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Abstract

A hybrid boundary integral equation method (BIEM) for transient problems is developed here as a
means for investigating ground motion phenomena in geological regions with complex geometry, variable
material properties and in the presence of both interface and internal cracks. Two different aspects of the
problem are considered, namely computation of (a) ground motions in the form of synthetic seismograms
that are manifested at the free surface of the geological region as it is swept by a seismically induced
pressure wave and (b) evaluation of the near crack-tip stress concentration field that develops around
cracks buried within the deposit for the same type of loading. The present method combines both
displacement and regularized traction BIEM in the Laplace transformed domain for the crack-free and
cracked states, respectively, while the transient nature of the wave scattering phenomenon is reconstructed
through use of the numerical inverse Laplace transformation. Furthermore, plane strain conditions are
assumed to hold and the response of the geological region remains within the linear elastic range. The basic
strategy, whereby the aforementioned two states are superimposed, has been successfully used in the past
for problems in fracture mechanics. Following numerical implementation of the hybrid BIEM, two
validation-type examples serve to calibrate the methodology. Finally, the method is used for solving the
seismic response of a complex geological region so as to reach a series of conclusions regarding the relative
influence of various key parameters of the problem (layering, surface canyon, crack interaction) on the
scattered displacement field and on the stress concentration factor.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability to quantify transient seismic wave fields generated in the vicinity of civil engineering
infrastructure is of great importance in any effort to mitigate earthquake effects. Ground motion
due to an earthquake is influenced by the dynamic characteristics of the seismic source, the wave
propagation path, surface topography, soil layering, plus the mechanical properties of the
surrounding geological materials. Therefore, realistic mechanical models for this phenomenon
must capture the transient nature of the seismic disturbance, the irregular geometry of the
geological region, as well as variations in its material properties. Specifically, site conditions
appear mainly in the form of irregular surface topography, non-parallel soft layers (e.g.,
sedimentary basins) and geological irregularities such as cracks, cavities and inclusions. These
local conditions may generate large signal amplifications and motions with spatial variation that
must be accounted for in any earthquake-resistant design of dams, bridges, industrial plants,
pipeline networks, etc.

Many previous studies have dealt with wave propagation phenomena in geological deposits and
the various methods of analysis that have been developed can be briefly classified as follows:
(a) analytical solutions for wave motion in alluvial basins of regular shape [1,2]; (b) semi-
analytical solutions for wave diffraction by geological irregularities of arbitrary shape [3-5];
(c) approximate techniques such as the ray method, which is based on asymptotic expansions of
the wave field [6]. These techniques have been successfully applied to seismological studies at high
frequencies [7,8], although it is possible to extend the ray method into the intermediate frequency
range [9]; (d) numerical methods are mostly employed in situations where the response is sought
within locally inhomogeneous domains, as is the case with soil-structure interaction problems
[10-12]. For layered media with irregularities, a variety of numerical techniques have been used.
As examples Aki and Larner [13] and Bouchon et al. [14] are mentioned who used the discrete
wave number method, Boore [15] who employed finite differences, Nolet et al. [16] who used an
approximate modal approach and finally Pedersen et al. [17], Sanchez-Sesma et al. [18], Bouchon
et al. [19] and Yokoi and Takenaka [20], who all employed integral equation methods. Also, an
indirect-type integral equation method was used by Vai et al. [21] to simulate wave propagation in
two-dimensional irregularly layered media with internal line sources. Specifically, results in the
form of seismograms were first obtained in the frequency domain followed by Fourier synthesis.
Bard and Bouchon [22-24] used the Fourier transform technique for extending the Aki—Larner
method [13] to transient analyses of alluvial valleys for both anti-plane and plane strain
conditions. Finally, Eshrachi and Dravinski [25,26] examined scattering of elastic waves in two-
dimensional multi-layered dipping sediments of arbitrary shape embedded in an elastic half-space
by using an integral equation approach; (¢) hybrid methods have also appeared in recent years
and their basic structure combines finite elements to model interior domains containing all the
inhomogeneities, with semi-analytical representations for the exterior regular domain [27]. Among
more recent work using hybrid methods in geophysics are those of Furumura et al. [28] and of
Panza et al. [29]; (f) The boundary integral equation method (BIEM) has demonstrated many
advantages in the solution of elastodynamic problems with infinite or semi-infinite boundaries
[30-32]. Specifically, these advantages accrue from a reduction in the dimensions of the problem at
hand, implicit satisfaction of the radiation condition associated with unbounded domains, high
accuracy in stress concentration computations, flexibility stemming from the semi-analytical
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character of the method, and the ability to compute solutions at internal points in terms of
boundary values without recourse to full domain discretization. In general, BIEM solutions for
engineering problems can be classified as (i) direct analyses in the time-domain [33-35]; (ii) steady
state analyses in either Fourier or Laplace transformed domains followed by numerical inversion
schemes [36—40]; (iii) the dual boundary element method (DBEM) is primarily used in fracture
mechanics, where the displacement-based boundary integral equation (BIE) formulation is used
on one side of the crack, while the traction-based BIE is used for the other side [41-43]. A detailed
review of the DBEM can be found in Ref. [44]; (iv) dual reciprocity boundary element methods
(DRBEM) in cither time or transformed domains, where the static fundamental solution is used
along with volume discretization schemes [45,46] and finally (v) hybrid approaches that employ
finite difference schemes for the time variable and direct BIEM solutions within each time step
[47,48]. It should be noted that the term ‘hybrid methods’ is quite general and implies use of a
specific method for a certain part of the problem at hand in conjunction with another method (or
a variant of the first) for the remaining part, with the full solution reconstituted through use of
superposition.

There seems to be, however, a certain absence of concentrated effort in the development of
BIEM codes for efficient computation of ground motions using complex mathematical models for
geological deposits with non-parallel interfaces, surface topography and the presence of inclusions
and cracks. Also lacking in this field are concurrent computations of stress concentration around
discontinuities in the form of near crack-tip fields, which account for interaction phenomena
between the discontinuities. The hybrid usage of the displacement-based BIE in continuous layers
with interface cracks and of the traction-based, integro-differential BIE in layers with arbitrary
placed internal cracks allows for development of a computational package based on the BIEM for
solution of transient seismic wave propagation problems through complex geological regions.
That, in sum, is the main thrust and contribution of this work. Briefly, the paper is organized as
follows: It starts with a definition of the boundary value problem at hand in Section 2, followed by
the main part in Section 3 on hybrid usage of both displacement and traction based BIEM for
solution of the problem as formulated in the Laplace transform domain. Details concerning
numerical solution of the boundary integral equation formulation, as well as synthesis of transient
signals are given in Section 4, while test examples that serve to validate the proposed approach are
solved in Section 5. Finally, a series of numerical results given in Section 6 for a multi-layered,
cracked geological region with surface topography serves as a parametric study from which a
number of conclusions can be drawn.

2. Definition of the boundary value problem

A finite, multi-layered cracked geological region Q = Ufi , ©; with non-parallel layers and
surface topography is shown in Fig. 1, where the number of layers and cracks is arbitrary. The
complement of Q with respect to the half-space is denoted as 2y, while surface topography in
region Qy is in the form of a semi-circular canyon with radius r = A. Soil layers ©;, i =1,2,...,N
are distinguished by virtue of different mechanical properties. Two basic types of cracks are
present, namely interface cracks such as FE of length apr between two soil layers and internal
cracks such as MN of length ay,y within a soil layer.
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Fig. 1. Layered geological region with surface irregularities and cracks.

A state of plane strain is assumed to hold, and excitation is in the form of a transient
longitudinal (or pressure P) wave, which sweeps geological region Q and produces the following
displacement field in Cartesian co-ordinates:

(ux, uy) = up(sin od, —cos o) f(t — (x sin o — y cos o)/ Cp). (D)

In the above, u,,u, are the two components of the displacement vector, « is the angle of wave
incidence, u is the wave amplitude, ¢ is the time variable and Cp is the P-wave velocity.

Overall, the soil material Qp = QU Qy, where Qy is the half-space without the geological
deposit, is a linear elastic and isotropic solid. Under the usual assumption of small displacements
and in the absence of body forces, the governing equations of motion are

(Cj% - Cg’)uj,ji(x’ Vs t) + Cg'ul',jj(x’ Y, l) = ill'(x, Y, t) (2)

in Qg =Qp x(0,T), where indices i, j range as (1,2), while commas and dots, respectively,
indicate space and time derivatives. Furthermore, C% = (4 + 2u)/p; C3 = u/p are longitudinal
and shear (S) wave velocities that differ for each layer Q;, A and u are Lame’s constants, p is the
mass density, and 7T is the total duration of the dynamic phenomenon.

Tractions were prescribed on the S, part of the boundary and displacements on the
complementary part S,, where Szp=S5,0US,, S,nS, = . More specifically, the boundary
conditions are as follows:

(a) All tractions are zero on the free surface, i.e., p;(x,0,7) = 0.

(b) The influence of the geological deposits on the motion in the underlying half-space vanishes at
sufficiently large distances, i.e., Sommerfeld’s radiation condition holds.

(c) Continuity and dynamic equilibrium are both satisfied at the boundary between any two soil

layeI'S, namely ui('x’ Vs Z)|Sgl. = ui(xs ) t)lSQl.+l and Pi(X, Vs l)lSQI, = _pi(x: Y, t)|SQi+l .
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(d) At the common 1nterface between deposits and half-space, the boundary condition
ui(X, ¥, Olr,rr,p, = U; (x V. Olr,o,p, 18 satisfied for any (x,y)e T4LL| P4, with superscript fr
denoting free-field motlon This free motion in turn consists of the wave field from the
incident P-wave traveling in half-space 2y with constant material properties. It is simple to
show [49] that the transient response u; (x v, t) in the half-space frorn the P-wave of Eq. (1) is
given as u/ (x,y,1) = 1/2ni . bt Uﬁ(x y,5)e ds. Here one has U/ (x, y, s) = ug; h(x, y, ) f(s)
which 1is the free-field motion 1n the Laplace transformed domaln and up; 1S a unit vector
which represents direction of motion. Also, /(x,y,s) is the equivalent of the unit impulse
motion in the Laplace transform domain resulting from an incident P-wave of unit strength,
i.e., 8(t — (xsina — ycosa)/Cp), and f(s) is the Laplace transform of f(t). This approach
implies that a state of uniform ground motion is induced by the incoming P-waves. This, of
course, may no longer be true if the overall dimensions of the geological region are large
compared to some epicentre distance, in which case spatially variable ground motions are
observed [50]. In that case, free-field motions become quite complex and their Laplace
transform has to be evaluated by numerical means.

(e) On a crack boundary S, = S US_, the tractions are given as

pi(x7y7 Zt)|Si = _pi(xay: l)|Sf.7 (3)
where ST, S

4., S, respectively, are upper and lower crack surfaces.
Finally, initial conditions at = 0 in Qp are as follows:

l/lj(X,y, 0) = UOi(x:J’): I;li(x,y, 0) = Z:lOi(xvy)' (4)

In sum, any solution to the above boundary value problem is a vector-value function
ui(x, y,1)e C*(Q)n C'(Qp), from which tractions p;(x,y,)e C'(Qp)n C(Qp) derive, and which
satisfies Eq. (2), boundary conditions (a)—(e) and the initial conditions. Note that CX(R) denotes
the set of k-times continuously differentiable functions in space R.

3. Hybrid BIEM formulation in the Laplace domain

The Laplace transform is used here in order to suppress the independent time variable and to
account for any initial conditions. Application of the aforementioned transformation to the
governing equations of motion (2) yields a system of elliptic partial differential equations,
amenable to numerical solution by the combined displacement-based BIE for layers without
cracks (or interface cracks only) and hypersingular, traction-based BIE for layers with internal
cracks. It can be noted in passing that this type of approach, where the crack-free and cracked
states are superimposed, has been used in fracture mechanics and a similar type of BIEM
formulation was recently developed in the frequency domain by Dineva and Manolis [51,52],
which was shown to be an efficient numerical tool for time-harmonic wave-scattering problems in
geological regions.

Using the Laplace transform, where f(s) = foao f(t)exp(—st)de is the direct transformation
(provided f(¢) is locally integrable along interval [0, co)) and

b+ioo
=57 [ Foends

—ioo
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is the inverse transformation (with b greater than the real part of all singularities of f(s)), the
combined equations of motion (2) and initial conditions (4) assume the following form:

1 -
(Ch — Citypi + Coilipie = 8711 — ;Fi- (5

Also, the forcing function term is now
Fi(xay, S) = p[su()i(xa y) + uOi(x’ y)] (6)

Eq. (5) have to be solved in conjunction with the transformed boundary conditions for a finite set
of discrete values of the Laplace parameter s. Once a sufficiently large spectrum of values is
obtained for the solution, numerical inversion is performed on selective dependent variables to
obtain the desired transient response.

3.1. The BIEM formulation

For a linear boundary value problem, superposition holds and the total displacement i&; and
traction p; fields in the Laplace transformed domain are written in the form

{, piy = ), p)y + {5, 53, (7)

where @(r,s), p%(r,s) comprise the continuous transient field in the crack-free body. Next,
#(r, 5), pé(r, s) are due to the presence of cracks [53] and are produced by loads pé(n,s) = —p'(n, s)
acting across local co-ordinate neS., = S, uUS,,, S, = EFUMN, while all other loads are zero
on S,, on S, and on the external boundary T4LLiPs. Wave field @0(r,s),p0(r,s) is in turn a
superposition of free-field motions {ul , pl "} and scattered waves {@,pi} in the layered

geological deposit, i.e.,
(@, p0y = {al’ . p{"y + {@e. pyey. 8)
As far as boundary conditions for the crack-free body are concerned, it is found that

(a) The surface of the half-space is traction-free, i.e., p?(x,0,s) = 0.
(b) The Sommerfield radiation condition is satisfied at infinity.
(c) Across any two consecutive layers, both continuity and equilibrium are satisfied as

0lsy, = ls, ,, and  pils, = —Pils,,,,-

(d) Continuity is also satisfied at the boundary between geological deposit and underlying half-
space TyLLy Py as @(x,y, )| 1,11, p, = U 7 (x, y, 7,z p,-

The boundary conditions for the cracked geological continuum are as follows:

(a) On the surface of the half-space, p{(x,0,s) = 0.

(b) Tractions pé(n,s) = —p'(n,s) for neS,, Sy = EF U MN.

(¢) Sommerfeld’s radiation is again satisfied at infinity.

(d) As before, continuity and dynamic equilibrium across a layer interface dictates that | So, =
i; |SQ+1 and P,|SQ = P,|SQ+l

(e) Along the interface between the geological deposit and half-space T4LL,Ps, boundary
condition |z, p, = 0 is satisfied.
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In order to solve the above problem, it is necessary to formulate a set of displacement and
traction-based BIEs, beginning with the ‘crack-free’ state, for which the conventional,
displacement BIEM is employed separately in each layer as

Cyit) (r,5) = / Uy (x, %0, $)p] (x, s) dI" — / P} (x,x0, )1} (o, 5) AT 9)
Iq, Iq,, '
In the above, m = 1,2,3, ..., N; total surface Sp = I'g, Ul'g,--- Ul g,--- Ul'q, US.; C; are jump
terms dependent on the local geometry at collocation node r; nodes r,ry denote the position
vectors of the receiver (field) and source (integration) points, respectively; U;-‘, P,"; are the singular
displacement and traction fundamental solutions (kernel functions) of Eq. (5) originally derived in
Refs. [36,37]; and finally, I'q, is the boundary of the €, layer.
In the cracked state, vector field {if, p{} satisfies two types of BIEs. Specifically,

(a) For any layer Q,, without internal cracks, the following displacement BIE is used:

s = [ Ufen g dr - [ P9 dr. (10)

Iy, Iay,

(b) For any layer , with an internal crack, the displacement BIE formulation degenerates and it
becomes necessary to introduce a hyper-singular traction BIE. Regularization of this
formulation [54] yields the following system of equations:

B(ETs) = — PUET,s) = /  UEME, 9P, 5) dS,

Iy,

+ iy (EF) { Ciski

/ AK.D,Uf(n—§&",5)dS, + / KD, U —&",5) dSn]
+ To,

cr

+ ps2

| Axmommuim-g9ds, + [
A

Ig,

an mU;(m—§",5) dSn] } (11)

BIE", 5) = / P U, €, 95 (n, ) dS,

Ig,

+ Clmr”p(i*){ciskt [ / AK; D, Ujs(m — &,5) dS, + / KD, Ug(n — €%, 5) dSn]
+ ‘ T'a, C

cr

+ ps2

/S A5y (n) Uj(m—§&*,5)dS, + /

Ig,

an (U —&*,s) dSn] } (12)

In terms of notation, tensor c;x = A0;0x + u(dudy + 8;9k;), P’ is the stress operator,
tractions p?(&*,s) are obtained from the crack-free state solutions, tangential derivatives
K}, = [n,(m)Ds — ns()D,Jaz;(n, p) and AK] = [n,(n)Ds — ny(m)D,JAu;(m, s), D, = 0/0n, are par-
tial derivatives, &*, £* are field points on S} and I'g,, respectively, and finally Au =
uS™ — ué~ is the crack-opening displacement (COD) representing a displacement discontinuity
across the crack surfaces. When a surface crack intersects the outer boundary, all equations
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written above for an internal crack in a finite elastic body are still valid, provided that
& e SH\ (SN Sp), EXeSH\(SznSH).

The primary unknowns of this type of boundary value problem are displacement and traction
fields @(r, s), pO(r, s) and #(r, s), pS(r, s) on Sp, plus crack opening displacements A#é(n,s) on S;.
Inasmuch as Egs. (11) and (12) are boundary integro-differential equations (BIDE), functions
K ii;(m, s) and AK' Aii;(n, s) corresponding to tangential derivatives of the displacements must be
considered as unknowns.

4. Numerical solution procedure

In this section, some aspects of the numerical solution procedure, particular to the present
BIEM implementation, are discussed. More specifically, the following points were focussed on:

(a) In a mixed-mode crack problem, where both crack tips are modelled by a single domain, the
BIEM solution degenerates [39,40]. This can be avoided by introducing a hybrid usage of the
displacement-based BIE formulation for layers with interface cracks only, and of the traction-
based BIE formulation for layers containing internal cracks.

(b) Careful modelling of the crack-tip singularity is required in order to capture the correct
asymptotic behaviour of displacement and traction fields near the edges of a crack. In the
present implementation, crack-tip singularities are modelled by the quarter-point boundary
element (QP-BE), which reproduces the ﬁ asymptotic behaviour of the displacement field,
and by the singular traction quarter-point boundary element (SQP-BE), which follows the
1/ \/;7 asymptotic behaviour of traction field [53] as shown in Fig. 2a.

(c) The traction-based BIE is hypersingular due to the presence of derivatives of the
traction fundamental solution and some of the resulting integrals do not converge, even in
the Cauchy principle-value (CPV) sense. To circumvent this difficulty, a regularization
procedure is used here based on integration by parts, so as to shift the spatial derivatives
from the traction fundamental solution to the unknown displacements in the BIE state-
ment [54].

(d) A polynomial approximation of the boundary geometry, as well as of the displacement and
traction vectors, which employs continuous shape functions (at least across the collocation
points) is used. For the regularized traction-based BIE, additional smoothness requirements
are necessary for the displacement field due to the presence of tangential derivatives. The
regular BE are of the parabolic type, so that discretization satisfies Holder continuity for the
displacements and tractions at internal nodes only. At edge nodes, the source points are
shifted [55,56], but the element nodes remain at the edges in order to satisfy Holder continuity
for the tractions and the tangential displacement derivatives.

(e) Careful numerical treatment is necessary for edges and corners in the boundary element mesh
used for the finite geological region. For the displacement-based BIE, only continuity of the
displacement components at the nodes is required; naturally, corners can be used as
collocation points. For the traction-based BIE, additional continuity of the derivatives of the
displacements at an element node is required; thus, corner nodes can no longer be used as
collocation points and must be shifted inwards [55,56].
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Fig. 2. (a) Crack-tip QP-BE and (b), (c) crack discretization schemes respectively involving the MN internal crack and
the EF interface crack along boundary B-D.

(f) Overall accuracy of the BIEM is highly dependent on the precision by which the various
regular and singular integrals appearing in the formulation are evaluated. Standard 32-point
Gaussian quadrature is used for computing all regular integrals. The singular integrals are
evaluated analytically, based on asymptotic expansions of the fundamental solutions for small
arguments. The singular integrals are of the general type fil (%_(i)) dé, ce[—1,+1], with Q;(¢) a
polynomial of degree /. These integrals can always be written as the sum of regular plus CPV-
type integrals. It is possible to apply asymptotic expansions for the kernels, either along the
entire BE length or in a small region of exclusion around the collocation point. In the latter
case, numerical integration by Gaussian quadrature can be used beyond this small region. The
extent of the neighbourhood of exclusion around a collocation point depends on the values of
the Bessel function arguments that appear in the kernel functions, which in turn are controlled
by the minimum/maximum BE length and by the incident wavelength.

As far as stress intensity factor (SIF) calculation accuracy is concerned, consider for example
the node numbering of the crack-tip QP BE as (1), (2) and (3), where node (3) is the crack-tip and
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Au(3) = 0, as shown in Fig. 2b. Furthermore, the length of QP-BE is denoted by I(,r, the length of
the near crack-tip SQP- BE by //, and the value of the traction at the second node of the SQP-BE
by p7, i.e., point (a + [/, /4). Next, the two-point displacement SIF formula and the traction SIF
formula for an internal crack [57] are

Kldl 2 27'[ (2)
(x + l)k2 Nz ’
) : (13)
Kl 2T A0,
T e+ D2\ /na \| 14 !
_ 1
&2 _ O AZD
i (4A Aiiy”),
C(k+ 1)k2\ /ma
(14)
R _ 4ATD — AT
T e+ 1)k2 (kc+ D2 J/ma\/ 1 ( v
and
_ 1 nlt
Ki —[l
pk?/na
| ]f (15)
K{I i —n

pk? \/ﬁ

respectively, where parameter £ = 3 — 4v (v is the Poisson ratio). The overall SIF at the crack tips
of an interface crack is calculated [58] as

_ 1
B DE\/(I + 482)\/ZQPfBE

where ¢ is the well-known bimaterial constant, while both D, and ¢ depend on the material
constants of the layers at both sides of the interface.

Finally, in reference to the inverse Laplace transformation, the boundary value problem is
solved as described in Section 2 in numerical form and as a function of Laplace parameter s. Next,
the inversion algorithm described in Ref. [59] is used. Specifically, let [0, 7] be the total time
interval of interest and ¢; = jT /N, j=0,...,N — 1 the time step, where L, N are positive integers.
In order to recover the original time dependence, function f(¢) is calculated at a set of discrete
points ¢ from the transformed spectrum f(s,) by the following quadrature formula:

\@AED — ADY + (4Ad — AdY, (16)

2
OE=EE

N-1
Re( 7(b)) + Re (Z (A, +iB,) W/”>] (17)

j=0

where

L
(b +i(n + IN) —> Z (b +i(n + IN) —) (18)

Mn
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Also, [ =0,...,L, n=0,...,N and W = exp(i2n/N) is a complex root of unity. For a spectrum
of values equal to LN €[50,5000], an optimum choice is bT €[5, 10] in order to have accurate
results. Thus, the time-dependent displacements u;(x, y, t) and tractions p;(x, y, t) of the boundary
value problem at hand are recovered for #€[0, T], starting with a spectrum of values dictated by
the discrete form of the Laplace transform parameter s, = b + in(2n)/T, n =0, ..., N. It is noted
at this point that fast Fourier transform (FFT) concepts [59,60] are used in calculating coefficients
Ap, B, of Eq. (18). It is also possible to compute the direct Laplace transform f(s) of an arbitrary
function of time f(¢), for which an analytical expression cannot be found, by modifying the above
algorithm. This type of exercise does not appear in the literature, but was carried out within the
framework of the present research effort [61].

5. Validation study

In this section, two test cases are solved using the hybrid BIEM developed above so as to gauge
its accuracy and efficiency for transient problems involving cracks in continuous media.

5.1. Diffraction of elastic waves by a finite crack in the infinite plane

The first case solves a crack of length (—a, +a) along the horizontal axis Ox impinged upon by
an incident plane wave, whose normal is at an angle 6 with respect to the horizontal, as shown in
Fig. 3. The crack itself is assumed traction-free. The governing equation of motion for this
problem is Eq. (5) in the Laplace transform domain under zero initial conditions and in the
absence of any body forces. Inasmuch as the BIEM developed herein is based on the combined
usage of displacement and traction-based BIE, a first test example for P-waves was solved by the
traction BIE, while a second test example for SV-waves was solved by the displacement BIE. For
brevity, only the former results are shown here; the latter ones can be found in the relevant
research report [61].

Fig. 3. Incident wave in the cracked plane.
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The transient incident wave in the Laplace domain is defined by the following potentials:
i :6195+62'P, 1/_12282(1_5—81'17. (19)

In the above,

(I)zf(dt—i(xCOSH—I—ysinB)),
cr 20)
lI’zg(ﬁt—C%(xcos(ﬂ—ysin@))

while «, f are constants and functions @, ¥ satisfy Eq. (2) provided f,ge C*(R). For P-waves,
functions f (1) = 0.5(H(t)t)?, g = 0 where H(t) is the Heaviside step function.

Numerical solution of integro-differential equations (11) and (12) in the Laplace transform
domain was programmed using a Fortran 90 compiler. Input data for a crack in a continuous
medium consists of (i) material constants A, u, p, v; (i1) length and position of the line crack along
the Ox axis and (iii) Laplace transform data of the incident traction p on S, Output is in the
form of COD A#; on S.,. Following the numerical inverse Laplace transformation quantified by
Egs. (17) and (18), a displacement solution is finally reconstructed in the time domain.

More specifically, the crack examined herein has length 2¢ = 10 m and is buried in an elastic
geological continuum whose material constants have the following numerical values: 2 = u =
2.2 x 10! Pa, v =0.25 and p = 2400 kg/m?>. The number of BE for modelling the crack are five.
More specifically, the first element is a left QP-BE, the second through fourth elements are
ordinary BE, and the fifth one is a right QP-BE. Their corresponding lengths respectively are
L =075 5L =28, 3=29, I, =28, [5 =0.75; furthermore, it is found that If,, =0.7510 =1
The numerical inversion algorithm employs N = 250 spectrum points and the real part of the
Laplace transform parameter s is set as equal to b = 6.0/T.

Fig. 4 plots the SIF obtained for an angle of P-wave incidence of 6 = /2 and normalized by
factor p\/ﬁ, along with the results of Chirino and Dominguez [40], who used the displacement
BIE in the Fourier domain. The comparison is good and shows that the numerical solution
achieved by the traction-based BIE is accurate.

15

0.5

Normalized S.I.F. (mode - I)

Cd/a

Fig. 4. Comparison study for Mode I SIF: -e-, present results; -A-, Chirino and Dominguez results.
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5.2. Transient response of a cracked rectangular plate under uniform traction

The geometry of the problem is given in Fig. 5, along with modelling details. This example was
first solved by Chen [62] who used finite differences, while a subsequent solution by Murti and
Valliappan [63] employed the finite element method. Solutions to this benchmark problem were
also obtained by Jiaju and Xing [64] using the BIEM coupled with the inverse Laplace
transformation algorithm of Durbin [59] and by Chirino and Dominguez [40], who used a BIEM
defined in the frequency domain with the fast Fourier transformation for recovering the transient
mode I SIF.

The size of the plate is 20 x 40 mm, while its material constants have the following values: shear
modulus u = 7.7 x 10!° Pa, density p = 5000 kg/m* and the Poisson ratio v = 0.3. There is a
crack of length 2a = 5 mm in the middle of the plate, while the externally imposed load is a
suddenly applied and maintained traction ¢H(f), where ¢ = 400 x 10° Pa. Due to symmetry, only
one-quarter of the plate need be analysed. As far as modelling the crack is concerned, a QP-BE
and a traction SQP-BE are used on both sides of the crack tip with lpp_pr = Ispp—pr = 0.5 mm.
The duration of the loading event is 7' = 0.012 ms, and the parameters used in conjunction with
the Laplace inversion algorithm are the same as before, namely b = 6.0/T and N = 250.

A comparison of the results obtained by the present method with those of Jiaju and Xing [64] is
given in Fig. 6a, where the magnitude of SIF has been normalized by 0\/@. Further comparisons
with the other solutions appear in Fig. 6b. In all cases, agreement between the various results is
very good. Chirino and Dominguez [40] have concluded that their FFT results for the purely
elastic plate material show spurious oscillations that can be traced to numerical inaccuracies. FFT

y
Px=0
Py=0
y
Py=0 Py=0 ¥
P=c
X ¥
u,=0 E=0
a P},= 0 P},=0
Px=0 F=0 B
Py=0 Ah-0R u,=0 =4
ANARAARAAARARARARARARAAS L
M a
P=0oH(t)
@ (b)

Fig. 5. (a) Cracked plate and (b) quarter model for the plate with Isop = 0.5 mm.
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Fig. 6. Transient mode I SIF normalized by ¢H(#)\/na for cracked plate under uniform step traction. (a, b) elastic
material: -e-, present results, - A -, Jiaju and Xing results; —, Chen’s results; -x-, Murti’s results. (c) Material with 1%
internal damping: -e-, present results; - A -, Dominguez and Chirino results.

filtering ameliorates this problem, but so does the presence of some internal (material) damping.
In this study, it was quite simple to introduce a small amount of internal damping in the plate
through the use of complex material moduli in the form p, = p(1 + 2if), with a dimensionless
damping coefficient  in the range 1-5%. Fig. 6¢c shows the comparison between our results and



Table 1

Properties of the geological deposit

Soil layer

Upper boundary

Crack boundary

Lower boundary

Lateral boundary at
free surface

(a) Geometry

3 Semi-circle radius 4 = 30 m Interface crack FE Broken line 7, BFEDP, 7,1, v PP,
F: (45,90) T5: (60,0); Ti: (30,0)
E: (—30,90)
B: (60,90); D: (—60,90)
Pzi (760,0); P1(730,0)
Interface crack FE and internal crack MN
2 Broken line 7, BFEDP, Configuration 1: M: (60,120); N: (—60,120)  Broken line 75 HH, P 13T, U P, P;
T5: (90,0); H: (75,180)
Hi: (—=75,180); P3: (—90,0)
Configuration 2: M: (—33,120); N: (—75,120)
Configuration 3: M: (60,170); N: (—60,170)
1 Broken line 75 HH P; Broken line T4LL; P4 T4T5 U P3Py
T4: (100,0); L: (110,270)
Ly: (—110,270); P4: (—100,0)
Soil layer Type of soil Material density Lame constant Shear modulus The Poisson  S-wave velocity P-wave velocity
p (kg/m?) 2 (Pa) u (Pa) ratio v Cs (m/s) Cp (m/s)
(b) Material properties
3 Lime-stone I 2400 19.6 x 10° 20.2 x 10° 0.25 2900 5000
2 Lime-stone IT 2800 23.6 x 10° 16.5 x 10° 0.29 2430 4500
1 Granite | 2800 353 x 10° 24.7 x 10° 0.29 2970 5500
Half-space Granite 11 3000 254 x 10° 24.5 x 10° 0.25 3500 6100
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Fig. 7. Transient displacement u, at T3 (90, 0) on the free surface for P-wave (sin(p?), p = 10) with incidence angle
o = 0° at the half-space boundary: Case ®, no cracks; Case A, an interface crack; Case B, both types of cracks.

those of Ref. [40] at the f = 0.01 level. It is observed that the new results are very close, but the
best overall agreement is still observed in Fig. 6a.

6. Transient scattering of seismic waves by cracks in a multi-layered geological deposit

The geometry and mechanical properties of the geological deposit whose seismic behaviour is
examined here are shown in Fig. 1 and Table 1, respectively. In addition, surface topography Q4
comprises a circular cylindrical canyon with radius 4 = 30 m. The region is being swept by
P-waves that trace incident angles with respect to the vertical of & = 0°,« = 30° and o = 85°. The
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Fig. 8. Transient displacement u, at 73 (90, 0) on the free surface for P-wave (sin(p?),p = 10) with incidence angle
o = 0° at the half-space boundary: Case e, no cracks; Case A, an interface crack; Case M, both types of cracks.

time variation of the P-waves is harmonic and given as f(z) = sin pt, where frequency p =
10 rad/s, while the duration of the dynamic event is 7= 4.8 s. Finally, the basic numerical
Laplace transform inversion parameters are 7 = 5.0s, 5 = 6.0/T and N = 50.

6.1. Computation of synthetic seismograms

Two sub-cases are distinguished with respect to the geological deposit of Fig. 1, namely (i) the
presence of a single interface crack EF of length [/, =75 m with endpoint co-ordinates
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Fig. 9. Transient displacement u, at mid-point (45, 0) of 7,7, on the free surface for P-wave (sin(p?),p = 10) with
incidence angle o = 0° at the half-space boundary: Case e, no cracks; Case A, an interface crack; Case H, both types of
cracks.

F(45,90), E(—30,90) and (ii) the presence of two cracks, namely the previous interface crack plus
an internal crack MN inside layer @, of length /. = 120 m and endpoint co-ordinates
M (60, 120), N(—60, 120). In both sub-cases, the deposit rests on bedrock that has wave speeds
of Cs =3500 m/s and Cp = 6100 m/s. Finally, the amplitude of the transient incident wave is
conveniently taken as up, = 0.0 mm, ug, = 0.1 mm.

The problem has been solved by the methodology developed in the previous sections and all
results are summarized in Figs. 7-20, from which the influence of factors such as surface
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Fig. 10. Transient displacement u, at mid-point (45, 0) of 717, on the free surface for P-wave (sin(pt),p = 10) with
incidence angle o = 0° at the half-space boundary: Case e, no cracks; Case A, an interface crack; Case H, both types of
cracks.

topography, P-wave incidence angle and crack interaction on the scattered displacement field
that develops at the free surface can be surmised. All these effects are discussed separately
below.

(a) The effect of surface topography. Surface topography influence on ground motions
(synthetic seismograms) is investigated at three different locations on the free surface, namely
point 73 = (90, 0), at the midpoint of segment 7 7> with co-ordinates (45,0) and at a point on arc
segment P T along the canyon surface with co-ordinates (21.2, 21.2). These motions are for the
incident P-wave with harmonic time variation impinging on boundary LL; under incident angle
o =0° and are collected in Figs. 7-12. Furthermore, Figs. 13-18 plot the same type of
information, but for an incident angle « = 85°, which is a nearly horizontal sweep. In all cases,
dividing with the value of the incident wave amplitude normalizes the scattered displacement field.
Throughout these plots, the topography effect can be discerned by contrasting three different
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Fig. 11. Transient displacement u, at point (21.2,21.2)e P;T; on the free surface for P-wave (sin(p?),p = 10) with
incidence angle o = 0° at the half-space boundary: Case e, no cracks; Case A, an interface crack; Case H, both types of
cracks.

situations, namely (i) the canyon is in the uncracked, finite layered region; (ii) the canyon is inside
the layered region with interface crack EFand (iii) the canyon is inside the layered region in the
presence of both interface crack EF and internal crack MN in layer 2,. As expected, the wave
scattering picture that emerges is complex and differences can be observed between all three cases.
Specifically, a comparison of Figs. 7, 9 and 11 shows that the maximum horizontal displacements
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incidence angle o = 0° at the half-space boundary: Case e, no cracks; Case A, an interface crack; Case B, both types of
cracks.

recorded along the surface of the canyon in the absence of cracks are somewhat larger (0.2 versus
0.1) compared to the other free surface locations. A roughly similar picture emerges for the
vertical displacements by consulting Figs. §, 10 and 12. For an angle of wave incidence close to the
horizontal, there is little difference in the amplitude values recorded for the horizontal
displacements (all are around 0.1); the vertical displacements are roughly half that value, or
even less.
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Fig. 13. Transient displacement u, at point 73 (90,0) on the free surface for P-wave (sin(p?), p = 10) with incidence
angle o = 85° at the half-space boundary: Case o, no cracks; Case A, an interface crack; Case B, both types of cracks.

(b) The effect of a single crack: This effect is clearly manifested in all figures as the incident wave
propagates along the vertical direction. Specifically, they all show a significant increase in the
scattered displacement field amplitude in the presence of a crack, independently of the location of
the receivers. This increase is of an order of magnitude for receivers on the horizontal free surface
(e.g., from 0.1 to 1.0), but much less for receivers along the canyon walls (e.g., from 0.2 to 0.3),
irrespective of the type of displacement component (horizontal versus vertical). When the angle of
wave incidence is close to the horizontal, the aforementioned amplification phenomenon is less.
This can be explained by the fact that points which fall into the shadow zone behind the interface
crack are screened by the crack itself.
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Fig. 14. Transient displacement u, at point 73 (90,0) on the free surface for P-wave (sin(p?),p = 10) with incidence
angle o = 85° at the half-space boundary: Case o, no cracks; Case A, an interface crack; Case B, both types of cracks.

(¢) The crack interaction effect. Comparing the single crack case with the combined interface/
internal crack case identifies the crack interaction effect. Again, all figures clearly depict the
increase in displacements along the free surface when there are two interacting cracks in the
geological region. This increase is dependent on the angle of wave incidence and on the location of
the receiver point, with the most pronounced situation (a quadrupling) registering at 75 and for
o = 85°, followed by the 73 and a = 0° combination (a doubling). Finally, all the above figures
show the complex interaction picture that develops as the seismic waves are scattered by the
canyon relief and the crack-tips, reflected at the boundaries of the layers and transmitted through
the interfaces where material properties are discontinuous.
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of cracks.

6.2. Evaluation of the transient stress concentration field near an interface crack

The aim of this section is to investigate the near crack-tip stress concentration field. The overall
SIF K”ght is obtained from Eq. (16) using COD at the right crack-tips versus time and is given in
Figs. 19 and 20. This SIF is normalized by u+/nl;,;, where I, is the length of the right QP-BE.
More specifically, Fig. 19 presents the dynamic stress concentration field near the interface crack
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Fig. 16. Transient displacement u, at mid-point (45, 0) of 717, on the free surface for P-wave (sin(pt),p = 10) with
incidence angle o = 85° at the half-space boundary: Case o, no cracks; Case A, an interface crack; Case M, both types
of cracks.

under the incident transient P-wave in the presence of a single crack, while Fig. 20 plots the same
picture when both internal and interface cracks are present. In all cases, the maximum value of the
SIF curves occurs after time ¢ = 2.4 s. As far as the influence of the incidence angle is concerned,
the SIF values are greater when o = 0° as compared to o = 85°, with o = 30° being an
intermediate situation. Finally, the crack interaction effect is clearly manifested when contrasting
Figs. 19 and 20 and observing that the SIF at the interface crack-tip is almost an order of
magnitude greater in the presence of an additional internal crack in the geological region. For the
single crack case, the maximum SIF drops from 1.4 to 0.4 as the incoming wave shifts from a
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Fig. 17. Transient displacement u, at point (21.2,21.2)e P; T} on the free surface for P-wave (sin(p?),p = 10) with
incidence angle o = 85° at the half-space boundary: Case @, no cracks; Case A, an interface crack; Case B, both types
of cracks.

vertical to a nearly horizontal orientation, while for the interacting crack case, the corresponding
SIF drop is from 6.5 to 3.0.

7. Conclusions

In this work, a numerical model is developed for seismic wave propagation in multi-layered,
cracked geological deposits with topographic relief at the free surface. More specifically, transient
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Fig. 18. Transient displacement u, at point (21.2,21.2)e PiT| on the free surface for P-wave (sin(p?),p = 10) with
incidence angle oo = 85° at the half-space boundary: Case ®, no cracks; Case A, an interface crack; Case W, both types
of cracks.

conditions were assumed to hold, while both interface and internal cracks are present in the
geological continuum. By assuming plane strain conditions, this elastic wave scattering problem is
solved by introducing a combined displacement and regularized traction BIE in the Laplace
transformed domain. Although the basic strategy, which calls for superposition of crack-free and
cracked states along with a breakdown of the problem into multiple regions, is well known in
fracture mechanics, the present contribution is in using these types of numerical tools for solving
2D wave scattering problems in complex geological regions. The transient nature of the scattered
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Fig. 19. Normalized transient SIF Kgi”h' due to incident P-wave (sin(p?),p = 10) at the half-space boundary of the
multi-layered region and for a single interface crack: Case e, incidence angle o = 0°; Case A, incidence angle oo = 30°;
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wave fields is subsequently reconstituted through use of a numerical inverse Laplace
transformation. As far as spatial discretization is concerned, parabolic-type boundary elements
are employed, supplemented by special crack-tip elements in the vicinity of the cracks. The types
of numerical results that are obtained herein are synthetic seismograms at receivers on the free
surface of the geological deposit and SIF near the crack-tips. In all cases, the results produced by
the present methodology show that both scattered wave displacement field on the free surface and
stress concentration field near the crack-tips are sensitive to site conditions such as the existence of
surface relief, the presence of layers and cracks, and most importantly on interaction effects due to
the presence of multiple cracks. In sum, this type of work is useful in the field of earthquake
engineering, where a detailed image of local ground motions is of paramount importance.
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