 205

(1997) 581–591.

[5] G. Muthuveerappan, N. Ganesan, M.A. Veluswami, Vibration of square cantilever plate immersed in water,

Journal of Sound and Vibration 61 (1978) 467–470.

[6] G. Muthuveerappan, N. Ganesan, M.A. Veluswami, A note on vibration of a cantilever plate immersed in water,

Journal of Sound and Vibration 63 (1979) 435–460.

[7] G. Muthuveerappan, N. Ganesan, M.A. Veluswami, Influence of fluid added mass on the vibration characteristics

of plates under various boundary conditions, Journal of Sound and Vibration 69 (1980) 612–615.

[8] Y. Hori, M. Kanoi, F. Fujisawa, Two dimensional coupling vibration analysis of fluid and structure using FEM

displacement method, Transactions of the Japan Society of Mechanical Engineers (Division C) 60 (1994) 12–17

(in Japanese).

[9] M.R. Haddara, S. Cao, A study of the dynamic response of submerged rectangular flat plates, Marine Structures 9

(1996) 913–933.

[10] R.E. Tayler, M. Ohkusu, Green functions for hydroelastic analysis of vibrating free–free beams and plates, Applied

Ocean Research 22 (2000) 295–314.

[11] A. Korobkin, Unsteady hydro-elasticity of floating plates, Journal of Fluids and Structures 14 (2000) 971–991.

[12] C.C. Liang, C.C. Liao, Y.S. Tai, W.H. Lai, The free vibration analysis of submerged cantilever plates, Ocean

Engineering 28 (2001) 1225–1245.

[13] K.H. Jeong, Free vibration of two identical circular plates coupled with bounded fluid, Journal of Sound and

Vibration 260 (2003) 653–670.

[14] Mathcad User’s Guide—Mathcad 2000 Professional, MathSoft, Inc., Cambridge, MA, 1999.

[15] P. Kohnke, ANSYS theory reference, ANSYS elements reference, ANSYS command reference, release 5.4, SAS

IP, Inc., 1997.

ARTICLE IN PRESS

K.-H. Jeong et al. / Journal of Sound and Vibration 272 (2004) 539–555 555


	Hydroelastic vibration of two identical rectangular plates
	Introduction
	Theoretical background
	Formulation for rectangular plates
	Natural frequency of a rectangular plate in air
	Velocity potential
	Method of solution
	Improved solution for out-of-phase modes

	Example and discussion
	An example model for theoretical calculation and finite element analysis
	Comparison of theoretical and finite element results

	Conclusions
	References


