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Abstract

Depending on the values of the parameters identified, the long-term behaviour of s.d.o.f. viscous
elasto-plastic oscillator under sinusoidal loadings may be periodic with or without intermediate unloading,
or elastic shakedown (including purely elastic). A new phase-plane estimation method for the steady
state elasto-plastic solutions is presented. We identify three dimensionless ratios, namely damping
ratio z; force ratio rf and frequency ratio rw; as well as an elastic-phase duration variable y: The
new estimate offers closed-form formulae for the force ratio rf and for the ductility ratio m in terms
of z; rw and y: Applying numerical method to the function rf ¼ rf ðz; rw; yÞ; we can obtain the
inverse function y ¼ yðz; rw; rf Þ; such that the variation of m in terms of z; rw and rf can be evaluated.
Alternatively, for a given ductility ratio, we can solve m ¼ mðz; rw; yÞ numerically for y and then obtain
the curves of rf versus rw to meet specified ductility ratio. The proposed method can estimate the
steady state responses for any applied load and forcing frequency. The results calculated are in very
good agreement with the exact time-marching solutions. A simple criterion of parameters values for
elastic shakedown is derived, by which we can calculate the maximum driving force amplitude to avoid
structures oscillating in the plastic range. It is found that there exists a best driving force amplitude for
maximizing dissipation efficiency. The distribution of periodic points with and without intermediate
unloading in the parametric plane ðrw; 1=rf Þ for given damping ratio is clarified. The intermediate unloading
motion region locates within the range of rwp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
=3; and its size decreases when damping ratio

increases.
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1. Introduction

Structures may respond linearly elastically under moderately small loading; however, when
subjected to severe excitations, they would respond inelastically and exhibit hysteretic behaviour.
Hysteretic models have been used for the inelastic design of structures. Recently, some kinds of
non-linear hysteretic isolators have gotten a lot of applications due to their good hysteretic
property to dissipate input energy. Both the analytical modelling and response prediction of
hysteretic systems have been an area of ever-increasing interest.
The most commonly used model for describing the non-linear hysteretic restoring force–

displacement behaviour is the bilinear elasto-plastic system [1–5], which includes perfectly elasto-
plastic system [6–9] as a special case upon letting the post-yield stiffness be zero. For most of the
proposed non-linear models, the differential equations of motion are used to analyze the
responses of the modelled structures under external loadings. Those equations are usually solved
by using step-by-step integration techniques to obtain the time histories of responses. However,
for engineering purpose we may not specially concern the time histories of responses. Rather, it is
the extreme values of the responses that convey crucial information about the system, which are
closely related to the system behaviour in the steady state. Early, Caughey [1], according to the
work of Kryloff and Bogoliuboff, has employed the slowly varying parameters method to present
an analytic solution for the steady state response of the bilinear hysteretic oscillator to sinusoidal
excitation. However, his estimation in the moderately low-frequency range is not accurate [10].
Since then more contributions to this vibration issue have been made; see, e.g., Capecchi and
Vestroni [11,12], DebChaudhury [13], Badrakhan [14], Pratap and Holmes [15], and Reddy and
Pratap [16]. Capecchi and Vestroni [11,12] have extended the same approach to study the steady-
state response of more general yielding oscillators to harmonic excitation. DebChaudhury [13] has
provided a piecewise linear approximation method, and Badrakhan [14] a polynomial
approximation method to obtain steady state solution of the bilinear oscillator. Reddy and
Pratap [16] proposed a variable equivalent viscous damping method for viscous bilinear oscillator.
These methods should assume that either the steady state response is harmonic, or the response is
not too large, or the bilinearity of the system does not deviate from the linearity too much.
Furthermore, as pointed out by Miller and Butler [6] and Capecchi [8], the occurrence of
intermediate unloading in steady state renders some of the above approximate methods unable to
model.
In this paper a more concise formulation of perfectly elasto-plastic model is presented and the

dynamic responses of the single-degree-of-freedom (s.d.o.f) viscous elasto-plastic structure under
external loading is treated and the exact solutions of the responses are derived for periodic
loadings. In order to give a very accurate estimation of the steady state responses, a phase-plane
matching method is employed to derive essentially exact formulae, where the only approximation
is finding the roots of a single transcendental algebraic equation about the elastic-phase duration
variable y; which dividing by forcing frequency measures the time spent in the elastic phase per
half cycle. It would be clear that all the complicated behaviour of the considered system in the low
frequency ratio range can be explained by investigating the distribution of the roots of y: This
exact approach makes investigation the influence of the system parameters easy. However, we
warn of the possible complication of the resulting formulae due to the inclusion of the viscous
damping term in the equation of motion.
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2. Damped perfectly elasto-plastic structure

2.1. Equation of motion

Let us consider a s.d.o.f. structure subjected to an external loading pðtÞ: The equation of motion
can be written as

m .xðtÞ þ c ’xðtÞ þ rðtÞ ¼ pðtÞ: ð1Þ

Here, t is time and a superposed dot represents a time differentiation; m; c and r are, respectively,
the mass, damping coefficient and constitutive force of the structure; and xðtÞ is the displacement
dependent on time. This oscillator as schematically shown in Fig. 1 is called a viscous elasto-plastic
oscillator, which comprises four parts: the mass, the viscous damping device, the elastic spring,
and the Saint-Venant slider. The last two will be modelled below.

2.2. Perfectly elasto-plastic model

In this paper the non-linearity of the structure is reflected in a perfectly elasto-plastic model for
the relationship of constitutive force and displacement, of which the following postulations are
usually employed [17]:

’x ¼ ’xe þ ’xp; ð2Þ

’r ¼ k ’xe; ð3Þ

’lr ¼ ry ’xp; ð4Þ

jrjpry; ð5Þ

’lX0; ð6Þ

jrj’l ¼ ry
’l: ð7Þ

The two constants, namely the elastic stiffness k and the yield strength ry; are assumed to be
positive. Here x; xe; xp and r are, respectively, the displacement, elastic displacement, plastic
displacement and constitutive force; l is a scalar called the equivalent plastic displacement, i.e.,
lðtÞ ¼

R t

0 j ’x
pðxÞj dx:
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Fig. 1. Mechanical apparatus for the viscous elasto-plastic oscillator subjected to external harmonic loading.
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2.3. Switch of elasticity and plasticity

Combining Eqs. (2)–(4), we have

’r þ
k

ry

’lr ¼ k ’x; ð8Þ

which together with the complementary trios (5)–(7) enable the model to possess two elastic–
plastic switching criteria as follows:

’l ¼
1

ry

r ’x > 0 if jrj ¼ ry and r ’x > 0; ð9Þ

’l ¼ 0 if jrjory or r ’xp0: ð10Þ

According to the complementary trios (5)–(7), there are just two phases: (i) ’l > 0 and jrj ¼ ry; and
(ii) ’l ¼ 0 and jrjpry: From criteria (9) and (10) it is clear that (i) corresponds to the plastic phase,
while (ii), to the elastic phase.

2.4. Two-phase linear system

Note that

rðtÞ ¼ rðtiÞ ð11Þ

in the plastic phase, if ti is chosen to be the switched-on time, hence, Eq. (1) becomes

m .xðtÞ þ c ’xðtÞ ¼ pðtÞ � rðtiÞ: ð12Þ

In the elastic phase, i.e., ’l ¼ 0; Eq. (4) requires xp to be frozen and Eqs. (2) and (3) together
reduce to ’r ¼ k ’x; integrating of which from ti to t yields

rðtÞ ¼ rðtiÞ þ k½xðtÞ � xðtiÞ�; ð13Þ

such that Eq. (1) changes to

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ pðtÞ � rðtiÞ þ kxðtiÞ: ð14Þ

During the elastic phase, the motion of the viscous elasto-plastic oscillator is described by
Eq. (14) supplemented with Eq. (13), and we call it elastic motion. Conversely, in the plastic phase
the motion of the viscous elasto-plastic oscillator is governed by Eq. (12) supplemented with
Eq. (11), and we call it plastic motion. Indeed, it is a two-phase linear system with an elastic–plastic
switch to decide which motion occurs in the subsequent time interval.

3. Estimation of steady state responses

In the following the driving force is taken to be harmonic with a single driving frequency od:

pðtÞ ¼ p0 sinodt; ð15Þ
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where p0 is the amplitude of periodic excitation on mass. The solutions of Eqs. (12) and (14) under
the above loading are standard, which together with the determinations of phase transition points
are relegated into the appendix.
For hysteretical oscillator the motion is usually transformed from one type motion to another

type motion and the transitions occur frequently and regularly. The steady state analyses
employed in the elastic system are no longer suitable for the dynamic analyses of the elasto-plastic
system, since the frequent switch renders the responses not always to stay in one of the two
motions. But, for engineering purposes we may not be especially concerned with the time histories
of the responses. Rather, it is their extreme values that convey crucial information, for they are
related to the maximum responses that structures must be able to endure. In this regard with the
aid of the time-marching solutions we plot some extremal responses of the structure in Fig. 2 with
solid lines. We let D ¼ ðxmax � xminÞ=2 denote the oscillating amplitude in the steady state, and z;
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Fig. 2. The comparison of the ductility ratio between exact time-marching solution and the new estimate for

(a) z ¼ 0:02 and five values of rw; (b) z ¼ 0:02 and six values of rf ; (c) rw ¼ 0:5 and five values of z; and (d) rf ¼ 6 and

five values of z: —–, exact; \; estimated.
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rf and rw defined in Eqs. (A.3), (A.7) and (A.8) are, respectively, the damping ratio, force ratio and
frequency ratio. For fixed value of z ¼ 0:02; the variations of m with respect to 1=rf are plotted in
Fig. 2(a) with different rwð¼ 0:6; 0:8; 1:1; 1:4; 1:7Þ: Here, m :¼ D=xy with xy ¼ ry=k is usually called
the ductility ratio in the structural engineering field. They show that larger rw leads to smaller m:
For fixed value of z ¼ 0:02; the variations of m with respect to rw are plotted in Fig. 2(b) with
different rf ð¼ 1:25; 2; 4; 6; 8; 10Þ: They show that smaller rf leads to smaller m: For fixed value of
rw ¼ 0:5; the variations of m with respect to 1=rf are plotted in Fig. 2(c) with different zð¼
0:02; 0:06; 0:1; 0:14; 0:2Þ: They show that larger z leads to smaller m: For fixed value of rf ¼ 6; the
variations of m with respect to rw are plotted in Fig. 2(d) with different zð¼ 0:02; 0:06; 0:1; 0:18; 0:3Þ:
They show that larger z leads to smaller m: But for larger rw; z gives little influence on m:
After finishing the estimation of steady state responses, we will return to Fig. 2 by comparing

the estimated results with that calculated from the time-marching solutions. Before doing this we
first note that there are two closed loops in the steady state responses for hysteretic oscillator:
hysteretic loops in the plane ðx; rÞ; and limit cycles in the plane ðx; ’xÞ: Under what conditions of
the parameters and inputs that the loops exist? Second, it can be seen that the frequency response
curves as shown in Fig. 2(b) are smooth for rf ¼ 2; 4; 6; 8; 10; and when rw approaches zero the
ductility ratios (m’s) under these force ratios become unbounded, but for rf ¼ 1:25 the frequency
response curve is not so smooth and exhibits several peaks, and even when rw approaches zero the
ductility ratio is bounded. Third, the mean displacement xm ¼ ðxmax þ xminÞ=2 is sensitive near the
point rw ¼ 0:2: For demonstration we display two calculated examples as shown in Fig. 3 for
undamped case and damped case with z ¼ 0:02: The response curves are subjected to the same
force ratio rf ¼ 1:25 but different frequency ratios rw ¼ 0:2 (as shown with thick solid lines) and
rw ¼ 0:19 (as shown with thin solid lines) in Figs. 3(a)–(d), and od=o ¼ 0:2 (as shown with thick
solid lines) and od=o ¼ 0:19 (as shown with thin solid lines) in Figs. 3(e)–(h). It can be seen that
little difference of the frequency ratio leads to very different mean displacements as shown in
Figs. 3(a) and (e). However, their steady state responses are similar after a translation of
displacement. This fact reveals that for the perfectly viscous elasto-plastic oscillator, we may
develop estimation method for predicting the oscillation amplitude, but not for the mean
displacement. We also need to mention the possible occurrence of intermediate unloadings in the
steady state for certain parameters as shown in Figs. 3(c), (d), (g) and (h).
Miller and Butler [6] have demonstrated that the appearance of intermediate unloading leads to

a reduction of the hysteretic loop size and a deep valley in the frequency response curve. This can
be seen from Fig. 2(b), where near the point rw ¼ 0:2; the frequency response curve with rf ¼ 1:25
has a lower peak. In order to treat the intermediate unloading type behaviour in the steady state,
Miller and Butler [6] and Capecchi [8] have, respectively, introduced one-dimensional iterated
maps in reduced space, and asserted that the appearance of intermediate unloading at certain
parametric point is closely related to the appearance of unstable fixed points at that parametric
point. Below we treat these problems with a more direct method through matching the exact
solutions (orbits) in the phase plane.

3.1. A phase-plane estimation

Now, let us consider a steady state motion of the viscous elasto-plastic oscillator and assume
the phase curve of the steady-state motion in the phase plane ðx; ’xÞ to be symmetrical with respect
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to the point ðxm; 0Þ; where xm is the mean of the displacement in the steady state. Therefore, the
phase curve is closed in the phase plane and it suffices to consider only one half of the curve, say
the upper branch. Referring to Fig. 4(a), let xm þ D denote the maximum displacement of the
steady state motion, t2 the transition time between elastic motion and plastic motion, and t1 the
starting time of elastic motion, so as to match the exact solutions of the steady state response of
the viscous elasto-plastic oscillator. Because of the periodicity of the input and the symmetry with
respect to ðxm; 0Þ of the steady state motion, we may assume

t3 ¼ t1 þ
p
od

; ð16Þ
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Fig. 3. Intermediate unloading motions of the viscous elasto-plastic oscillator were happened for some cases. The last

15 cycles behaviour was shown in (a)–(d), where the responses under z ¼ 0; rf ¼ 1:25; and rw ¼ 0:2 were presented by

thick black lines, and that with the same z and rf but slightly different rw ¼ 0:19 were presented by thin solid lines. The

behaviour shown in (e)–(h) under z ¼ 0:02; rf ¼ 1:25; and od=o ¼ 0:2 were presented by thick black lines, and that with

the same z and rf but slightly different od=o ¼ 0:19 were presented by thin solid lines.
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and estimate the three parameters, namely the amplitude of displacement D; and the time lags t1
and t2:
In the time interval t1ptpt2; the constitutive force in view of Fig. 4(b) is given by

r ¼ �ry þ kðx � xm þ DÞ:

Substituting it into Eq. (1), we obtain

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ ry þ kðxm � DÞ þ p0 sinodt; ð17Þ

whose solution, upon considering the following conditions at t ¼ t1;

x1ðt1Þ ¼ xm � D; ’x1ðt1Þ ¼ 0 ð18; 19Þ

is found to be

x1ðtÞ ¼ exp½�zonðt � t1Þ�½C1 cosoðt � t1Þ þ C2 sinoðt � t1Þ�

þ A1 sinodt � B1 cosodt þ xy þ xm � D: ð20Þ
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Fig. 4. A typical steady state response with (a) limit cycle in the displacement–velocity phase plane, (b) dissipation loop

in the displacement-constitutive force plane; t1; t2; and D are all to be determined.
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Here C1 and C2 as defined in Eqs. (A.10) and (A.11) are now replaced, respectively, by

C1 :¼ B1 cosodt1 � A1 sinodt1 � xy; ð21Þ

C2 :¼
½B1z� A1rw� cosodt1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p �

½B1rw þ A1z� sinodt1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p �
zxyffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p : ð22Þ

Similarly, solving Eq. (1) with its rðtÞ replaced by ry; and using the following conditions at t ¼ t3;

x2ðt3Þ ¼ xm þ D; ’x2ðt3Þ ¼ 0; ð23; 24Þ

x2ðtÞ in the time interval t2ptpt3 can be derived

x2ðtÞ ¼ C4 þ C3 exp½�2zonðt � t3Þ� � A2 sinodt � B2 cosodt �
ry

c
t; ð25Þ

where C3 and C4 as defined in Eqs. (A.15) and (A.16) are now replaced, respectively, by

C3 :¼ A2 sinodt3 �
rw

2z
A2 cosodt3 �

xy

4z2
; ð26Þ

C4 :¼ B2 þ
rw

2z
A2

� �
cosodt3 þ

ry

2zonc
þ

t3ry

c
þ xm þ D: ð27Þ

Both the constitutive force rðtÞ and the external force pðtÞ are continuous at the transition time t2
between the elastic motion and the plastic motion, which due to Eq. (1) renders the acceleration .xðtÞ
to be continuous at the transition time t2: The continuities of ’x and x are obvious for they are
integrations of .x and ’x; respectively. Thus with Eqs. (20), (25) and (16) the following three conditions:

x1ðt2Þ ¼ x2ðt2Þ; ’x1ðt2Þ ¼ ’x2ðt2Þ; .x1ðt2Þ ¼ .x2ðt2Þ ð28230Þ

become the following three equations:

exp
�zy
rw

� �
ðC1 cos %y þ C2 sin %yÞ þ ðA1 þ A2Þ sinodt2 þ ðB2 � B1Þ cosodt2

� A2 sinodt2 � B2 cosodt2 þ C3 1� exp
2zðp� yÞ

rw

� �� �
�

ry

cod
ðp� yÞ � 2D ¼ 0; ð31Þ

� zon exp
�zy

rw

� �
ðC1 cos %y þ C2 sin %yÞ þ ðA1 þ A2Þod cosodt2 þ ðB1 � B2Þod sinodt2

þ o exp
�zy
rw

� �
ðC2 cos %y � C1 sin %yÞ þ

ry

c
þ 2C3zon exp

2zðp� yÞ
rw

� �
¼ 0; ð32Þ

ðz2o2
n � o2Þ exp

�zy

rw

� �
ðC1 cos %y þ C2 sin %yÞ � 2zono exp

�zy
rw

� �
ðC2 cos %y � C1 sin %yÞ

� ðA1 þ A2Þo2
d sinodt2 þ ðB2 � B1Þo2

d cosodt2 � 4C3z
2o2

n exp
2zðp� yÞ

rw

� �
¼ 0; ð33Þ

where
y :¼ odðt2 � t1Þ; 0oypp; ð34Þ

%y :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
rw

y ¼ oðt2 � t1Þ: ð35Þ
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y may be called the elastic-phase duration variable, which when divided by forcing frequency
measures the time spent in the elastic phase per half cycle.
Even though we have taken xm into the consideration at the beginning, fortunately all these

xm’s cancel out and hence the resulting Eqs. (31)–(33) are independent of xm: In principle, we can
combine the three Eqs. (31)–(33) together utilizing numerical method to determine the three
unknowns t1; t2; and D: However, these equations are too complicated to give us proper
information about t1; t2; and D and the influence of parameters values on them. Below we put
these equations into a more concise form such that in terms of the identified parameters the
closed-form representations of t1; t2; and D are available.

3.2. Closed-form formula for force ratio

In Eqs. (32) and (33) if we replace cosodt2 and sinodt2; respectively, by

cosodt2 ¼ cos y cosodt1 � sin y sinodt1; ð36Þ

sinodt2 ¼ sin y cosodt1 þ cos y sinodt1; ð37Þ

we obtain the simultaneous equations for cosodt1 and sinodt1:

#a cosodt1 þ #b sinodt1 ¼ #c; ð38Þ

#d cosodt1 þ #e sinodt1 ¼ #f; ð39Þ

where #a; #b; #c; #d; #e; and #f are dimensionless coefficients given by

#a :¼ð #A1 þ #A2Þrw cos y þ ð #B1 � #B2Þrw sin y � exp
�zy
rw

� �
#A1rw cos %y

þ exp
�zy
rw

� �
zrw #A1 � #B1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y þ exp

2zðp� yÞ
rw

� �
#A2rw; ð40Þ

#b :¼ � ð #A1 þ #A2Þrw sin y þ ð #B1 � #B2Þrw cos y � exp
�zy

rw

� �
#B1rw cos %y

þ exp
�zy

rw

� �
#A1 þ zrw #B1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y � exp

2zðp� yÞ
rw

� �
#B2rw; ð41Þ

#c :¼ �exp
�zy
rw

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y þ

1

2z
exp

2zðp� yÞ
rw

� �
� 1

� �
; ð42Þ

#d :¼ exp
�zy
rw

� �
z #B1 þ rwð1� 2z2Þ #A1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y þ exp

�zy
rw

� �
ð2zrw #A1 � #B1Þ cos %y

� r2wð #A1 þ #A2Þ sin y þ r2wð #B1 � #B2Þ cos y � 2zrw #A2 exp
2zðp� yÞ

rw

� �
; ð43Þ
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#e :¼ exp
�zy

rw

� �
rwð1� 2z2Þ #B1 � z #A1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y þ exp

�zy
rw

� �
ð #A1 þ 2zrw #B1Þ cos %y

� r2wð #A1 þ #A2Þ cos y þ r2wð #B2 � #B1Þ sin y þ 2zrw #B2 exp
2zðp� yÞ

rw

� �
; ð44Þ

#f :¼ �exp
�zy
rw

� �
cos %y þ exp

�zy
rw

� �
zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y � exp

2zðp� yÞ
rw

� �
; ð45Þ

in which

#A1 :¼
rf ð1� r2wÞ

ð1� r2wÞ
2 þ 4z2r2w

; ð46Þ

#B1 :¼
2zrfrw

ð1� r2wÞ
2 þ 4z2r2w

; ð47Þ

#A2 :¼
rf

r2w þ 4z2
; ð48Þ

#B2 :¼
2zrf

rwðr2w þ 4z2Þ
: ð49Þ

Solving cosodt1 and sinodt1 from Eqs. (38) and (39), we obtain

cosodt1 :¼
#c#e � #b #f

#a#e � #b #d
; ð50Þ

sinodt1 :¼
#a #f � #c #d

#a#e � #b #d
: ð51Þ

Substituting them into the identity cos2 odt1 þ sin2 odt1 ¼ 1; we obtain a single equation

ð#c#e � #b #f Þ2 þ ð #a #f � #c #d Þ2 ¼ ð #a#e � #b #d Þ2: ð52Þ

Solving Eq. (52) for rf we obtain

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð#c%e � %b #f Þ2 þ ð %a #f � #c %d Þ2

½ %a%e � %b %d�2

s
; ð53Þ

where %a; %b; %d; and %e are given by the ones defined, respectively, in Eq. (40), (41), (43) and (44) but
their #A1; #B1; #A2 and #B2 replaced, respectively, by the following %A1; %B1; %A2 and %B2:

%A1 :¼
1� r2w

ð1� r2wÞ
2 þ 4z2r2w

; ð54Þ

%B1 :¼
2zrw

ð1� r2wÞ
2 þ 4z2r2w

¼
2zrw

1� r2w
%A1; ð55Þ
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%A2 :¼
1

r2w þ 4z2
; ð56Þ

%B2 :¼
2z

rwðr2w þ 4z2Þ
¼

2z
rw

%A2: ð57Þ

Up to now we have combined three highly transcendental algebraic Eqs. (31)–(33) into a single
scalar equation (53), which specifies the function/relationship of rf ¼ rf ðz; rw; yÞ in the steady state.
Applying numerical method to the function rf ¼ rf ðz; rw; yÞ; we can build up the inverse relation
y ¼ yðz; rw; rf Þ; and as to be done below, the variation of the ductility ratio in terms of z; rw and rf
can be evaluated.
Now we can define the relation between of the elastic-duration variable y and the other

parameters. For each fixed z and rw; we plot the relation between 1=rf and y via Eq. (53) by letting
y to vary in the range ð0; p�: This relation, as shown in Fig. 5(a) which gives curves 1=rf versus y
with z ¼ 0:02 and rw ¼ 1:7; 1:4; 1:1; 0:8; 0:6; is homeomorphic, i.e., dð1=rf Þ=dy > 0; i.e., drf=dyo0:
More precisely, the relation of rf and y is one-to-one and onto.
Conversely, given rf and z we need to solve Eq. (53) for giving the relation between rw and y:

Numerically solving y from Eq. (53) is quite simple, and the calculation can be performed to
arbitrary accuracy. In practice the error tolerance used in finding the roots is 10�10: We may fix

rf within the interval ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2wÞ

2 þ ð2zrwÞ
2

q
;NÞ: When rfo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2wÞ

2 þ ð2zrwÞ
2

q
we can prove
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Fig. 5. (a) The force ratio rf is homeomorphic with y when rw is fixed; we plot the variation of 1=rf with respect to y for

five values of rw: (b) Conversely, when rf is fixed we need to solve y from Eq. (53) for giving the variation of y with

respect to rw for six values of rf : Only the smallest root of y is presented here.
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that the structure is in elastic shakedown, and we search for the relation between rw and y as
shown in Fig. 5(b) with z ¼ 0:02 and rf ¼ 1:25; 2; 4; 6; 8; 10: Here only the smallest solutions of y
were plotted. It can be seen that the curves with rf ¼ 2; 4; 6; 8; 10 are smooth for all rw in the range
ð0; 1:5�; but the one with rf ¼ 1:25 are oscillatory, non-smooth, and having jump in the low
frequency ratio range.

3.3. Closed-form formula for ductility ratio

In Eq. (31) if we substitute Eq. (36) for cosodt2 and Eq. (37) for sinodt2; and then replace
cosodt1 and sinodt1; respectively, by Eqs. (50) and (51) but with their #a; #b; #d; and #e replaced,
respectively, by %a; %b; %d; and %e; we obtain a closed-form representation of m:

2m ¼
#c%e � %b #f

%a%e � %b %d

 !
exp

�zy
rw

� �
z %B1 � rw %A1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y þ %B1 cos %y

" #
þ ð %A1 þ %A2Þ sin y

(

þ ð %B2 � %B1Þ cos y þ
rw %A2

2z
1� exp

2zðp� yÞ
rw

� �� �
þ %B2

�

þ
%a #f � #c %d

%a%e � %b %d

 !
exp

�zy
rw

� �
z %A1 þ rw %B1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p sin %y þ %A1 cos %y

" #
þ ð %A1 þ %A2Þ cos y

(

þ ð %B1 � %B2Þ sin y �
rw %B2

2z
1� exp

2zðp� yÞ
rw

� �� �
� %A2

�
þ 1�

p� y

2zrw

� exp
�zy

rw

� �
cos %y þ

zffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin %y

" #
þ

1

4z2
exp

2zðp� yÞ
rw

� �
� 1

� �
: ð58Þ

It can be seen that m depends explicitly on three parameters z; rw and y; and its dependence on z; rw
and rf can be realized through the relation y ¼ yðz; rw; rf Þ:
We are interested to know the variation of m with respect to rf as well as to rw for some fixed

values of z: For fixed values of z and rw; the variation of m with respect to rf can be evaluated by
substituting the y’s in Fig. 5(a) into Eq. (58). The response curves are shown in Fig. 2(a) with solid
square black points for z ¼ 0:02 and rw ¼ 0:6; 0:8; 1:1; 1:4; 1:7: Conversely, substituting the y’s in
Fig. 5(b) into Eq. (58) the variation of m with respect to rw are plotted for z ¼ 0:02 and rf ¼
1:25; 2; 4; 6; 8; 10 as shown in Fig. 2(b) with solid square black points. Similarly, the variations of m
with respect to 1=rf are displayed in Fig. 2(c) with solid square black points for rw ¼ 0:5 and
z ¼ 0:02; 0:06; 0:1; 0:14; 0:2: The variations of m with respect to rw are displayed in Fig. 2(d) with
solid square black points for rf ¼ 6 and z ¼ 0:02; 0:06; 0:1; 0:18; 0:3:
Now we compare the estimated results (marked with solid square black points) with the exact

results (displayed with solid lines) calculated by the exact time-marching solutions as shown in
Eqs. (A.1) and (A.12) for different rw’s in Fig. 2(a), for different rf ’s in Fig. 2(b) and for different
z’s in Figs. 2(c) and 2(d). From these four plots we confirm that formula (58) is very accurate to
estimate the oscillating amplitude of the viscous elasto-plastic oscillator in the steady state.
The ductility ratio is an important factor that influences the selection of suitable yield strength

of the structure. We usually require the ductility ratio must to be smaller than the design ductility
ratio, and such that the structure can survive without failure when subjected to certain external
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loading. Now, we fix the value of m and attempt to search for the relation between rf and rw that
renders the structures able to respond with such m: Given m; we solve y from Eq. (58) by letting rw
to vary. Then by substituting the above y’s and rw into Eq. (53), we can obtain the curves of rf
versus rw as shown in Fig. 6 for different mð¼ 5; 10; 15; 20; 25; 30Þ:

3.4. Dissipation loop size

For the engineering purpose we may deal with the energy dissipation capacity of the structure
considered. From Fig. 4(b) the area of energy dissipation loop is found to be

ca ¼ 4ryðD� xyÞ; ð59Þ

and thus with the help of Eq. (58) we can assess the influence of the two system parameters rf and
rw on ca: For this purpose let us introduce the following two dimensionless variables for the size of
the dissipation loop:

L1 :¼
kca
p20

¼
4

r2f
ðm� 1Þ; ð60Þ

L2 :¼
mo2

dca
p20

¼
4r2w
r2f

ðm� 1Þ: ð61Þ

Now some remarks on the above two formulae: (i) The left-hand side of the first equation may be
understood as the dissipation per unit elastic energy, since p0=k is the static displacement of the
elastic response and p20=k is the elastic energy. (ii) The factor m� 1 on the right-hand side of
the first equation decreases with respect to 1=rf for each rw as shown in Fig. 2(a); conversely, the
factor 1=r2f increases with respect to 1=rf : Therefore, there exists a best rf to maximize L1 for each
rw: (iii) Assuming mo2

d :¼ kd; the left-hand side of the second equation may be written as
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Fig. 6. The frequency response curves with specified ductility ratios m ¼ 5; 10; 15; 20; 25; 30:
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ca=ðp20=kdÞ: Corresponding to (i), it may be understood as the dissipation per pseudo elastic energy
with a pseudo elastic stiffness kd: (iv) The term m� 1 on the right-hand side of the second equation
is known to be decreased with respect to rw for each rf as shown in Fig. 2(b); nevertheless, the term
r2w is increased with respect to rw: Hence, there exists one best rw to maximize L2 for each rf :
Eq. (60) is used to investigate the variation of the dimensionless size of the dissipation loop with

respect to rf : In Fig. 7(a) the variations of L1 with respect to 1=rf are plotted for z ¼ 0:02 and
rw ¼ 0:6; 0:8; 1:1; 1:4; 1:7: For the purpose of isolating the building structure, we usually choose the
best rf to maximize the dissipation loop size. Under this rf the isolator will achieve the best
performance, dissipates as much energy as it can. Similarly, Eq. (61) is used to investigate the
variation of the dimensionless size of the dissipation loop with respect to rw: In Fig. 7(b) variations
of L2 with respect to rw are plotted for z ¼ 0:02 and rf ¼ 2; 4; 6; 8; 10: For the isolation purpose,
we may choose the best rw; the rw that maximizes the dissipation loop size.

3.5. Elastic shakedown boundary

In the case of cyclic loadings the magnitude of the input is not merely a factor characterizing the
structural safety. These loads may also result in alternating plastic displacement, which after a
sufficient number of cycles may cause low cycle fatigue and failure of the structure. Therefore, the
structural safety requires that the plastic displacement increments due to consecutive load changes
should eventually cease, the structural response of further cycles being fully elastic. Such a
stabilization of plastic displacements is called (elastic) shakedown or adaptation. Thus, for the
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Fig. 7. (a) The variation of dimensionless dissipation loop size L1 with respect to 1=rf for z ¼ 0:02 and five values of rw:
(b) The variation of the dimensionless dissipation loop size L2 with respect to rw for z ¼ 0:02 and five values of rf :
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purpose of safety we may hope the structure tend to elastic shakedown gradually, without
inducing further plastic deformation to cause failure of the structure.
Elastic shakedown requires that the plastic dissipating loop as shown in Fig. 4(a) disappears

eventually, which is equivalent to the requirement that t3 ¼ t2 ¼ t1 þ p=od or y ¼ p via Eq. (34).
Under this condition, by Eqs. (58) and (59), it is obvious that

m ¼ 1; ca ¼ 0; ð62; 63Þ

the latter of which indicates that the size of the dissipation loop is zero.
Let y ¼ p in Eq. (53). We can then compute the boundary curves of elastic shakedown region in

the plane ðrw; 1=rf Þ as shown in Fig. 8 for different zð¼ 0:02; 0:06; 0:1; 0:14; 0:18Þ: As can be seen
the hysteretic region below the boundary curve reduces when the damping ratio increases.
On the other hand, we know that the elastic structure under the sinusoidal loading (15) has the

following steady state oscillation amplitude:

xmax

xy

¼
rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2wÞ
2 þ ð2zrwÞ

2
q : ð64Þ

Let

xmax ¼ xy:
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Fig. 8. The boundary curves of elastic shakedown region and hysteretic region for different damping ratios zð¼
0:02; 0:06; 0:1; 0:14; 0:18Þ:
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Then, we obtain

rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2wÞ

2 þ ð2zrwÞ
2

q
: ð65Þ

The force ratio larger than the above value will render the restoring force of the structure exceed
its elastic limit ry; and hence elastic shakedown is impossible. The above formula gives the same
curves in the plane ðrw; 1=rf Þ as that calculated from Eq. (53) with y ¼ p:
The right-hand side of Eq. (65) supplies a lower bound of rf for elastic shakedown. The loading

with its rf smaller than the lower bound will render the response to tend to elastic shakedown.
Thus, the criteria for elastic shakedown are obtained as follows:

rfo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2wÞ

2 þ ð2zrwÞ
2

q
; ð66Þ

or

rw >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2z2Þ2 þ r2f � 1

qr
: ð67Þ

The determination of the control parameters allowing the adaptation is one of the main goals of
the plasticity theory of shakedown. Here, Eq. (66) gives a constraint on parameter values, under
which the steady state response is elastic shakedown.

3.6. Undamped case

Although Eqs. (53) and (58) are applicable to the undamped case but many works needed to
take account of the ‘‘0/0 terms’’ that appear in the coefficient functions through l’H #ospital’s rule,
we prefer to write down these formulae directly as follows [9]:

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð*c*e � *b *fÞ2 þ ð *a *f � *b*cÞ2

½ *a*e � *b2�2

s
; ð68Þ

2m ¼
1

r2w
ð1þ cos yÞ

*a *f � *b*c

*a*e � *b2
þ

1

r2w
ðy þ sin y � pÞ

*c*e � *b *f

*a*e � *b2
þ

1

2r2w
ðy � pÞ2 þ 2; ð69Þ

where

*a :¼ r2w þ r2wcos
y

rw
� ð1þ cos yÞ; ð70Þ

*b :¼ sin y � rw sin
y

rw
; ð71Þ

*c :¼ rwð1� r2wÞ sin
y

rw
þ

y

rw
�

p
rw

� �
; ð72Þ

*e :¼ cos y � cos
y

rw
; ð73Þ

*f :¼ ð1� r2wÞ 1þ cos
y

rw

� �
: ð74Þ
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Note that the denominator *a*e � *b2 approaches zero when y tends to zero. Comparing the above
equations with Eqs. (53) and (58) and studying the coefficients in Eqs. (40)–(45) reveals that the
inclusion of the damping term in the oscillator greatly complicates the resulting formulae. In the
later we can see that the influence of the damping effect on the steady state behaviour is profound.

3.7. Intermediate unloading motions

In order to decide which parametric point in the parametric space ðz; rw; rf Þ corresponding to
periodic motion with or without intermediate unloading, let us first return to Eq. (68) for the
undamped case. As in Fig. 5(b), we search the relation between rw and y for fixed rf : The results are
plotted in Figs. 9(a) and 9(b) for rf ¼ 2 and rf ¼ 1:25; respectively. All admissible roots of y in the
range ð0; p� are displayed. It can be seen that when rw > 1=3 there exists only one root of y; and
when rw decreases there are more and more roots of y for both cases. The one root of y corresponds
to the periodic motion without intermediate unloading, while multiple root of y indicates that the
oscillator motion is periodic with intermediate unloading at such parametric point.
The curve composed of smallest root of y is smooth for rf ¼ 2 and approaches to zero when rw

approaches to zero. This explains the reason that the steady state response is unbounded when
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Fig. 9. All admissible roots of y are displayed for two cases: (a) rf ¼ 2 and z ¼ 0; and (b) rf ¼ 1:25 and z ¼ 0: The
smallest y curve is continuous for larger rf ; but discontinuous and oscillatory for smaller rf :
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rf ¼ 2; because substituting y ¼ 0 into Eq. (69) will give an unbounded m: Conversely, the smallest
y curve as shown in Fig. 9(b) is non-smooth exhibiting jump for rf ¼ 1:25; and it tends to a non-
zero y when rw approaches zero. Hence, the steady state response is bounded when rf ¼ 1:25 and
rw approaches zero. It deserves to note that for the above case there is a two-root point at rw ¼ 0:2
as shown by a vertical dashed line shown in Fig. 9(b). Between three- and two-root points there is
a small window for periodic without intermediate unloading motion.
Similarly, by Eq. (53) we can solve all admissible y in the range ð0; p�: The results are displayed

in Fig. 10 with rf ¼ 2 and 1:25: The smallest y curve is smooth for rf ¼ 2 and approaches zero
when rw approaches zero. However, the smallest y curve is non-smooth for rf ¼ 1:25; and it tends
to a non-zero y when rw approaches to zero. For this case the above two-root point disappears,
and the periodic without intermediate unloading window between the 2 three-root points is
enlarged.
In order to explain the jump phenomena as observed and indicated in Fig. 9(b), we return to

Eq. (68) and rearrange it as

F ðy; rw; rf Þ :¼ ð*c*e � *b *fÞ2 þ ð *a *f � *b*cÞ2 � r2f ½ *a*e � *b2�2 þ y ¼ y: ð75Þ
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Fig. 10. All admissible roots of y are displayed for two cases: (a) rf ¼ 2 and z ¼ 0:02; (b) rf ¼ 1:25 and z ¼ 0:02: The
smallest y curve is continuous for larger rf ; but discontinuous and oscillatory for smaller rf :

C.-S. Liu, Z.-M. Huang / Journal of Sound and Vibration 273 (2004) 149–173 167



For given rf and rw; when F maps a y to the same y there exists a fixed point for the map F and
also a root for Eq. (68). At the fixed point y if jdF=dyj > 1 the fixed point is unstable, otherwise the
fixed point is neutral stable or stable. Fixed rf ¼ 1:25 we plot two curves of F with respect to y in
Fig. 11 by fixing rwð¼ 0:25 and 0.212). It can be seen that at the first fixed (intersection) point of
the rw ¼ 0:25 curve with the bisection line the slope dF=dy > �1 is negative, but for the rw ¼ 0:212
curve the slope dF=dy > 1 is just over unity and is unstable. This may explain why the steady state
response jumps from a lower unstable value y to a higher stable value y: The above technique may
be somewhat similar to the methods proposed by Miller and Butler [6] and Capecchi [8] in the
instability analysis of their one-dimensional iterated maps. However, the above cited literature
gave no explicit form of their iterated maps, but we give an exact form of the map F as shown in
Eq. (75). It deserves to note that our method is more direct and effective than that proposed by
Miller and Butler [6] and Capecchi [8].
Similarly, in order to explain the jumps appearing in Fig. 10(b) for the damped case to detect

the stability/instability of the fixed points, we can employ the following map obtained from
Eq. (53):

Fðy; rw; rf ; zÞ :¼ ð#c%e � %b #f Þ2 þ ð %a #f � #c %d Þ2 � r2f ½ %a%e � %b %d�2 þ y ¼ y: ð76Þ

Finally, according to the study of 10,000 ð¼ 100	 100Þ cases, we found that there were many
types of steady state behaviour. In Fig. 12 the distribution of these types of behaviour is plotted in
the plane ðrw; 1=rf Þ for two cases z ¼ 0 and z ¼ 0:02: When rw > 1=3 no matter what rf is there is
only one root of y and hence the steady state motion is periodic without intermediate unloading,
which is marked by circle in Fig. 12. For the undamped case there are also regions with multiple
roots of y as shown in Fig. 12(a), which can be seen locating next to the points with inverse
frequency ratio 1=rw equal to odd integers; we only show the parametric points which lead to three
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Fig. 11. Fixed rf ¼ 1:25 the curves of F used to find fixed points are plotted with rw ¼ 0:25; 0:212: The straight line is
the bisection line.
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roots of y marked by solid square black points, five roots by solid black points, seven roots by
solid triangular black points, nine roots by black star points, and more roots occupy the blank
part. Especially, on the line rw ¼ 0:2 there are few points giving two roots of y as marked by solid
lozenge black points.
In Fig. 3 we have displayed the responses with rw ¼ 0:2 and rf ¼ 1:25 among these points. The

intermediate unloading occurs for this case; however, its time duration is rather short. This
explains why our estimation is also good for this case as shown in Fig. 13. The distribution of the
root numbers of y are shown in Fig. 12(b) for the damped case with z ¼ 0:02: It can be seen that
the number of periodic points without intermediate unloading increases, the number of blank
points reduces to only five, and the number of two-root points is zero. The multiple-root regions
located next to the points with

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
=rw equal to odd integers. The damping term not only

distorts the shapes of intermediate unloading motion region, but also moves the intermediate
unloading motion region to the left. This region locates within the range of rwp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
=3; i.e.,

od=op1=3: Hence, the size of periodic without intermediate unloading region increases when
damping ratio increases.
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Fig. 12. In the parametric plane ðrw; 1=rf Þ below elastic shakedown curve the hysteretic response region, according to

the number of the roots of y; is further classified into periodic without intermediate unloading and periodic with

intermediate unloading regions for (a) z ¼ 0 and (b) z ¼ 0:02: 3; one-root (periodic without intermediate unloading); ~;
two-root; \; three-root; K; five-root; m; seven-root; %; nine-root; blank, more roots. For the damped case there has

no two-root point.
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4. Concluding remarks

Through step-by-step time-marching calculations we have plotted the ductility ratio curves with
respect to rf and rw for different damping ratios. The long-term behaviour has been classified into
three types: elastic shakedown (including purely elastic), periodic with or without intermediate
unloading in the parametric plane ðrw; 1=rf Þ for different z’s. Closed-form formulae for estimating
the steady state response in terms of the identified parameters y; rf ; rw; and z were developed.
The steady state solution presented in this paper is essentially exact inasmuch as the only
approximation involved is in finding the root y of Eq. (53), which together with Eq. (58) provided
a handy tool to study the long-term behaviour of viscous elasto-plastic oscillator. The validity and
accuracy of the proposed formulae were confirmed, because the comparison of the results
calculated from them with the exact time-marching solutions shows that they were in very good
agreement with the exact ones no matter what frequency ratio range and force ratio are. In the
low frequency ratio range the frequency response curves exhibit several subpeaks with steep
variations, which intimately associate with the jump discontinuities of the smallest root of y in the
intermediate unloading motion region. The intermediate unloading region can be identified with
the appearance of multiple root of y at the parametric point in that region. For undamped case
the subpeak which occurs at the point rw ¼ 0:2 has large depth valley; however, increasing the
damping ratio renders the subpeak point move slightly to larger rw and the depth of the valley is
also decreased. We have shown the distribution of periodic points with or without intermediate
unloading in the parametric plane ðrw; 1=rf Þ; of which the intermediate unloading region locates
within the range of rwp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
=3; i.e., od=op1=3; and its size decreases when damping ratio

increases. The numerical tool provided here is more direct and more efficient than that proposed
by Miller and Butler [6] and by Capecchi [8].
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Fig. 13. The comparison of the frequency response curves with rf ¼ 1:25 which predicted respectively by —–, exact

time-marching solutions, and \; phase-plane estimation method.
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Appendix

In this appendix we provide exact solutions of Eqs. (12) and (14) under the loading (15).
1. Elastic motion:

xðtÞ ¼ exp½�zonðt � tiÞ� C1 cosoðt � tiÞ þ C2 sinoðt � tiÞ½ �

þ A1 sinodt � B1 cosodt �
rðtiÞ

k
þ xðtiÞ; ðA:1Þ

where

on :¼

ffiffiffiffi
k

m

r
; z :¼

c

2mon

; o :¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ðA:22A:4Þ

are, respectively, the natural frequency, damping ratio and damped frequency of the structure.
Here and henceforth we assume zo1; such that the system is underdamped in the elastic phase. A1

and B1 are defined, respectively, by

A1 :¼
rfxyð1� r2wÞ

ð1� r2wÞ
2 þ 4z2r2w

; ðA:5Þ

B1 :¼
2rfxyzrw

ð1� r2wÞ
2 þ 4z2r2w

; ðA:6Þ

where

rf :¼
p0

ry

; rw :¼
od

on

; xy :¼
ry

k
ðA:72A:9Þ

are, respectively, the force ratio, frequency ratio and yield displacement. The two integration
constants C1 and C2 are given, respectively, by

C1 :¼ B1 cosodti � A1 sinodti þ
rðtiÞ

k
; ðA:10Þ

C2 :¼
’xðtiÞ
o

þ
½B1z� A1rw� cosodtiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p �

½B1rw þ A1z� sinodtiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p þ
zrðtiÞ

k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p : ðA:11Þ

The constitutive force r appeared in the above should be supplemented with Eq. (13) during elastic
motion interval.
2. Plastic motion:

xðtÞ ¼ C4 þ C3 exp½�2zonðt � tiÞ� � A2 sinodt � B2 cosodt �
rðtiÞ

c
t; ðA:12Þ

where

A2 :¼
rfxy

r2w þ 4z2
; ðA:13Þ

B2 :¼
2rfxyz

rwðr2w þ 4z2Þ
; ðA:14Þ
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and the two integration constants C3 and C4 are given, respectively, by

C3 :¼ A2 sinodti �
rw

2z
A2 cosodti �

’xðtiÞ
2zon

�
rðtiÞ
2zonc

; ðA:15Þ

C4 :¼ B2 þ
rw

2z
A2

� �
cosodti þ

rðtiÞ
2zonc

þ
tirðtiÞ

c
þ xðtiÞ þ

’xðtiÞ
2zon

: ðA:16Þ

The constitutive force is simply rðtÞ ¼ rðtiÞ during plastic motion interval. Unlike in the elastic
motion, whose response when rw ¼ 1 has a peak value due to resonance, in the plastic motion as
shown in Eq. (A.12) there never occurs plastic resonance.
The transition points between elastic and plastic motions are determined by the on–off switch

criteria (9) and (10).
3. Determination of the onset of plastic motion: Given the initial values rðtiÞ and ’xðtiÞ at an initial

time ti; the transition time from elastic motion to plastic motion can be determined by solving the
equation jrðtÞj ¼ ry; where rðtÞ is obtained by substituting Eq. (A.1) into Eq. (13). The resulting
equation is transcendental in nature so that a numerical method may be invoked to calculate the
switch-on time t ¼ ton:
4. Transition from plastic motion to elastic motion: When a plastic motion interval is switched off

at a time moment, i.e., jrjory or r ’xp0; the structure will switch to an elastic motion with certain
time interval according to the switching criterion (10). The end time of the plastic motion is
determined by solving ’xðtÞ ¼ 0 for t; which is also a transcendental equation still requiring a
numerical method to calculate the switch-off time t ¼ toff :
Determination of the transition times ton and toff can easily be carried out to arbitrary accuracy.

However, due to the periodicity and transcendentality of the considered equations we prefer to
solve them by using half-interval method rather than the usual Newton–Raphson method. In
practical calculations the error tolerance is controlled within the order of 10�10:
By piecing the above two solutions (A.1) and (A.12) of elastic and plastic motions together and

with accurately determined ton and toff ; the essentially exact responses of the viscous elasto-plastic
oscillator can be obtained. The dynamics of the model may switch between the two motions.
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