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Abstract

The dynamic condensation technique fully depends on the definition and computational scheme of the
dynamic condensation matrix. Four definitions for the dynamic condensation matrix in the single-mode-,
m-mode-, response-dependent dynamic condensation and modal reduction of non-classically damped
models are presented. They are, respectively, defined as the relations of the single eigenvector, m
eigenvectors, P eigenvectors, and responses between the master and the slave degrees of freedom. Using the
complex mode superposition technique, the response-dependent dynamic condensation matrix may be
interpreted as any-mode-, including whole-mode, m-mode, P-mode and single-mode, dependent
condensation matrix. Computational equations for the dynamic condensation matrix are derived for each
of definitions. After the proper introduction of the assumptions for the single-mode and the response-
dependent dynamic condensation, the same computational equation is obtained from the former three
definitions. In the modal reduction, the dynamic condensation matrix is directly computed from the
eigenvector matrix of full model. Because the eigenvector matrix of the non-classically damped models is
generally complex, the complex numerical operations are required in the commonly used expression. An
alternative expression is derived in which only the real numerical operations are necessary. Furthermore, it
is proven that the dynamic condensation matrix and the reduced system matrices resulted from the modal
reduction all have real values.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Modern supercomputers are capable of solving problems involving more than one million
equations with one million unknowns. However, they are still not enough to satisfy the needs of
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some engineers. This phenomenon that the demand of computer storage and speed always exceed
existing capabilities has been consistently demonstrated in finite element analysis during the past
half-century [1]. In fact, even though the modern supercomputers can handle very large size of
engineering problems, the analysis cost is very expensive. Furthermore, the latest supercomputers
are usually not available for most of researchers and engineers. These limitations on the hardware
(computer storage and speed) and computational costs make computational techniques as
important as computer techniques. Efficient computational technique may significantly reduce the
computer storage and time required. As we know, the computational effort of finite element
analysis is approximately proportional to the cubic of the size of the problem. Therefore, the
computational work could be reduced drastically if the size of problem is reduced before the
detailed analysis is performed. This is one of the motivations of the development of model
reduction techniques.

Dynamic condensation, as an efficient model reduction technique, has been applied to many
areas [2]. Many researches on this topic have been done during the past several years [3-17].
These methods proposed are concentrated on undamped models and also valid for proportionally
damped models because the proportional damping does not affect the normal modes of
undamped models on which most definitions of dynamic condensation matrix are based.
However, there are a lot of situations in which the proportional damping assumption is invalid.
Examples of such cases are the structures made up of materials with different damping
characteristics in different parts, structures equipped with passive (concentrated dampers, etc.)
and active control systems, structures with layers of damping materials (smart materials,
viscoelastic materials, etc.), and structures with rotating parts (rotor, etc.). The normal modes
with real values resulted from the corresponding undamped models can not be used to
uncouple the dynamic equations of these non-classically damped models. The state vectors
defined in the state space are, hence, commonly used. The size of the resulted system matrices will
be doubled automatically compared to those defined in the displacement space. Therefore, the
dynamic condensation technique becomes more necessary. Recently, the dynamic condensa-
tion technique for non-classically damped systems has received much attention due to the
fast applications of the smart or intelligent materials in a large number of engineering structures
or systems.

Generally, we may perform model reduction for the non-classically damped models both in the
displacement space and in the state space [18]. The simplest approach for non-classically damped
models is the extension of Guyan condensation in which Guyan condensation matrix is directly
used to reduce the mass, damping, and stiffness matrices of the full model [19,20]. Of course,
both the inertia and the damping effects are ignored in this approach. Therefore, the accuracy
of the reduced model is usually very low, especially for the models with high damping. The
dynamic condensation methods defined in the displacement space, particularly the iterative
algorithms for undamped models, may increase the accuracy of the reduced model. However,
it is difficult to consider the influence of non-classical damping into the dynamic condensation
matrix resulted from these approaches. Error will, hence, be introduced. Although the
corresponding reduced model may be convergent, it will not converge to the full model in the
interested frequency range [18].

Similar to the exact dynamic condensation for undamped models, its extended version for
non-classically damped models may also be derived in the state space using the same logic.
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Unfortunately, the resulted dynamic condensation matrix and the system matrices of the reduced
model are generally complex. Further analysis of the reduced model is inconvenient and very
expensive. Based on the modal reduction method for undamped models, an extended modal
reduction method for non-classically damped models was proposed by Kane and Torby [21] and
applied to rotor dynamic problems in 1991. The resulted reduced model can preserve exactly all
the modes originally selected.

An iterative method for the dynamic condensation of non-classically damped systems was
proposed by Qu [2] in 1998. In this method, two governing equations for the dynamic
condensation matrix, which relates the eigenvectors associated with the master and the slave
degrees of freedom in the state space, were derived. Since the eigenvectors and eigenvalues of the
reduced model are not included in the equation, it is unnecessary to solve for the reduced
eigenproblem at every iteration. Shortly after, a similar iterative approach was presented by Qu
and Chang [22] in which the dynamic condensation matrix is defined as the relation of responses
between the master and the slave degrees of freedom.

In 1999, a dynamic condensation approach applicable to non-classically damped structures
was proposed by Rivera et al. [23]. This approach is a generalization and extension of the
iterative condensation approach for undamped models. In this method, the eigenproperties
obtained in an iterative step are used to improve the condensation matrix in the following
iterative step.

Based on the extension of the standard subspace iteration method for undamped models, an
iterative dynamic condensation method for non-classically damped systems was derived by Qu
and Selvam [24]. This method has three advantages. (1) The convergence is much faster than the
previous methods, especially when the approximate values of the reduced model are close to the
full model. (2) A full proof of the convergence can be made simply. (3) Because there is not any
parameter of the reduced model in the governing equation of the dynamic condensation matrix, it
is unnecessary to calculate them at each iteration. This makes the iterative scheme much more
computationally efficient, especially when the number of the master degrees of freedom is a
little large.

The properties of reduced model, accuracy for example, resulted from the dynamic
condensation depend on the full model and the dynamic condensation matrix. Generally, the
full model is given and unchangeable during the condensation. Therefore, the reduced model fully
depends on the dynamic condensation matrix. Different definitions and computational schemes
may result in different reduced models with different accuracy and purposes.

Four definitions for the dynamic condensation matrix of non-classically damped models
are to be presented. They are single-mode-, m-mode-, response-dependent dynamic condensation
and modal reduction, respectively. The relation of these definitions will be explained.
Computational equations of the dynamic condensation matrix are derived from these
definitions respectively. Because the eigenvector matrix of non-classically damped model defined
in the state space is complex, the complex numerical operation is required in the modal
reduction approach. The question whether the dynamic condensation matrix as well as the
reduced system matrices is complex or not has not been answered up to now. In this paper, it will
be proven that the dynamic condensation matrix resulted from this method has real values.
Furthermore, an alternative computation is provided to avoid the complex numerical
computation.
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2. Theory of non-classically damped model

The dynamic equations of a viscously damped system can be expressed in a matrix form as
MX(7) + CX(¢) + KX(2) = (1), (1)

where M, C, and Ke R"™" are the mass, damping, and stiffness matrices of the damped model.
They are assumed to be symmetric. f() € R" is an external force vector. X(¢), X(7), and X(r)e R" are
the displacement, velocity, and acceleration response vectors of the system. They are functions of
time . In the dynamic condensation, the total degrees of freedom of the full model are divided
into the master degrees of freedom, denoted by m, and the slave degrees of freedom, denoted by s.

With this division, Eq. (1) can be rewritten in a partitioned form as

Mmm Mms Xm (Z) + Cmm Cms X’n (t) + Kmm KWIS X"Vl (t) _ fm (t) (2)
Msm Mss X s( t ) Csm Css XS ( t ) Ksm Kss Xs ( ¢ ) fs (t ) ’
Where an’l) Cmm, Kn1m€Rm><m; .MHLY’ ‘Cm‘\', K’nSeRmXS; MSI’VH CSWZ? KSWIGRSX"’[; MSS, CSS) KSSGRSXS;
Xin(0), Xin(0), Xin(2), Tin(2) € R™; Xi(2), X(2), Xs(2), f5() e R’.

Due to the non-classical damping, Eq. (1) is very difficult to be uncoupled in the displacement

space. The state space formulation is generally introduced. The dynamic equation in the state
space are generally given by

AY(1) — BY(1) = F(1), 3)
where the system matrix A, Be R?*?", the state vector Y(¢)e R*", and the force vector F(¢)e R*" are
defined as

K 0 C M X(?) 1{6)
A= , B=-— , YO =4 , F@)= 4)
0 —-M M 0 X() 0
or
0 K K 0 X(?) 0
A= ; = , YO =4 . , F@)= - (5)
K C 0 -M X(1) (1)

It can be seen that the size of matrices in the state space is automatically doubled.
The eigenproblem corresponding to Eq. (3) may be expressed as

(A—/BW =0 (6)
in which 4 and re C¥ are the eigenvalue (or complex frequency) and eigenvector of the full

model. Generally, this eigenproblem has 2n eigenvalues and eigenvectors. They appear in n
complex conjugate pairs. The compact form for all the eigenpairs may be expressed as

AY = BYQ. (7)

The complex conjugate eigenvector matrix ¥e €22 and eigenvalue matrix Qe C**?" have the
forms:

‘i’_‘l’ '1'*_~- Lok Q_QO q
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The superscript “*”” denotes the complex conjugation. The orthogonalities are given by
VAP -0, ¥BE-1 9)

where Ie R”?" is an identity matrix.

3. Dynamic condensation

As aforementioned, the total degrees of freedom of a full model are divided into the master
degrees of freedom and the salve degrees of freedom in the dynamic condensation. The former will
be retained in the reduced model and the latter will be deleted from the full model and they are
also referred to as the kept and deleted degrees of freedom. It is well known that the selection of
master degrees of freedom has influence on the speed of convergence or the accuracy of the
reduced model in the physical type dynamic condensation [2] which will be shown using a
numerical example. However, a full discussion on what and how many degrees of freedom should
be chosen as the master degrees of freedom is beyond the scope of this paper.

3.1. Single-mode-dependent dynamic condensation

In the single-mode-dependent dynamic condensation, the condensation matrix is defined as
\T’s = RI\T’m' (10)

\s,,, and \J, are the subvectors of the eigenvector s and will be defined later. Ry is referred to as the
single-mode-dependent dynamic condensation matrix. Its physical meaning is the relation of an
eigenvector between the master and slave degrees of freedom. This eigenvector could be any
eigenvector of the full model. Different eigenvectors may have different dynamic condensation
matrices. Consequently, this dynamic condensation matrix is single-mode dependent.

It is a little difficult to compute the dynamic condensation matrix directly from Eq. (10) even
though the eigenvector is available. Therefore, some auxiliary equations may be required. For this
problem, Eq. (6) is usually selected as an auxiliary equation.

With the above arrangement of the total degrees of freedom, Eq. (6) may be partitioned as

< Apm  Aps B Bms] ) { \Tlm } { 0 }
Y = : (11)
By By llls 0

AS}’” ASS
If the system matrices A and B defined in Eq. (5) are used, the submatrices in Eq. (11) are given by

— 4

0 K 0 K 0 K
Amm = K Cmm ) Ams = A;rm = K CmS ) ss = K CSS] ) (123)
mm mm ms ms S8 58
K 0 K 0 K 0
Bmm = " 5 Bms = B;l;n = . 5 Bss = . . (lzb)
0 - Mmm 0 - Mms 0 - Mss

The submatrices corresponding to the system matrices A and B defined in Eq. (5) may be similarly
obtained.A simple multiplication of the matrices on the left-hand side of Eq. (11) expands the
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equation into two equations, namely,
(Amm - iBmm){l:’m + (Ams - iBms)\T’x =0, (1 33)

(Asm - )LBsm){l"m + (ASS - )vBsS)\T’s =0. (13b)

The relation of the eigenvector between the master and the slave degrees of freedom may be
obtained from Eq. (13b) as

‘T’s = _(Ass - iBss)il(Asm - iBsm)\T’m- (14)

According to the definition, the computational expression for the dynamic condensation matrix
may be obtained as

RI(/I) = *(Ass - /IBss)_l(Asm - ;LBsn1)- (15)

Clearly, the dynamic condensation matrix Ry is a function of the eigenvalue of full model.
Generally, the eigenvalue is unknown. Furthermore, different eigenvalues (modes) lead to
different dynamic condensation matrix. Therefore, this matrix is single-mode dependent. Of
course, if other auxiliary equations are introduced, different computational expressions may be
derived.

When the dynamic condensation matrix is available, it is interested to find the system matrices
for the reduced model. Substituting Eq. (14) into Eq. (13a) produces

Dr()¥,, = 0 (16)
in which the dynamic stiffness matrix of the reduced model is given by
Dz(2) = (Aym — ABum) — (Ams — ABps)(Ags — ABys) ™ (Agm — ABgn). (17)

Similar to the full model in the state space, two system matrices Ag and By of the reduced model
are introduced and they satisfy

Dgr(4) = Ag — ABg. (18)
The two reduced system matrices may be computed from Dz(4) as
dDgr(2 . , dDg(4
Bah) = ~ o8 A4 = Dy — 2 TR, (19)

The relations of the reduced system matrices used in Eq. (19) are very similar to the Leung’s
theorem [25] which was proposed for undamped models. Introducing Eq. (17) into Eq. (19), the
reduced system matrices may be obtained as

AR(/“) = Amm + RI(;“)TASm + AmsRI()V) + RI(/I)TASSRI(;L‘)J (203.)

Br(4) = By + Ri(2) By + BysRi(2) + Ri(2) By Ri(4). (20b)

The details of this derivation can be found in Appendix B.
Using the dynamic condensation matrix in Eq. (10), the whole eigenvector may be expressed as

\TI = [\l\-ifllm \T’m = Tl(;“)qlnz (21)

Ri(4)
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in which Ty(4) is referred to as the co-ordinate transformation matrix or reduced basis.
Introducing Eq. (21) into Eq. (6) or (11) and premultiplying it by the transpose of the matrix Ty(4)
leads to

(AR - )NBR)\’I}m =0. (22)
The reduced system matrices can be written in terms of the co-ordinate transformation matrix as
Ar(D) = TIOTATI(),  Br(2) = Ti()"BTI(2). (23)

Substituting Eq. (21) into Eq. (23), we arrive at the same definition of the reduced system matrices
as those in Eq. (20). This shows that the reduced system matrices resulted from the direct
substitution and the co-ordinate transformations are the same. In fact, this is generally right when
the dynamic condensation matrix exactly represents the relation of the eigenvector between the
master and the slave degrees of freedom. Researches show that the reduced model computed from
the co-ordinate transformation has higher accuracy than that from direct substitution if the
dynamic condensation matrix is approximate.

3.2. m-Mode-dependent dynamic condensation

In the m-mode-dependent dynamic condensation, the dynamic condensation matrix is defined
as

li‘sm = Rllli’mm (24)

W, € C2m and W e C2*2M are the submatrices of eigenvector matrix ¥,, and will be defined
later. Matrix Ry is referred to as the m-mode-dependent dynamic condensation matrix. The
physical meaning is the relations of the m eigenvectors between the master and the slave degrees of
freedom. The m eigenvectors may be in the lowest frequency range or any frequency range of the
full model. Whenever the m eigenvectors change, the dynamic condensation matrix Ry changes.
Consequently, this dynamic condensation matrix is m-mode dependent. Because all the m modes
have the same dynamic condensation matrix, it is very efficient and convenient to use the reduced
model resulted from the dynamic condensation matrix Ry;. This definition has been frequently
used in Refs. [2,18,23,24].

Clearly, if the m pairs of modes are available, the dynamic condensation matrix could be
determined directly from Eq. (24) as

~ ~ —]
RII = ‘Psmlpmm' (25)

Although this computational expression is quite simple, the eigenproblem analysis of the full
model in the state space should be performed before the dynamic condensation. Furthermore, the
complex numerical operations are required because of the complex nature of the eigenvectors. It
will be proven later that the dynamic condensation matrix computed from Eq. (25) is real
although the complex matrices are used.

Another way to find the computational expression for the dynamic condensation matrix is
based on the auxiliary Eq. (7) in which only m modes are considered, that is,

AY,, = BY, Q. (26)
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The m modes used in Eq.(26) actually include their_complex conjugated modes. Thus, the
eigenvector matrix W¥,, e C**?" and eigenvalue matrix €,,, € C*"*?" are defined as

. ¥, v, N Q0
le = % % 5 Qmm = * . (27)
¥, Qmm \Pm Q 0 Q

mm mm

Due to the complex conjugated nature, they are still referred to as m modes for simplicity. This
definition is used in whole paper.
With the same arrangement of the total degrees of freedom, Eq. (26) may be partitioned as

Amm Ams li’:l’ﬂﬂ’l _ Bmm Bms ‘ijmm Q’nm ) (28)
Asm Ass b 4 sm Bsm Bss b 4 sm
The eigenvector matrix may be written in terms of the dynamic condensation matrix defined in
Eq. (24) as
i ¥, I i
le = ~ = ll,mm = TIIlem- (29)
¥, R

Using the co-ordinate transformation matrix Ty or the dynamic condensation matrix Ry, the
reduced system matrices may be similarly obtained as shown in Eq. (20) or (23). Finally, the
eigenproblem of the reduced model is given by

AR = BRYun Qi (30)
The second equation of Eq. (28) is rewritten as
A + AW = BynWn Qo + By ¥, D (31)
which leads to
P = AL By P Qi + By P — Ay Wiim)- (32)

Introducing the definition equation of the m-mode-dependent dynamic condensation matrix,
shown in Eq. (24), into Eq. (32) and post-multiplying it by the inverse of the eigenvector matrix
Y, results in

RII = A;Sl L(BAvin + BssRII)lilmemm‘i’,;,ln - Ast . (33)

Rewriting Eq. (30) gives
-1
mm*

BEIAR = ‘i’mmﬁmm‘i’ (34)

Substituting Eq. (34) into Eq. (33), the governing equation for the dynamic condensation matrix
R;; may be obtained as

Ry = As_sl L(Bsm + BssRIl)BI_{lAR - Ast > (35)
when Eq. (7) is considered as an auxiliary equation. If other equations are selected as the auxiliary

equations, other computational expressions for the m-mode-dependent dynamic condensation
matrix may be derived [2,24].
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3.3. Response-dependent dynamic condensation

In the response-dependent dynamic condensation, the dynamic condensation matrix is defined
as the relation of the responses between the master and the slave degrees of freedom, that is,

Y() = Rur Yo (2). (36)

The matrix Ry is referred to as the response-dependent dynamic condensation matrix. This
definition was used by Qu and Change [22] in 2000.

The dynamic condensation matrix may possibly be obtained directly from this definition. In this
procedure, the system responses are simulated using any accurate time integration scheme. The
displacement response vector Y(7) at all the degrees of freedom is then sampled at a series of
different times during the simulations. The dynamic condensation matrix is then computed from
these sampled response vectors. When the number of the sampled vectors approach to infinite, the
dynamic condensation matrix Ry will converge to the exact. In practice, only a limit number of
samples are used and error will, hence, be introduced. To improve the features of reduced model,
these sampled vectors should be orthogonalized. To our knowledge if the procedure is performed
in the displacement space, the reduced model will have better features. This research is under way.

Also, the computational expression for the dynamic condensation matrix may be derived from
the auxiliary Eq. (3). Using the same division of the total degrees of freedom, Eq. (3) can be

partitioned as
Y,(t Y,(t F,(t
o) _ 00 _ [Fa0) -
Y(1) Y,(2) Fy(1)
For the force vector defined in Eq. (5), the subvectors are given by

0 0
Fy(1) = {f 0 } Fy(1) = {f 0 } (38)

Using the dynamic condensation matrix defined in Eq. (36), the state vector Y(¢) may be expressed
as

Amm AVHS
Asm ASS

Bmm Bms
Bsm BSS

1
R

Yon(1)
Y(0)

Y(1) = You(1) = Tir Yo (2). (39)

Differentiating both sides of Eq. (39) with respect to time leads to
Y(1) = Tt You(0). (40)

Introducing Egs. (39) and (40) into Eq. (37) and premultiplying it by the transpose of matrix Ty
gives

ARY (1) — BRY () = F (). (41)
In which the equivalent force vector acting on the reduced model is given by
Fr(1) = Fyu(t) + Ry Fy(1) (42)

and reduced system matrices may be computed similarly from Eq. (20) or (23).



590 Z.-Q. Qu, R.P. Selvam | Journal of Sound and Vibration 272 (2004) 581-606

After setting Fy(z) = 0 in Eq. (37), its second equation may be rewritten as
Agn Y(t) + A Y(£) = B You(t) + By Y,(0). (43)
For the harmonic response Y(7) = Yoe*, one has
Y,(1) = sYu(t), Ys(t) = sY,(0). (44)
Substituting Eq. (44) into Eq. (43) and rearranging it results in
Yo(0) = —(Ass — 5Byy) ™ (A — 5B) Yon(0). (45)
According to the definition of the dynamic condensation matrix in Eq. (36), we have
Rip = —(Ay — sBy) "' (A — sByn). (46)

Eq. (46) is the computational expression for the response-dependent dynamic condensation
matrix. This equation is different from Eq. (15). The harmonic frequency in Eq. (46) is prescribed
and the eigenvalue (or complex frequency) A in Eq. (15) is unknown. Clearly, the dynamic
condensation matrix computed from Eq. (46) is only exact at the harmonic frequency s. If the
frequency changes, the dynamic condensation matrix has to be recomputed. Therefore, this
expression is only utilized for the harmonically excited models. The more general form to compute
the response-dependent dynamic condensation matrix will be shown in the next section.

3.4. Modal reduction

In the modal reduction, the dynamic condensation matrix is defined as
{I"SP = RIV‘~PmP- (47)

Researches show that when the number of the modes P is equal to or less than the number of the
master degrees of freedom, the resulted reduced model is physically usable. Once the P modes of
the full model are computed, the dynamic condensation matrix Ryy may be directly computed
from Eq. (47). Because the matrix W,,p is generally not a square matrix, the generalized inverse is
required to obtain the condensation matrix, that is,

Ry =¥,,¥,, (48)
in which the generalized inverse ‘i’; p 1s given by
- % T
Vo=,V 'Y, . (49)

After the dynamic condensation matrix is computed, the co-ordinate transformation matrices
may be defined as

T ! ! (50)
v = — ~ ~
Ry S A
or
5wt
‘PmP\Pm
Ty=|_" " (51)
‘PSP\PmP
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Finally, the reduced system matrices are given by
Ar = T{yATw, By =T} BTy. (52)

Most importantly, the modal reduction method will produce a reduced model which exactly
preserves the selected modes of the full model. Therefore, it has been widely used in the test-
analysis model correlation. However, the reduced model resulted from this scheme is generally
rank deficient. This leads to many difficulties in further dynamic analyses performed on the
reduced model.

4. Discussions on the dynamic condensation matrix
4.1. Dynamic condensation matrix

Four definitions for the dynamic condensation matrix have been presented in the preceding
section. Because Ry(Z) is single-mode dependent, it is a function of the unknown eigenvalue. The
definitions of Ry; and Ryy look very similar. The only difference is the number of modes included
in the definition. In the former the number is fixed as m, while it can be any number between 1 and
m in the latter.

According to the mode superposition theory, the displacements in time domain depend on
whole modes of the full model. Therefore, the response-dependent dynamic condensation matrix
Ry;; is whole-mode dependent. Using the complex mode superposition, the displacement vector
Y (?) can be expressed in terms of the eigenvector matrix and the associated modal co-ordinate q(z),
namely,

Y(1) = Pq(1). (53)
Actually, it is unnecessary and impossible to include all modes in the mode superposition for a

large size of model. Hence, mode truncation is usually used. If p modes are included in the mode
superposition, Eq. (53) is rewritten as

Y(1) = ¥,q,(0). (54)
Its partitioned form is given by
V() = {f{((t’))} - [;Z’]qpm. (59)
Introducing Eq. (55) into Eq. (36) gives
¥,,q,(0) = Rin W0, (0), (56)
which leads to
¥, = Ri¥,,. (57)

The p can be any integer from 1 to n. Hence, the dynamic condensation matrix Ry is any-mode
dependent if the mode truncation is applied. Because the reduced model has a maximum of m
degrees of freedom, the maximum p is actually m if the reduced model is used to define the relation
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p=1

Single-M ode ~ _ ~
Dependent vs=R vy

A

\ 4

p=m

m-Mode
Dependent

\ 4
=i
1
py)
S
A

sm 1= mm

Response M ode Super position
Dependent Yi() =R, Yn(t) Y(t) = l;;pqp(t)

Reduction »| Ye=R,¥., [¢

A 4

A\ 4

Fig. 1. Relations of the definitions of dynamic condensation matrix.

between Y,,(¢) and Y,,(7) as will be shown in Eq. (69). The relation of the different definitions for
the dynamic condensation matrices is shown in Fig. 1.

4.2. Computational expressions for condensation matrices

Although the single-mode-dependent dynamic condensation matrix Ry(4) is expressed exactly
and explicitly in Eq. (15), it is a function of the unknown eigenvalue A. Iterative scheme is usually
necessary to estimate the dynamic condensation matrix. The inverse of the dynamic stiffness
matrix or its equivalence is required at each iteration. If another mode is interested, the whole
computation has to be repeated again. Consequently, this computational expression is very
computationally expensive.

The flexible matrix in Eq. (15) may be expressed as

(Ays — /By) ' = A + 1A' By(Ay — /Byy) . (58)
Introducing Eq. (58) into Eq. (15) gives
Ri(2) = —A ' Ay + AAL By — AA ' Bi(Ays — /Bgy) ' (Ay — AByy). (59)
Substituting Eq. (15) into the right-hand side of Eq. (59) and rearranging its results in
Ri(2) = A, [2(Byy + By Ri(4) — Ayl (60)

Eq. (60) is exactly equivalent to Eq. (15). Clearly, the expensive computation of matrix (A — ABy) !
or its equivalence is avoided in Eq. (60). Unfortunately, the dynamic condensation matrix Ry(4) is
included on the right-hand side of this equation. Iterative scheme is, hence, required to compute
the matrix.

Post-multiplying both sides of Eq. (60) by the eigenvector at the master degrees of freedom
results in

Ri(AW,, = AL 2By + BsRIOW,, — AgnW,]- (61)
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The eigenproblem of the reduced model shown in Eq. (22) may be expressed as
AR‘T’m = j'BR\'Tlm (62)
Premultiplying both sides of Eq. (62) by the inverse of the system matrix Bg gives

BglARl‘I}m = /h‘i"m' (63)

Because the reduced model has m degrees of freedom, it has a maximum of m modes. Any of the m
modes satisfies Eq. (63). Substituting B;' A g\, for A\, on the right-hand side of Eq. (61) leads to

RI(’D\T’m = Aszl L(Bsm + BssRI(}L))BJ_QlAR - Ast \T’m (64)

Eq. (64) is still single-mode dependent due to . Because it is valid for any of the m modes, it
may be directly rewritten in terms of the m modes as

l’\{I\i’mm = A;sl \‘(Bsm + BssﬁI)BﬁlAR - Ast ‘i,mm- (65)

Since the eigenvector matrix ¥,,, is generally full-ranked square matrix, Eq. (65) leads to

l’il = A;Awl \‘(Bsm + BssﬁI)Bl_glAR - Ast . (66)

Eq. (66) is the governing equation of the dynamic condensation matrix R Clearly, it is not single-
mode dependent any more due to the use of the relation in Eq. (62). This condensation matrix is
actually m-mode dependent as shown in Eq. (35). The relation of the computational expressions
for the single-mode- and the m-mode-dependent dynamic condensation matrices is shown in
Fig. 2.

Researches show that the convergence of Eq. (15) or (60) is usually faster than Eq. (66) when
proper iterative scheme is implemented. However, if more than one modes are interested, Eq. (15)
or (60) may have to be re-calculated repeatedly for each mode which leads to expensive
computation. The m modes may be computed simultaneously when Eq. (66) is implemented to
reduce the full model. If r modes which are less than m modes are interested, this equation is still
valid. For this case, the convergence of the r modes rather than the m modes need to be checked.

For the single-mode-dependent dynamic condensation, different modes have different reduced
system matrices which usually incur difficulties in further dynamic analysis. There is only one
reduced model for all the m modes interested in the m-mode-dependent dynamic condensation.

For harmonic responses, the computational equation of the response-dependent dynamic
condensation matrix was presented in Eq. (46). Unfortunately, the harmonic response is generally
very rare in reality. For a general response, the Fourier transformation may be used to transfer it
into a summation or integration of a series of harmonic responses. However, different harmonic
responses may have different frequency s which leads to repeated calculation of the dynamic
condensation matrix. Therefore, Eq. (46) is only used when the dynamic condensation matrix at
one specific frequency s is interested. Since s is generally known, iterative scheme is unnecessary.

From Eq. (43) one has

Y (1) = AL By Y (1) + By Yi() — Agn Yon(2)). (67)
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Single-Mode R (A)=~(A,-B.) (A, _/]Bsn)
Dependent " R=ADE.,+B.R ()-A,
Alim =ABgiim

!
R, = A;I.(Bsn +BgR, )B;AR - Aan
T

A, ()= BLY, (1) =0

T

Response Ry = _(As - SBss)_l(Asn - SBsm)
Dependent R = A;[S(Bsm +BgRy, )_ Asﬂ]

m-Mode
Dependent

A 4

A 4

» R, =Y.Yk | Converge To
e sm’mm
Modal [ ~ ~
Reduction > Ry =P » R, =0,9
P=m P=m

y y
> R, =V, P > R, =007 |«

Fig. 2. Relations of the computational equations for dynamic condensation matrix.

Introducing the definition of the dynamic condensation matrix Ry in Eq. (36) into both sides of
Eq. (67) gives

RIIlYm(t) = As_sl[(Bsm + BssRIII)Ym(z) - AsmYm(t)]- (68)

Eq. (68) is still response dependent.
The free vibration corresponding to the forced vibration of the reduced model shown in
Eq. (41) is given by

ARYm(Z) - BRYm(t) =0. (69)
From which one has
Y,.(t) = BR'ARY (). (70)

Because the reduced model only has m degrees of freedom, mode truncated errors are included
in the responses computed from Eq. (69). Therefore, the relation of the responses shown in
Eq. (70) is approximate. Introducing Eq. (70) into Eq. (68) results in

I’iIIIYm(Z) = Ag_gl L(va + BssﬁIII)B}EIAR - Ava Ym(t) (71)
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Due to the time-dependent term on both sides, the governing equation of the dynamic
condensation matrix Ry may be obtained from Eq. (71) as

R = Ay |(By + B, Ri)By'Ar — Agn]. (72)

Because of the application of Eq. (70) or (69), the governing equation reduces from response
(whole-mode) dependent to m-mode dependent. The relation of these computational equations
for the dynamic condensation matrices is shown in Fig. 2.

From the viewpoint of the vibration modes, the definition of Ry requires the condensation
matrix representing the relation of the all eigenvectors simultaneously. Condensation matrices Ryy
and Ry, on the other hand, only represent the relation of m eigenvectors and single eigenvector,
respectively. The requirement in the definition of Ryj is generally too strict to be satisfied for
practical problems. Therefore, the definition of Ryy is stricter than that of Ry which is stricter
than Ry. The use of relations in Egs. (62) and (69), respectively, strengthens and weakens the
requirement of the definitions of R; and Ryy. Therefore, the same governing equations are
obtained for Ry, Ry, and Ry; when these relations are used.

These three governing equations are all implicit. Hence, iterative scheme is usually used to solve
them. The commonly used iterative scheme is given in Refs. [2,22,23]

RO = —A_'A,,

. , . . 73
R(l) _ A;gl L(BAvnl + BSSR(lfl))(Bgle—1))—1A(Ié—1) _ Ast ( )
in which i = 1,2, ---. The (i — 1)th approximate system matrices Ag_l) and B(Ii_l) of the reduced
model may be computed similarly from Eq. (20). Because the matrices A and B are all real, the
resulted dynamic condensation matrices R (Ry, Ry, and Ryyy) are also real. Consequently, the
reduced system matrices are all real.

5. Conversion of complex operation into real operation

It can be seen from the computational expression of the dynamic condensation matrix in
Eq. (48) that the numerical operation for the complex values is required because the eigenvector
matrices are generally complex. To reduce the unnecessary computational effort, an alternative
approach, in which only the real numerical operation is required, will be provided in the
following.

As we known that the complex eigenvector matrix ¥ has the form of

| v ¥ ¥ (74)

where W e C¥™" is given by

\i’—q’ 75
=l yo | (75)
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The complex matrix ¥ can be expressed in terms of two real matrices U and Ve R as

¥ =U+iV. (76)
Hence, the conjugate matrix ‘i’* is given by
L Y (77)
and the whole eigenvector is expressed as
¥=[§ §]=[U+iV U-iV]. (78)
If only the P modes are considered, Eq. (78) may be rewritten as
V=¥, ‘i’;]Z[UP-i-iVP Up —iVp]. (79)
Define the unitary transformation Je C?7*2F as
=35 7] 0
in which J_ and J, e C”*® are diagonal matrices and defined as
Jo=1—-i1, J;=I+il (81)
Ie RP*? is an identity matrix. Clearly, the inverse of the J matrix is given by
J = 1[J+ J]. (82)
21J- Jy
Define matrix ®p with the order of 2n x 2P as
Op =PI (83)
Introducing Egs. (79) and (82) into Eq. (83) gives
®p=[Up—Vp Up+Vpl (84)

Clearly, ®p is a real matrix. From Eq. (83), the complex conjugate eigenvector matrix may be
expressed as the product of a real matrix and a unitary transformation matrix, namely,

¥y =dpl. (85)
If the same division of the total degrees of freedom is applied to Eq. (85), one has
‘i’mP = (i)mPJ (863)
li’sP = (i)SPJ- (86b)
Substituting Eq. (86) into Eq. (49) leads to
<+ T & T AT = &T st
leP = (‘PmP‘PWlP) ‘PmP =J ((Dqu)mP) (I)mP =J (I)mP' (87)

Hence, the dynamic condensation matrix is given by

~ ~ + ~ ~
Ry = PP, , = 0y, . (88)
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Clearly, the dynamic condensation matrix Ry is real. Similarly, it is easy to prove that the
co-ordinate transformation matrix in Eq. (51) is also real. Consequently the system matrices of the
reduced model are all real.

6. Numerical example

Two iterative methods will be considered to demonstrate the features of the dynamic
condensation in the state space. They have the same form of governing equation as shown in
Eq. (35) while the system matrices are, respectively, defined by Eqs (4) and (5). For simplicity, they
are referred to as Method I and Method II.

A floating raft isolation system is utilized in the numerical example. The details of the isolation
may refer Ref. [22]. The finite element method is utilized to discretize the raft and the base. The
former has 24 rectangular elements, 35 nodes, and 105 degrees of freedom and the latter has 14
rectangular elements, 24 nodes, and 72 degrees of freedom. Therefore, the isolation system has
totally 179 degrees of freedom. Due to the non-classically viscous damping included, the state
space formulation has to be used in the dynamic condensation.

The lowest ten complex frequencies of the floating raft isolation system calculated from the full
model are listed in Table 1 and are considered as the exact values for comparison purpose. The
equivalent modal frequencies and damping ratios of the complex frequencies are also given in
Table 1. Suppose that the complex frequency has the form:

i =—wxif, (G=1,2,...,m). (89)

The modal frequency and damping ratio are given by

w =2+ G =o/e; (G=1,2,..,m). (90)

Two cases for the selection of master degrees of freedom are considered. In case I the degrees of
freedom associated with the two machines and the translational degrees of freedom at nodes 2, 4,

Table 1

Complex frequencies, damping ratios, and modal frequencies

Mode Complex frequency Damping ratio Modal frequency

Real part Imaginary part

1 —0.33428 27.4784 0.01216 27.4804
2 —0.45405 30.7270 0.01478 30.7303
3 —0.32173 67.4671 0.00477 67.4679
4 —6.46483 226.7590 0.02850 226.8512
5 —9.76748 227.9016 0.04282 228.1108
6 —6.72764 238.6425 0.02818 238.7373
7 —7.49290 335.9309 0.02230 336.0144
8 —12.94492 418.3195 0.03093 418.5197
9 —17.88711 533.9339 0.03348 534.2334
10 —16.40820 542.8270 0.03021 543.0750
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8,9, 14, 22 in raft and at nodes 6, 21 in base are selected as the master degrees of freedom. For
case II, the degrees of freedom associated with the two machines and the translational degrees of
freedom at nodes 1, 7, 15, 17, 19, 21, 29, 35 in raft and at nodes 7, 8, 9, 10, 16 in base are selected.
Thus, the reduced models have 10 and 15 degrees of freedom in the two cases. As we known, the
higher modes usually converge much slower than the lower modes. Thus, only the higher five
modes, that is, the sixth through the tenth modes, are considered. The absolute relative errors of
the sixth through tenth complex frequencies are plotted in Figs. 3—7. In these figures, A, B, C, and
D are defined in Table 2.

Generally, the modal frequencies approach to those of the full model with the iterations. The
convergence is very fast at the first several iterations and becomes slower and slower with the
increase of the number of iterations. The modal frequencies computed from the reduced model are
higher than those of full model. This means that the reduced model approaches to the full model
from above and that the reduced model is stiffer than the full model. Although the damping ratio
generally converges, it is not as clear as the modal frequency. Therefore, the modal frequency is
usually used as the major factor and the damping ratio as a minor factor in the convergent check.

L —A;—8—B
10°F —e—C,—4—D

Error
=
o

N
T

(@ Iteration

Error

-6 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10

(b) Iteration

Fig. 3. Absolute errors of the sixth complex frequency: (a) damping ratio; (b) modal frequency.
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Fig. 4. Absolute errors of the seventh complex frequency: (a) damping ratio; (b) modal frequency.

The errors resulted from the reduced model with 15 degrees of freedom are much smaller than
those from the reduced model with 10 degrees of freedom, especially for the higher order of modal
frequencies. This means that the convergence will become everlasting faster with the increase of
the number of master degrees of freedom. However, a big number of master degrees of freedom
will lead to more computational work. Consequently, how many degrees of freedom should be
selected as the master degrees of freedom is problem-dependent. Usually, the ratio of the number
to the number of modes interested is a value between 1.5 and 2.

7. Conclusions

The definitions of the single-mode-, m-mode-, response-dependent dynamic condensation
matrices and modal reduction matrix have been proposed. The corresponding computational
equations and the relationship of these definitions were presented. For the modal reduction in the
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Fig. 5. Absolute errors of the eighth complex frequency: (a) damping ratio; (b) modal frequency.

state space, an alternative expression has been derived to avoid the complex numerical
computations.

The single-mode-dependent dynamic condensation matrix is defined as the relation of single
eigenvector between the master and the slave degrees of freedom. Based on the definition and the
auxiliary Eq. (6), a computational expression was derived. It is a function of the unknown
eigenvalue although this expression is exact. If the mode changes, the dynamic condensation
matrix has to be calculated again. One disadvantage of this expression is that the very expensive
inverse process or its equivalence is required at each mode considered. Furthermore, the resulted
reduced model is also eigenvalue dependent.

The m-mode-dependent dynamic condensation matrix is defined as the relation of the m
eigenvectors between the master and the slave degrees of freedom. These m modes are generally in
the lowest frequency range of full model. They also could be in any frequency range. Only one
reduced model is defined by the m modes. Therefore, all the m modes may be simultaneously
computed from this reduced model. Furthermore, it is very convenient and efficient to perform
further analyses on this reduced model. The dynamic condensation matrix may directly compute
from the definition equation if the m modes are available. This leads to a specific case of the modal
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Fig. 6. Absolute errors of the ninth complex frequency: (a) damping ratio; (b) modal frequency.

reduction. By using different auxiliary equations, different computational expressions for the
dynamic condensation matrix may be derived.

The response-dependent dynamic condensation matrix is defined as the relation of the
responses between the master and the slave degrees of freedom. The dynamic condensation matrix
may be directly computed from this definition. In the procedure, the sampled response vectors at a
series of different times are required. Using the mode superposition method, the response-
dependent dynamic condensation matrix may be interpreted as any-mode-, including whole-
mode, m-mode and single-mode-dependent matrix. For the harmonic responses, an expression for
computing the dynamic condensation matrix was provided. However, it is very computational
expensive.

After the application of the relations in Eqgs. (62) and (69) for the single-mode-dependent and
the response-dependent dynamic condensation matrices, respectively, one new governing equation
has been derived for each of the dynamic condensation matrices. They are same as that for the
m-mode-dependent dynamic condensation matrix. Since the computational equation is implicit,
iterative scheme is usually required to compute the dynamic condensation matrix. The fact that
the dynamic condensation matrix is a real matrix is clearly shown in the new equations. Because
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Fig. 7. Absolute errors of the tenth complex frequency: (a) damping ratio; (b) modal frequency.

Table 2

Four cases considered

Case Method Masters (number)
A 1 1(10)

B i 1(10)

C I 11 (15)

D I II (15)

of the application of Eq. (62), the resulted dynamic condensation matrix is not single-mode-
dependent any more but m-mode dependent. Similarly, Eq. (69) makes the resulted dynamic
condensation matrix m-mode dependent rather than response dependent.

The dynamic condensation matrix in the modal reduction is actually any-mode dependent. For
practical purpose, the number of modes considered should be less than or equal to the number of
master degrees of freedom. In this reduction, the dynamic condensation matrix is directly
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computed from the eigenvector matrix of full model. Because the eigenvector matrix of the
non-classically damped models is generally complex, the complex operation is required in
the commonly used expression. An alternative expression has been derived in which only the real
numerical operation is required. It has been proven that the dynamic condensation matrix and the
reduced system matrices resulted from the modal reduction all have real values.

The reduced model computed from the dynamic condensation are defined in the subspace of the
full space. Therefore, each co-ordinate has its physical meaning. Since the reduced model can
represent the full model in the interested frequency range, any dynamic analyses that are valid for
the full model could be performed on the reduced model. The dynamic condensation technique
may be performed on the structural level and the substructural level. Efficient schemes for the
model reduction of non-classically damped models may be derived by combining the dynamic
condensation technique and the dynamic substructure technique. Such research is under way.

Appendix A. Nomenclature

A (2n x 2n) system matrix of full model in the state space defined in Egs. (4)
and (5)

AR (2m x 2m) system matrix of reduced model in the state space defined in Egs. (20)
and (23)

B (2n x 2n) system matrix of full model in the state space defined in Egs. (4) and (5)

Br (2m x 2m) system matrix of reduced model in the state space defined in Eq. (20)
or (23)

(n x n) damping matrix of full model
(n x 1) force vector in the displacement space
Fr (2m x 1) force vector of reduced model in the state space defined in Eq. (42)
F (2n x 1) force vector of full model in the state space defined in Eqgs. (4) and (5)
I (2m x 2m or 2n x 2n, or 2P x 2P) identity matrix
J (2P x 2P) complex unitary transformation matrix defined in Eq. (80)
K (n x n) stiffness matrix of full model
M (n x n) mass matrix of full model
m Number of master degrees of freedom

n Number of the total degrees of freedom
q(?) (2n x 1) modal co-ordinates
Ry (25 x 2m) single-mode-dependent dynamic condensation matrix defined in
Eq. (10)
Ry (25 x 2m) m-mode-dependent dynamic condensation matrix defined in Eq. (24)
Ry (25 x 2m) response-dependent dynamic condensation matrix defined in Eq. (36)
Ryy (25 x 2m) modal reduction matrix defined in Eq. (47)
s Complex response frequency used in Eq. (44)
Number of slave degrees of freedom
t Time
T (2n x 2m) co-ordinate transformation matrix of single-mode-dependent dynamic

condensation defined in Eq. (21)
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T (2n x 2m) co-ordinate transformation matrix of m-mode-dependent dynamic
condensation defined in Eq. (29)

T (2n x 2m) co-ordinate transformation matrix of response-dependent dynamic
condensation defined in Eq. (39)

Tv (2n x 2m) co-ordinate transformation matrix of any-mode-dependent dynamic

condensation defined in Egs. (50) or (51)

U (2n x n) real part of the complex eigenvector matrix ¥ defined in Eq. (76)

\Y% (2n x n) imaginary part of the complex eigenvector matrix W defined in Eq. (76)
X (n x 1) displacement response in the displacement space

X (n x 1) velocity response in the displacement space

X (n x 1) acceleration response in the displacement space

Y (2n x 1) state vector defined in Eq. (4) or (5)

d, (2n x 2P) real matrix defined in Egs. (83) and (84)

A complex frequency or eigenvalue defined in Eq. (6)

Qo (2m x 2m) eigenvalue matrix in the state space defined in Eq. (26)

Q (2n x 2n) eigenvalue matrix of full model in the state space defined in Eq. (7)

v (2n x 1) eigenvector of full model defined in Eq. (6)

‘i’m (2n x 2m) eigenvector matrix of full model in the state space defined in Eq. (26)
b 4 (2n x n) eigenvector matrix of full model in the state space defined in Eq. (75)

b (2n x 2n) eigenvector matrix of full model in the state space defined in Eq. (7)
Subscript

m Number of master degrees of freedom or eigenvectors

Variable associated with the master degrees of freedom
p Number of eigenvectors or modal co-ordinates
P Number of eigenvectors or modal co-ordinates
s Number of slave degrees of freedom or eigenvectors
variable associated with the slave degrees of freedom

Superscript

0 Initial approximation

ihi—1 The ith or (i — 1)th approximation
T Transpose

* Complex conjugation

+ Generalized inverse

Appendix B. Derivation of Eq. (20)

The derivative of the dynamic system matrix Dg(4) with respect to the eigenvalue A is given by
dDg(4)

d/L - Bmm + Bms(Ass - )"BSS)il (Asm - ;thm)

- (Ams - iBms)(Ass - /lBss)ilBss(Ass - )sts)il(Asm - j~]~:.'sm)
+ (Ams - les)(ASS - j~Bss)71Bsm- (Bl)
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Using the dynamic condensation matrix given in Egs. (15) and (B.1) may be simplified as

dDg(1

dLi() = —Bum — BusR1 — RirBSSRI - RirBsm- (B2)
Introducing Eq. (B.2) into the first equation of Eq. (19), the reduced system matrix Bz can be
obtained as shown in Eq. (20b).The dynamic system matrix of the reduced model may be

rewritten as
Dr(2) = Ay — ZBum) = (Ams — 2Bys)(Ags — ABy) ™ (A — ABy)
+ (Ams = ABu)(Ags — AByy) ™ (A — 2By)(Ags — Bys) ™ (A — AByy)
— (Ams — ABy)(Ags — Byy) " (Agn — /Byy) (B.3)
or in a concise form as
Dr(2) = (Apm — ABum) + (Aps — AB)Ry + R} (Ayy — ABi)R + R (A, — /By,)  (B.4)
Rearranging the items on the right-hand side of Eq. (B.4) gives
Dr(2) = Ay + AmsRi + RYAGR; + R Ay, — 2By + BigRi + R{ByR; + R{By,)  (B.5)

Substituting Egs. (B.2) and (B.5) into the second equation of Eq. (19), the reduced system matrix
Apg is obtained as shown in Eq. (20a).
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