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Abstract

An analysis is made of the mechanism of sound production by nominally steady low Mach number flow
over a rigid shallow wall cavity. At very low Mach numbers the dominant source of sound is the unsteady
drag, and the aeroacoustic dipole source accompanying this force. A monopole source dependent on the
compression of fluid within the cavity is smaller by a factor of the order of the flow Mach number M: The
directivity of the dipole sound peaks in directions upstream and downstream of the cavity, and there is a
radiation null in the direction normal to the plane of the wall. However, numerical simulations for M as
small as 0.1 have predicted significant radiation in directions normal to the wall. This anomaly is
investigated in this paper by means of an acoustic Green’s function tailored to cavity geometry that
accounts for possible aeroacoustic contributions from both the drag-dipole and from the lowest order
cavity resonance. The Green’s function is used to show that these sources are correlated and that their
strengths are each proportional to the unsteady drag generated by vorticity interacting with the cavity
trailing edge. When MB0:01; the case in most underwater applications, the monopole strength is always
negligible (for a cavity with rigid walls). At low Mach numbers exceeding about 0.05 it is shown that the

cavity monopole radiation is OðM2Þ{1 relative to the dipole at low frequencies. At higher frequencies, near
the resonance frequency of the cavity, the monopole and dipole have similar orders of magnitude, and the
combination produces a relatively uniform radiation directivity, with substantial energy radiated in
directions normal to the wall. Illustrative numerical results are given for a wall cavity subject to ‘shear layer
mode’ excitation by the Rossiter ‘feedback’ mechanism.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Tonal radiation produced by high Reynolds number mean flow over a rectangular wall cavity
was originally attributed to broadband excitation of cavity acoustic resonances by turbulence in
the shear layer over the cavity mouth [1]. However, oscillations can also be maintained by a
laminar mean flow, and laminar flow resonances are often observed to be more intense [2,3].
Tones generated by shallow cavities whose depth d o L ¼ streamwise cavity length (Fig. 1)
generally bear little or no correspondence to cavity modes and are not usually harmonically
related, but are more closely analogous to the ‘edge’ tones excited when a thin jet impinges on a
wedge-shaped knife edge, and maintained via a ‘feedback’ mechanism from the wedge to the jet
nozzle.
A cavity tone of frequency f generated by flow of mean stream velocity U is typically

found to lie within certain well defined bands of the Strouhal numbers fL=U when plotted
against flowMach number. This is consistent with the ‘feedback’ scheme proposed by Rossiter [1],
involving the periodic formation of discrete vortices just downstream of the leading edge
of the cavity, and their subsequent interaction with the trailing edge after convection across
the cavity mouth. The impulsive sound generated by this interaction propagates upstream
within the cavity and causes the boundary layer to separate just upstream of the leading edge.
The travel time of a vortex across the cavityBL=Uc; where the convection velocityUcE0:4U – 0:6U ;
and the sound radiates back to the leading edge in time L=c0; where c0 is the speed
of sound. The returning sound therefore arrives in time to reinforce periodic shedding provided
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Fig. 1. Schematic configuration of nominally steady, high Reynolds number flow over a rigid, rectangular wall cavity of

depth d and streamwise length L:
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f satisfies [1]

L

Uc

þ
L

c0
E

n

f
; n ¼ 1; 2;y: ð1Þ

This formula must be adjusted to obtain detailed agreement with experiment [4–6], by replacing n
by n � b; where b ðB0:25Þ determines a ‘phase lag’ b=f equal to the time delay between (1) the
arrival of a vortex at the trailing edge and the emission of the main acoustic pulse, and (2) the
arrival of the sound at the leading edge and the release of new vorticity. If account is also taken of
the Mach number (i.e. temperature) dependence of the sound speed in the cavity, Rossiter’s
equation (1) can be written as

fL

U
¼

n � b

fU=Uc þ M=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg0 � 1ÞM2=2

p
g
; n ¼ 1; 2;y; ð2Þ

where M ¼ U=c0 and g0 is the ratio of specific heats of the fluid.
Predictions of the feedback formula (2) for shallow, rectangular cavities with d=Lo1 agree well

with observations at M > 0:2 for bE1
4 and Uc=UE0:6 [6]. The contributions from cavity

resonances are important only for deep cavities, and appear to be unimportant unless d=L > 2
5
;

when resonances can dominate the radiation provided the Strouhal number also satisfies (2). An
extensive discussion of experimental results relating to this and other influences of cavity geometry
and mean flow conditions on cavity resonances is given by Ahuja and Mendoza [6] for Mach
numbers M > 0:2: Research prior to 1980 is reviewed by Rockwell [4] and by Rockwell and
Naudascher [7], and Grace [8] has summarized recent attempts to simulate numerically cavity
noise radiation.
Experiments conducted by Gharib and Roshko [9] in water with a nominally steady impinging

mean flow (at UB1 m=s) have shown that Rossiter feedback resonances are related to large
fluctuations in the drag experienced by the cavity. They identified two hydrodynamic modes of
cavity flow oscillations: for ‘shorter’ cavities relative to the upstream boundary layer thickness
(and, according to later work [10], for lower Mach numbers) the unsteady motion over the cavity
mouth has the characteristics of an unstable, thin shear layer (‘shear layer mode’) that generates
sound by impingement on the cavity trailing edge, essentially in the manner proposed by Rossiter
[1]. Recent numerical studies of two-dimensional cavity flows by Colonius et al. [10] predict strong
radiation preferentially in the upstream direction, from a ‘source’ centred on the cavity trailing
edge. Three-dimensional numerical simulations performed by Fuglsang and Cain [11] of the
acoustic field within a shallow cavity ðL=d ¼ 4:5Þ at M ¼ 0:85 also indicated that shear layer
instability is the main exciting mechanism, and that it produces a source-like periodic addition
and removal of mass near the trailing edge. An analytical, but empirical representation of this
edge source had been previously considered by Tam and Block [12]. Flow over longer cavities (or,
alternatively, at higher Mach numbers) is characterized by a ‘wake mode’, involving large scale
vorticity ejection from the cavity, producing quasi-periodic separation upstream of the leading
edge. The onset of the wake mode is accompanied by a large increase in drag fluctuations. This
apparently occurs also at much higher Mach numbers. For example, numerical simulations by
Zhang [13] for L=d ¼ 3 and M ¼ 1:5; 3 reveal that the violent ejection of vorticity is strongly
correlated with sign reversals of the cavity drag coefficient.
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The results of the shear layer mode theory of Tam and Block [12] suggested that at very low
Mach numbers ðMo0:2Þ cavity acoustic resonances must contribute to the radiation, especially
for deeper cavities ðL=do1

2
; say); the ‘monopole’ nature of such resonances would account for a

near omni-directional character of the radiation pattern observed at certain frequencies. They did
not pursue this theoretically, although its likely importance had already been anticipated by
Plumblee et al. [14] and by East [15]. Similarly, experiments of Yu [16] have confirmed that
shallow wall cavities in air at Mach numbers MB0:1 radiate a substantial amount of radiation
directly away from the wall. Numerical and experimental studies at low Mach number by Inagaki
et al. [17] have confirmed this conclusion for large cavities with small openings to the mean flow,
but shown also how coincidence between the cavity resonance and the Rossiter frequency
predicted by (2) resulted in very large amplitude radiation. For shallow cavities trailing edge
‘scattering’ of shear layer pressure fluctuations appears to be the dominant source, even when
feedback is not important. This is in accord with measurements performed by Jacobs et al. [18] for
L=d > 7 and Mo0:4; for which the radiation peaked in the upstream and downstream directions,
although significant radiation in the wall-normal direction was also observed.
According to the theoretical results of Howe [2], the radiation from a shallow cavity at very low

Mach number can be ascribed to a dipole source aligned with the mean flow direction whose
strength is determined by the unsteady drag. The dipole source strength is strongly coupled to the
hydrodynamic motions in and near the cavity, but is essentially the same in character for both
the ‘shear layer’ and ‘wake’ modes of the cavity oscillations, provided M is sufficiently small. The
intensity of the dipole radiation peaks in the upstream and downstream directions, and is null in
directions normal to the wall.
This conclusion is apparently incompatible with several of the experiments discussed above and

with recent numerical simulations and observations at low Mach numbers. In Hardin and Pope’s
[19,20] low Mach number scheme, an incompressible representation of the cavity flow is first
simulated numerically, and the results are then used to evaluate acoustic ‘sources’ in a modified
system of compressible flow equations. At M ¼ 0:1 their predictions yield radiation directivities
that peak in the upstream direction, but also exhibit substantial levels in directions normal to the
wall, consistent with the presence of a cavity monopole field. Although various details of the
approach in [19,20] have been criticized and subjected to modification, for example by
Ekaterinaris [21] and by Shen and Sorensen [22], the general characteristics of the predicted
radiation are probably correct in an overall sense, if not in detail. Indeed, they accord with later
numerical studies (also based on an initial determination of an incompressible approximation of
the cavity flow) by Grace et al. [23] and by Curtis Granda [24], that similarly predict large
amplitude radiation normal to the wall.
The purpose of the present paper is to resolve these apparent inconsistencies between numerical

and analytical predictions at low Mach numbers. It will be shown that the low Mach number
dipole radiation, peaking in directions upstream and downstream of the cavity, is indeed the
dominant source at very low Mach numbers, typically much smaller than M ¼ 0:1; however.
Thus, it is this source that determines cavity radiation in underwater applications (where
MB0:01) provided, of course, that the cavity walls are sufficiently ‘rigid’ to preclude monopole
sources produced by pulsations in the cavity volume. But, when MB0:1 we shall show that the
cavity ‘Helmholtz’ mode, although very weak and formally vanishingly small as fL=U-0;
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supplies an additional, omni-directional contribution that can exceed the drag dipole radiation
over a range of frequencies. Furthermore, it will be shown that the monopole and dipole source
strengths are both determined at low Mach numbers by the cavity drag fluctuations.
The low Mach number analysis will be framed, in terms of the theory of vortex sound [3], and

the relevant equations are recalled in Section 2. The possible source types are identified by
introducing an acoustic Green’s function that is valid in the presence of low Mach number mean
stream flow past the cavity (Section 3). At very low Mach numbers the acoustic amplitudes are
always small enough for incompressible flow to be regarded as an excellent first approximation to
the motion in the cavity. This flow determines the effective vortex sound source strengths,
irrespective of whether the flow is characterized as ‘shear layer’ or ‘wake’ mode. Predictions of the
theory are therefore illustrated in Section 4 for the simpler case of shear mode flow by means of an
idealized model of shear layer excitation.

2. Formulation

Consider nominally steady, low Mach number, high Reynolds number mean flow in the
positive x1 direction of the rectangular coordinates ðx1;x2; x3Þ over the rectangular wall cavity of
Fig. 1. The wall and the interior surfaces of the cavity are assumed to be rigid. The fluid has mean
density and sound speed, respectively, equal to r0; c0; and the velocity in the main stream is U :
The cavity has depth d and breadth b; and is aligned with its remaining side of length L parallel to
the mean flow. The co-ordinate origin is taken at O in the plane of the wall at the center of the
cavity mouth, with the x2-axis normal to the wall and directed into the main stream.
Sound is produced by flow instability in the neighborhood of the cavity. According to

Lighthill’s acoustic analogy [3], when the total enthalpy B; say, is taken as the acoustic variable,
the radiation can be expressed in terms of sources that represent excitation by vorticity and
entropy fluctuations. For a nominally homogeneous flow at low Mach numbers the motion may
be regarded as homentropic to a good approximation [25]. In that case the total enthalpy becomes

B ¼
Z
dp

r
þ 1
2

v2; ð3Þ

where r is fluid density, p � pðrÞ the pressure, and v denotes velocity, and Lighthill’s acoustic
analogy equation becomes

D

Dt

1

c2
D

Dt

� �
�
1

r
r 
 ðrrÞ

� �
B ¼

1

r
divðrx4vÞ; ð4Þ

where c is the local speed of sound. In the irrotational acoustic far field, Crocco’s form of the
momentum equation @v=@t ¼ �rB implies that B ¼ �@j=@t; where jðx; tÞ is the velocity
potential that determines the whole motion in the irrotational regions of the fluid. B is therefore
equal to a constant in a steady mean flow, and at large distances from the sources perturbations in
B represent outgoing sound waves.
In the particular case of lowMach number flow, whenM ¼ U=c0 is smaller than about 0.2, say,

so that M2{1; the characteristics of the motion within and close to the cavity will be essentially
the same as if the fluid is incompressible, the acoustic component constituting a very small
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perturbation about this motion. We can then replace r and c where they occur explicitly in Eq. (4)
by their respective mean values r0 and c0: On the left hand side we can also introduce the
approximation (valid to first order in M)

1

c20

D2

Dt2
E
1

c20

@2

@t2
þ
2

c20
U0 
 r

@

@t
;

where U0 � U0ðxÞ is the undisturbed local mean velocity, which satisfies U0-ðU ; 0; 0Þ as jxj-N:
Eq. (4) accordingly reduces to

1

c20

@2

@t2
þ 2U0 
 r

@

@t

� �
�r2

� �
B ¼ divðx4vÞ: ð5Þ

At large distances from the cavity fluctuations in B � Bðx; tÞ represent outgoing sound waves
generated by the vortex source on the right of Eq. (5) and by its interactions with the cavity. B
may therefore be assumed to vanish in the absence of radiation from the cavity, in which case if
pðx; tÞ now represents the perturbation pressure, it is readily deduced from Eq. (3) that in the
acoustic far field (Ref. [3, p. 161]),

p ¼
r0B

ð1þ M cos yÞ
; jxj-N where cos y ¼

x1

jxj
: ð6Þ

3. Solution of the aerodynamic sound equation

3.1. Green’s function

The steady mean velocity U0ðxÞ must be irrotational in the absence of sound production at the
cavity. When M2{1; it may be assumed to represent an incompressible flow whose details near
the cavity depend on cavity geometry. To define this flow we introduce the Kirchhoff vector
XðxÞ ¼ ðX1ðxÞ; 0;X3ðxÞÞ for the cavity, where Xj ðj ¼ 1; 3Þ is the solution of following potential
flow problem:

r2Xj ¼ 0; Xj-xj as jxj-N;
@Xj

@xn

¼ 0 on S; ð7Þ

where S is the rigid boundary consisting of the wall and cavity surfaces, and xn is distance
measured in the normal direction from S: Xj ðxÞ ð j ¼ 1; 3Þ is just the velocity potential of flow
over the cavity in the j direction that has unit speed in the j direction at large distances from
the cavity.
Then the mean flow velocity U0 ¼ UrX1ðxÞ; which can also be written as

U0 ¼ rfU 
 XðxÞg where U ¼ ðU ; 0; 0Þ: ð8Þ

To determine the solution of the aerodynamic sound equation (5) when U0 is defined in this way
we consider first the Green’s function Gðx; y; t � tÞ; which is the solution with outgoing wave
behavior when the right hand side of Eq. (5) is replaced by the point source dðx� yÞdðt � tÞ:
Because B ¼ �@j=@t for irrotational motions, Green’s function G is required to have vanishing
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normal derivative on S: Introduce the transformation [3,26]

Gðx; y; t � tÞ ¼ �
1

2p

Z
N

�N

#Gðx; y;oÞe�ioðt�tþM
ðX�YÞ=c0Þ do; ð9Þ

where M ¼ U=c0; and Y ¼ ðY1; 0;Y3Þ is the Kirchhoff vector expressed in terms of y; then when
M2{1; #G satisfies

ðr2 þ k20Þ #G ¼ dðx� yÞ;
@ #G

@xn

¼ 0 on S; ð10Þ

where k0 ¼ o=c0 is the acoustic wave number.
In the cavity radiation problem the source point y is within or near the cavity, and the

observation point x is in the main stream, at large distances from the cavity. In these
circumstances an analytical approximation to the solution of Eq. (10) can be derived by a familiar

procedure [3] that involves a straightforward application of the reciprocal theorem #Gðx; y;oÞ ¼
#Gðy; x;oÞ [27]: the roles of x and y are interchanged in Eq. (10), which is now to be solved as a

function of y for the reciprocal configuration in which the source is placed at the far field point x:
The distant source generates a spherical wave that may be regarded as locally plane when it arrives
at the wall cavity. This greatly simplifies the problem when the characteristic wavelengthB2p=k0
of the sound is large compared to the typical cavity dimension, which is the case at sufficiently
small Mach numbers. We can then anticipate that there are two principal contributions to the
cavity response to the impinging wave: a monopole component produced by a periodic volume
flux across the plane of the cavity mouth, corresponding to ‘breathing’ oscillations in the manner
of a Helmholtz resonator [27], and a dipole field, with dipole axis parallel to the plane of the wall,
representing an unsteady drag force on the cavity.
Therefore, in the usual way [3] for y within and near the cavity and jxj-N; we put

#GE #G0 þ #GM þ #GD; ð11Þ

where #G0 represents the uniform pressure produced by the incident wave in the neighborhood of

the cavity, and #GM and #GD; respectively, represent the monopole and dipole fields near the cavity.
In the absence of the cavity the exact Green’s function is

#G ¼ �
eik0jx�yj

4pjx� yj
�
eik0j %x�yj

4pj %x� yj
; %x ¼ ðx1;�x2; x3Þ; ð12Þ

which satisfies @ #G=@y2 ¼ 0 on the plane surface y2 ¼ 0 of the wall. When k0jyj{1 and k0jxjc1
this becomes

#GE�
eik0jxj

2pjxj
þ
ik0ðxþ %xÞ 
 y eik0jxj

4pjxj2
þy; ð13Þ

where the terms omitted are of orderBðk0jyjÞ
2 and smaller. The first term on the right hand side

represents (as a function of y) a uniform pressure fluctuation over the mouth of the cavity and

must therefore correspond to #G0: The second term BOðk0jyjÞ; and satisfies as a function of y
Laplace’s equation to this order. It is the velocity potential of a uniform, incompressible flow
parallel to the wall (because xþ %x ¼ 2ðx1; 0; x3ÞÞ; and must be augmented by a suitable solution of
Laplace’s equation that accounts for the presence of the cavity (and in particular for the singular
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behavior of #G near the cavity edges) and describes the diversion of this flow into and out of the
cavity mouth. Definition (7) of the Kirchhoff vector enables this to be accomplished simply by
replacing ðxþ %xÞ 
 y by ðxþ %xÞ 
 Y � 2x 
 Y:
Thus,

#G0 ¼ �
eik0jxj

2pjxj
; #GD ¼

ik0x 
 Yeik0jxj

2pjxj2
; ð14Þ

and it remains to determine #GM :
The uniform incident applied pressure distribution #G0 over the mouth of a cavity of depth d

produces vertically orientated compressional motions described by the following representations:

#G ¼ a cosfk0ðy2 þ dÞg within the cavity in � doy2o0; ð15Þ

#GM ¼
bj�ðyÞ þ g in the cavity mouth y2B0;

�
dA
2pjyj

eik0jyj in free space above the cavity y2cL;

8<
: ð16Þ

where a; b; g; d are constant coefficients,A ¼ bL is the area of the cavity mouth, and j�ðyÞ is the
solution of Laplace’s equation describing uniform flow from the mouth, normalized such that

j�ðyÞB�
A

2pjyj
jyjcd above the cavity; ð17Þ

By2 � c; y2-� d within the cavity; ð18Þ

where cB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pA=4

p
is the ‘end correction’ of the mouth [3,27].

Equations determining the values of the coefficients a; b; g; d are obtained by matching the
various representations of #G and #GM : Thus, in the region k0jyj{1 just above the cavity mouth,
Eqs. (16) and (17) imply that

�
bA
2pjyj

þ g � �
dA
2pjyj

�
idk0A
2p

from which it follows that d ¼ b and g ¼ �ibk0A=2p; and therefore that

#GM ¼ b j�ðyÞ �
ik0A
2p

� �
in the cavity mouth: ð19Þ

Similarly within the cavity, representation (15) must match just below the cavity mouth with the

continuation of #G ¼ #G0 þ #GM þ #GD given by Eqs. (14) and (19). Now Y must decrease
exponentially fast with distance into the cavity [28, Section 66], and therefore (using Eqs. (15)
and (18))

a cosðk0dÞ � ak0y2 sinðk0dÞ � b y2 � c�
ik0A
2p

� �
þ #G0;
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from which it follows, in particular, that

#GME j�ðyÞ �
ik0A
2p

� �
eik0jxj

2pjxj
1

k0 tanðk0dÞ
� c�

ik0A
2p

� ��

E j�ðyÞ �
ik0A
2p

� �
k0 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg
eik0jxj

2pjxj
: ð20Þ

The steps in the derivation of this approximation for #GM are strictly valid only for a

deep cavity (so that k0c; k20A=2p{1), but if necessary it may be assumed that the values

of c and A are suitably adjusted to ensure the validity of the second line of Eq. (20). The
depth mode resonance frequencies are determined by the zeros of the cosine term in the
denominator of the second line of Eq. (20). The lowest order mode occurs at the complex
frequency satisfying

k0 d þ cþ
ik0A
2p

� �
¼

p
2
;

that is for

k0dB
pd

2ðd þ cÞ
�

ipAd

8ðd þ cÞ3
: ð21Þ

The real part is the usual expression for the lowest order depth mode for a cavity whose depth d is
augmented by the end correction c; which represents the effective length by which the cavity must
be extended to account for the inertia of fluid above the mouth of the cavity also set into
reciprocating motion by the cavity resonance; the imaginary part accounts for the damping of this
mode by radiation into the fluid.
Tam [29] has shown for the case of two-dimensional rectangular cavities that the

frequency of the lowest order mode is well represented by Eq. (21) even for d=L as small
as 1, for a suitable choice of the value of c: For deep cavities we can use Rayleigh’s [27]
approximation

cB

ffiffiffiffiffiffiffiffi
pA

p
4

: ð22Þ

For the purpose of the numerical illustrations given below for the moderately shallow case of
d=L ¼ 0:5 it will be sufficient to use Eq. (22)—in practice precise values of c can always be derived
from a numerical simulation of the acoustic mode.
The complex factor in the argument of the cosine term in Eq. (20) increases rapidly

with k0; showing that higher order modes of the cavity are strongly damped by radiation losses.
Thus, we can anticipate that only the lowest order ‘Helmholtz resonator’ mode (21) of the cavity
will be of any importance in applications to cavity flow-noise, although this is not persued
further here.
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Hence, substituting Eqs. (14) and (20) in Eq. (11), and using the inversion formula (9), it follows
that for y in the neighborhood of the cavity mouth and x in the acoustic far field,

Gðx; y; t � tÞE �
1

2p

Z
N

�N

ð #G0 þ #GM þ #GDÞðx; y;oÞ e�ioðt�tþM
ðX�YÞ=c0Þ do

¼
1

ð2pÞ2jxj

Z
N

�N

1� j�ðyÞ �
ik0A
2p

� �
k0 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg

�

�
ik0x 
 Y

jxj

�
e�ioðt�t�jxj=c0þM
ðX�YÞ=c0Þ do: ð23Þ

To interpret this result, observe first that cavity resonance corresponds to k0dBOð1Þ: At such
frequencies the second term in the brace brackets of the integrand, involving Y; is not important.
The latter becomes significant away from resonances, and then only when the source point y is
close to a cavity edge. The basic assumption is that very high frequencies (in excess of the first
cavity resonance) are irrelevant, and this will be the case when excitation occurs at low Mach
numbers.

3.2. The radiated sound

Green’s function (23) now permits the solution of the aerodynamic sound equation (5) , where
B is given by Eq. (6) in the far field, to be expressed in the form [3]

pE
�r0

ð1þ M cos yÞ

Z
ðx4vÞðy; tÞ 


@G

@y
ðx; y; t � tÞ d3y dt; jxj-N; ð24Þ

where the integration is over all values of the retarded time t and the fluid region where the
vorticity xa0: There are no contributions from surface integrals over the wall and cavity, on
which the fluid normal component of velocity and the normal derivative of G both vanish.
It follows from this result that only the y-dependent part of the Green’s function (23) need be

used in Eq. (24). Therefore, for small Mach numbers and an acoustically compact source flow, the
acoustic pressure given by Eq. (24) can be reduced to the form

pE
r0

ð2pÞ2ð1þ M cos yÞjxj

Z
ðx4vÞðy; tÞ 


@

@y

Z
N

�N

j�ðyÞ k0 sinðk0dÞ
cosfk0ðd þ cþ ik0A=2pÞg

�

þik0
x

jxj
�M

� �

 Y

�
e�ioft�t�ðjxj�M
xÞ=c0g do d3y dt; jxj-N: ð25Þ

3.3. Leading edge Kutta condition

In a typical oscillatory cavity flow the region within, above and downstream of the cavity is
filled with vorticity generated by shedding, principally from the leading edge region of the cavity.
The length scales of the unsteady hydrodynamic motions induced by this vorticity are comparable
to the cavity length L; but the characteristic extent of a coherent region of vorticity is usually very
much smaller. This means that the main contributions to the volume integral in Eq. (25) are from

those regions where rj� and rYj ðj ¼ 1; 3Þ vary rapidly, since
R
ðx4vÞðy; tÞ d3yB0 in regions
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where rj� and rYj can be regarded as constant or as varying very slowly relative to the length

scale of the vorticity.
It follows that the cavity edges at which rj� and rYj become infinite are the main sources of

the cavity radiation, and a good estimate of the value of the integral can therefore be obtained by
expanding these derivatives about these edges. In doing this we can explicitly discard any
contributions from the leading edge of the cavity, because the Kutta condition ensures that
acoustic excitation by cavity vorticity interacting with this edge is inhibited by the shedding of
fresh vorticity [2,3,30–32]. Similarly, the contributions from the side edges of the cavity (parallel to
the mean flow direction) are small, because the vortex source x4v convects predominantly in the
mean flow direction so that its interaction with the edge is effectively invariant with time (i.e. it is
‘silent’). We therefore conclude, in accordance with all previous observations, that it is primarily
the trailing edge of the cavity that is responsible for the radiated sound.
Recall that Yj ð j ¼ 1; 3Þ may be interpreted as the velocity potential of a uniform flow over the

cavity in the j-direction. This means that jrY3j{jrY1j at the cavity trailing edge, and therefore
that the contribution from Y3 in Eq. (25) can be discarded. If we now introduce a ‘strip theory’
approximation for Y1 in the immediate vicinity of the edge, by equating it to the corresponding
velocity potential for flow over a two-dimensional cavity, which is readily found by conformal
mapping, we find (for details see Ref. [3])

Y1ðyÞBC1L
1=3Reðz2=3Þ where z ¼ y1 �

L

2
þ iy2 and C1 ¼

3

2

ð1� mÞ
6EðmÞ

 �1=3
; ð26Þ

where m is the solution of the equation

Kð1� mÞ � Eð1� mÞ
EðmÞ

¼
d

L
ð27Þ

and KðxÞ ¼
R p=2
0 dl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xsin2l

p
; EðxÞ ¼

R p=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xsin2l

p
dl ð0oxo1Þ are complete elliptic

integrals [33].
A similar strip-theory calculation reveals that near the trailing edge

j�ðyÞBC2Y1ðyÞ; C2 ¼ 2
EðmÞ

4pð1� mÞ

 �1=3
: ð28Þ

Hence, Eq. (25) becomes

pE
r0

ð2pÞ2ð1þ M cos yÞjxj

Z
ðx4vÞðy; tÞ 


@Y1

@y
ðyÞ d3y

�
Z

N

�N

k0
C2 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg

�

þ iðcos y� MÞ
�
e�ioft�t�ðjxj�M
xÞ=c0g do dt; jxj-N; ð29Þ

where Y1 is given by Eq. (26).
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3.4. Physical interpretation

The first and second terms in the large brackets of Eq. (29) correspond respectively to monopole
and dipole radiation from the cavity. The monopole character of the first term should be obvious
from the discussion in Section 3.1. To understand the dipole nature of the second term note first
that Eq. (29) is the acoustic pressure as measured by an observer fixed relative to the cavity, and
therefore moving at speed U in the negative x1 direction relative to the mean stream. Let R be the
vector position relative to the cavity of an observer in a reference frame moving with the fluid at

the time of emission of the arriving sound. For such an observer the cavity appears to translate at
speed U in the negative x1 direction. The co-ordinate systems x and R are related by (see Fig. 2)
x ¼ RþMR; since an observer fixed relative to the fluid moves a distance U � ðR=c0Þ in the x1
direction relative to the cavity during the time of travel R=c0 of the sound from the cavity to the
observer. The following relations are now easily derived for small M:

jxj �M 
 x ¼ jRj; jxj ¼ jRjð1þ M cosYÞ; cos y� M ¼
cosY

ð1þ M cosYÞ
; ð30Þ

where Y is the angle between the observer direction and the mean flow direction at the time of
emission of the sound.
Making these substitutions in Eq. (29) we find, for small M;

pE
r0

ð2pÞ2ð1þ M cosYÞ2jRj

Z
ðx4vÞðy; tÞ 


@Y1

@y
ðyÞ d3y

�
Z

N

�N

k0
C2 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg
þ

i cosY
ð1þ M cosYÞ

� �
� e�ioft�t�jRj=c0g do dt; jRj-N; ð31Þ

where Y1 is given by Eq. (26). This formula represents the radiation measured by a fixed observer
from a uniformly translating cavity as being equal to the sum of a monopole amplified by the
familiar two powers of the Doppler factor 1=ð1þ M cosYÞ together with a surface interaction
dipole magnified by three Doppler factors (cf. [34]).
The strengths of the monopole and dipole sources are both determined by the value of the

integral

FðtÞ ¼ r0

Z
ðx4vÞðy; tÞ 


@Y1

@y
ðyÞ d3y; ð32Þ
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which is just the force exerted on the cavity in the x1 direction (i.e. the cavity drag) when the
unsteady flow in the vicinity of the cavity is regarded as incompressible [3]. Only the unsteady
component of the drag actually contributes to the radiation, and it may therefore be assumed that
the mean component of the drag has been excluded, and that henceforth F ðtÞ refers only to the
fluctuating part, having zero mean value. Then, for example, Eq. (29) becomes

pE
1

2pð1þ M cos yÞjxj

Z
N

�N

#FðoÞk0
C2 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg
þ iðcos y� MÞ

� �
� e�ioft�ðjxj�M
xÞ=c0g do; jxj-N; ð33Þ

where

#FðoÞ ¼
1

2p

Z
N

�N

F ðtÞeiot dt ð34Þ

is the Fourier transform of the fluctuating drag.

4. Numerical illustration

4.1. Acoustic pressure frequency spectrum

The unsteady drag F ðtÞ may be assumed to be a stationary random function of the time, whose
(‘two-sided’) spectrum CðoÞ; say, satisfies

/F ðoÞF�ðo0ÞS ¼ CðoÞdðo� o0Þ; ð35Þ

where the angle brackets /S represent a time or ensemble average, and the asterisk denotes
complex conjugate. For the low Mach number flows encompassed by the present theoryCðoÞ can
be found from measurement or by numerical simulation of the essentially incompressible cavity
flow. When known it can be used in conjunction with Eq. (33) to calculate the farfield acoustic
pressure frequency spectrum, which will be denoted by Fðo;xÞ; and defined such that

/p2ðx; tÞS ¼
Z

N

0

Fðo;xÞ do: ð36Þ

Thus, using Eq. (33) and definition (35), we find

Fðo; xÞE
CðoÞk20

2p2ð1þ M cos yÞ2jxj2
C2 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg
þ iðcos y� MÞ

����
����
2

; jxj-N: ð37Þ

This formula gives the frequency dependence with respect to an observer fixed relative to the
cavity. If the cavity is attached to a moving body, and the observer is at rest relative to the fluid,
the observed frequency O will have the Doppler shifted value

O ¼
o

1þ M cosY
; ð38Þ
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so that if /p2ðR; tÞS ¼
R
N

0 FðO;RÞ dO; then

FðO;RÞE
CðoÞk20

2p2ð1þ M cosYÞ3jRj2
C2 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg
þ

i cosY
ð1þ M cosYÞ

����
����
2

; jRj-N; ð39Þ

in which o and k0 ¼ o=c0 are defined in terms of O as in Eq. (38).

4.2. Analytical model for shear layer mode radiation

To illustrate predictions of Eq. (37) a simple yet mathematically tractable model will now be
considered for a shallow cavity subject to shear layer mode excitation. The principal aerodynamic
sources divðx4vÞ on the right of Eq. (5) are then confined to the region above the cavity mouth.
In a first approximation the flow is parallel to the x1 direction, so that the main contribution to
the drag integral (32) (wherein Y1 is given approximately by Eq. (26)) is determined by the
spanwise component o3 of the vorticity.
We therefore write

ðx4vÞðy; tÞEj
Z

N

�N

Fðk; k>;o; y2Þeiðky1þk>y3�otÞ dk dk> do; y2 > 0; jy3jo
b

2
; ð40Þ

where j is a unit vector in the x2 direction, normal to the plane of the wall, and Fðk; k>;o; y2Þ
determines the distribution across the shear layer of harmonic constituents of the unsteady shear
flow of frequency o and with streamwise and spanwise wavelengths, respectively, equal to 2p=k

and 2p=k>: Inserting this formula into the integral of Eq. (32), and using the local approximation

(26) for Y1; the y1-integral is readily evaluated to yield the Fourier transform #FðoÞ of the unsteady
drag in the form

#FðoÞ ¼
C1Gð23ÞL

1=3ffiffiffi
3

p r0

Z
Fðk; k>;o; y2Þ

ðk � i0Þ2=3
eiðk>y3�p=3Þ�jkjy2 dk dk> dy2 dy3; ð41Þ

where the notation ‘�i0’ implies that the branch cut for ðk � i0Þ2=3 is to be taken from k ¼ 0 to
þiN in the upper half-plane.
This result can be cast in a more useful form in terms of the hydrodynamic pressure fluctuations

ps; say, that the same flow would exert on the rigid wall in the absence of the cavity. This is usually
called the ‘blocked surface pressure’, and in a first approximation may be identified with the
(measurable) wall surface pressure fluctuations just downstream of the cavity. At low Mach
numbers we can regard this pressure as that generated by the shear layer vorticity when the flow is
incompressible, and it is therefore determined by the incompressible form of Eq. (4),

r2B ¼ �divðx4vÞ; x2 > 0 where ps ¼ r0B on x2 ¼ 0: ð42Þ

When x4v is given by Eq. (40) a routine calculation [3] yields

ps ¼
Z

N

�N

#psðk; k>;oÞeiðky1þk>y3�otÞ dk dk> do; ð43Þ

where

#psðk; k>;oÞ ¼
r0
2

Z
N

0

Fðk; k>;o; y2Þe�fk2þk2>g1=2y2 dy2: ð44Þ
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Now kBo=Uc at those values of the wave number k where the blocked pressure Fourier
amplitude #psðk; k>;oÞ is significant. Because the motion over the cavity can be regarded as locally
two-dimensional, the corresponding typical values of the spanwise wave number k>{k: Thus,

fk2 þ k2>g1=2 can be replaced by jkj in the exponential of Eq. (44), and it is then deduced from
Eq. (41) that

#FðoÞE
2C1Gð23ÞL

1=3ffiffiffi
3

p Z
#psðk; k>;oÞ

ðk � i0Þ2=3
eiðk>y3�p=3Þ dk dk> dy3: ð45Þ

For stationary random flow we also have [3]

/ #psðk; k>;oÞ #p�s ðk
0; k0

>;o0ÞS ¼ Pðk; k>;oÞdðk � k0Þdðk> � k0
>Þdðo� o0Þ; ð46Þ

where Pðk; k>;oÞ is the blocked pressure wave number frequency spectrum. Hence, by forming
the product / #FðoÞ #F�ðo0ÞS from Eq. (45), using Eq. (46), and making the further assumption that
the spanwise correlation length of the unsteady motions is small compared to the cavity width b;
we deduce from definition (35), that

CðoÞE
8pC2

1G
2ð2
3
ÞbL2=3

3

Z
N

�N

Pðk; 0;oÞ dk

jkj4=3
; ð47Þ

and therefore that the far field acoustic pressure spectrum (37) can be written as

Fðo;xÞE
4C2

1G
2ð2
3
ÞbL2=3k20

3pð1þ M cos yÞ2jxj2
C2 sinðk0dÞ

cosfk0ðd þ cþ ik0A=2pÞg
þ iðcos y� MÞ

����
����
2

�
Z

N

�N

Pðk; 0;oÞ dk

jkj4=3
; jxj-N: ð48Þ

The functional form of Pðk; 0;oÞ can, in principle, be estimated from measurements of the wall
pressure fluctuations just downstream of the trailing edge of the cavity, provided it is permissible
to assume that the statistical properties of the shear layer motions near the trailing edge of the
cavity are well approximated by those immediately downstream of the cavity.
As an alternative approximate procedure, however, it will be assumed that Pðk; 0;oÞ is sharply

peaked at k ¼ o=Uc; which is the expected behavior when the dominant vortical disturbances
convect at speed Uc: The integral in Eq. (48) may then be evaluated by replacing jkj by o=Uc in the

denominator, and setting c3FppðoÞ=p ¼
R
N

�N
Pðk; 0;oÞ dk; where FppðoÞ is the frequency spectrum

of the wall blocked pressure fluctuations, and c3{b is the spanwise correlation length. Therefore,

Fðo; xÞE
4C2

1G
2ð2
3
ÞbL2=3

3p2ð1þ M cos yÞ2jxj2
c3k20FppðoÞ

ðo=UcÞ
4=3

C2 sinðk0dÞ
cosfk0ðd þ cþ ik0A=2pÞg

þ iðcos y� MÞ
����

����
2

;

jxj-N: ð49Þ

Consider a case (typical of low Mach number flow over a shallow cavity) where the pressure
fluctuations near the cavity peak at the frequency of the second Rossiter mode, near fL=U ¼ 1:
Let the functional form of FppðoÞ be approximated by the following empirical formula [3] for
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turbulent boundary layer flow:

FppðoÞðU=d�Þ

ðr0v
2
�Þ
2

E
ðod�=UÞ2

fðod�=UÞ2 þ a2pg
3=2

; ap ¼ 0:12; c3E
1:4Uc

o
: ð50Þ

In this formula d� is the effective displacement thickness of the boundary layer flow, but will be
assigned the value

d� ¼
Lap

p
ffiffiffi
2

p ; ð51Þ

to ensure that the spectral peak occurs at f L=U ¼ 1: The velocity v� is the nominal friction
velocity of the wall flow, but its precise value is not required for the present illustrations.
In non-dimensional form we may now write

Fðo;xÞðU=d�Þ

ðr0v
2
�Þ
2ðL=jxjÞ2

,
5:6C2

1G
2ð2
3
Þ

3p2
d�
L

� �1=3
b

L

� �
Uc

U

� �7=3

E
M2ðod�=UÞ5=3

ð1þ M cos yÞ2fðod�=UÞ2 þ a2pg
3=2

C2 sinðk0dÞ
cosfk0ðd þ cþ ik0A=2pÞg

þ iðcos y� MÞ
����

����
2

: ð52Þ

Thus, the mean square acoustic pressure scales as ðr0U
2Þ2M2; and the overall acoustic intensity

varies as r0U
3M3: This is the expected behavior for an aeroacoustic dipole source; in our case the

source is modified by the cavity monopole, but we shall see below that the maximal strength of the
monopole is of the same dipole order.
Typical plots of the far field acoustic spectrum

10� log10
Fðo; xÞðU=d�Þ

ðr0v
2
�Þ
2ðL=jxjÞ2

,
5:6C2

1G
2ð2
3
Þ

3p2
d�
L

� �1=3
b

L

� �
Uc

U

� �7=3( )

are illustrated in Figs. 3 and 4, respectively, forM ¼ 0:01; 0:1 in the radiation direction y ¼ 30�: It
is assumed that

Uc

U
¼ 0:5;

b

L
¼ 1;

d

L
¼ 0:5 for which C1 ¼ 0:69; C2 ¼ 1:02: ð53Þ

Also shown for comparison is the model shear layer mode blocked pressure spectrum Fpp

normalized as in Eq. (50), with a broad peak at the second Rossiter frequency ðf L=UE1Þ:
The very low Mach number case M ¼ 0:01 is characteristic of underwater applications,

provided the cavity walls are sufficiently rigid that structurally driven cavity modes are not
important. The monopole peak occurs at the relatively high Strouhal number f L=UB25; and its
contribution is smaller than that of the spectrum maximum near the Rossiter mode f L=U ¼ 1: At
Strouhal numbers less than 10, the radiation is dominated by the drag dipole source—Mach
number (‘Doppler’) effects are unimportant when M ¼ 0:01; and this implies that the radiation
directivity has the usual dipole peaks in the upstream and downstream directions, and that there is
a radiation null in the direction normal to the wall. In practice the source spectrum Fpp probably

decays much faster than the boundary layer analog model (50) used in this calculation, and this
would tend to suppress even further the higher frequency monopole radiation.
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The situation is very different at the higher Mach number M ¼ 0:1 (Fig. 4). The cavity mode
resonance frequency f L=UB2:5; and the monopole peak is several dB above the dipole peak at
the Rossiter frequency ðf L=U ¼ 1Þ; although it should be observed that the magnitude of this
peak scales approximately in proportion to ðr0U

2Þ2M2; as for the dipole sound. The presence of
this peak in the lower frequency region has a profound effect on the radiation directivity, as
indicated in Fig. 5, in which the magnitude of

Fðo;xÞðU=d�Þ

ðr0v
2
�Þ
2ðL=jxjÞ2

is plotted against the radiation direction y for f L=U ¼ 0:5; 1; 1:5; 2; 2:5; all curves being to the
same scale. In Fig. 4 it can be seen that the lowest frequency f L=U ¼ 0:5 is sufficiently far from
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Fig. 3. Acoustic pressure spectrum 10� log10
Fðo; xÞðU=d�Þ

ðr0v
2
�Þ
2ðL=jxjÞ2

,
5:6C2

1G
2ð2
3
Þ

3p2
d�
L

� �1=3
Uc

U

� �7=3( )
; (——) defined by

Eq. (52) for conditions (53) when M ¼ 0:01; y ¼ 30�: Also shown is the corresponding blocked pressure spectrum

10� log10ðFppðU=d�Þ=ðr0v
2
�Þ
2Þ (- - - - , Eq. (50)) peaking at the second Rossiter mode f L=UB1; and the cavity

‘monopole’ radiation ð� � �Þ:

Fig. 4. Acoustic pressure spectrum 10� log10
Fðo; xÞðU=d�Þ

ðr0v
2
�Þ
2ðL=jxjÞ2

,
5:6C2

1G
2ð2
3
Þ

3p2
d�
L

� �1=3
Uc

U

� �7=3( )
; (——) defined by

Eq. (52) for conditions (53) when M ¼ 0:1; y ¼ 30�: Also shown is the corresponding blocked pressure spectrum

10� log10ðFppðU=d�Þ=ðr0v
2
�Þ
2Þ (- - - - , Eq. (50)) peaking at the second Rossiter mode f L=UB1; and the cavity

‘monopole’ radiation ð� � �Þ:
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the monopole peak to be effectively uninfluenced by the monopole. The directivity is therefore
that of a dipole, peaking in the upstream and downstream directions, but subject to Doppler
amplification by the mean flow, which causes the level to be larger in upstream directions. The
dotted curves in Figs. 3 and 4 represent the field of the monopole cavity mode alone, when the
term iðcos y� MÞ on the right of Eq. (52) is deleted. This shows that the influence of the
monopole is confined to the immediate vicinity of the resonance frequency. At higher frequencies
the detailed directivity is determined by phase interference between the monopole and dipole, as
well as the differences in the Doppler effects on both sources. Thus, at the spectral peak at
f L=U ¼ 2:5 this interference produces strong radiation preferentially in the downstream
direction.
An overall picture of the farfield radiation is obtained by integrating the spectrum (52) with

respect to o: The integral is convergent at o ¼ þN; but contributions at very high frequencies are
probably not representative. Therefore we depict in Fig. 6 forM ¼ 0:05; 0:1 the radiated pressure
directivity when the integration is confined to the Strouhal number range 0:1of L=Uo10: In
both cases this includes the frequency range in which the monopole is important. At the lower
Mach number the directivity resembles that of a dipole, but peaking in the downstream direction
owing to modifications produced by the monopole resonant response. The situation at M ¼ 0:1 is
similar except that there is significant radiation in directions normal to the wall.
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Fig. 6. Directivity 10� log10ð/p2ðx; tÞS=p20Þ of overall sound radiated in the frequency range 0:1of L=Uo10 for
M ¼ 0:05; 0:1 for the cavity defined by Eq. (53).

Fig. 5. Directivity
Fðo; xÞðU=d�Þ

ðr0v
2
�Þ
2ðL=jxjÞ2

for a cavity of dimensions (53) for M ¼ 0:1 and f L=U ¼ 0:5; 1; 1:5; 2; 2:5 when

the shear layer blocked pressure spectrum Fpp peaks at the second Rossiter mode f L=UB1:
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5. Conclusion

At very low Mach numbers the aerodynamic sound generated by nominally steady flow over a
shallow wall cavity is dominated by dipole radiation produced by the unsteady drag force, the
radiation peaking in directions upstream and downstream of the cavity. The drag force fluctuations
are produced by the interaction of vorticity, in an unstable mean shear layer or periodically ejected
from the cavity, with the trailing edge of the cavity. It is the principal source in underwater
applications where M rarely exceeds about 0.01, provided it is permissible to ignore structural
resonances associated with hydrodynamic forcing of flexing cavity walls. In such cases the lowest,
rigid body cavity resonance frequency (the ‘Helmholtz’ resonance frequency) tends to be large, and
beyond the range where it can be effectively excited by the flow. At higher Mach numbers,
however, the resonance frequency lies closer to the relevant ‘Rossiter’ modes of the unstable
hydrodynamic flow over the cavity, and can then make a significant contribution to the radiation.
The cavity resonance produces a monopole contribution to the sound and is governed by

compressible effects in the cavity region. At low Mach numbers these are usually very weak, such
that whereas the intensity of the drag dipole exhibits the usual aeroacoustic dipole strength

Br0U
3M3; the strength of the compressible-dominated, cavity source would vary asBr0U

3M5:
However, when significant excitation of the cavity resonance occurs, say at Mach numbers
exceeding about 0.05, the unsteady drag fluctuations also excite the cavity mode with a radiation
intensity of the same order as the dipole sound. At these higher Mach numbers the radiation
directivity at a frequency close to the cavity resonance is governed by the correlated interference
between the dipole and monopole fields; at frequencies far removed from the resonance the
directivity reverts to that of an isolated dipole. The overall sound power now tends to be
uniformly distributed in direction; in particular there is significant radiation in the direction
normal to the wall, which is otherwise a radiation null for the dipole alone.
The detailed results given in this paper are for a moderately shallow cavity dominated by shear

layer mode instabilities, of the kind usually associated with the Rossiter modes. However, the
Green’s function developed in Section 3 can also be used to determine the cavity radiation for very
shallow cavities, where an unsteady hydrodynamic ‘wake flow’ wets the cavity base, and the
motion is characterized by the quasi-periodic ejection of cavity vorticity into the main flow. This
ejection produces a violent fluctuation in the drag, which determines both the dipole and
monopole sources of sound.
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