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Abstract

Multi-crack detection for beam by natural frequencies has been formulated in the form of a non-linear
optimization problem, then solved by using the MATLAB functions. The spring model of crack is applied
to establish the frequency equation based on the dynamic stiffness of multiple cracked beam. The equation
is the basic instrument in solving the multi-crack detection of beam. The set of crack parameters to be
detected includes not only the crack position and depth, but also the quantity of possible cracks. Numerical
result obtained for a cantilever beam with single-, two- and three-cracks scenarios shows an efficiency and
acceptability of the hereby proposed procedure.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Crack is a damage that often occurs on members of structures and may cause serious failure of
the structures. A crack must be detected in the early state. However, it is difficult to recognize a
crack by using visual inspection techniques, and it may be detected usually by non-destructive
techniques. In the last two decades, a lot of research efforts has been devoted to develop an
effective approach for detecting crack in structures. The case of single crack detection in beam was
studied in most publications by using the analytical model of a one-dimensional structure. The
multi-crack detection problem in beams and frame structures is usually solved by using the finite
element model (FEM) [1]. The FEM used in the crack detection problem proposes a model of
crack as a uniform change of the element parameters, for instance, the modulus E or the geometry
(A; I) or both as stiffness (EI). This approach is preferred in the application for large structures,
but in fact it eliminates the significant effect of crack location (geometry of damage) in the
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element. This fact has been notified by Banks et al. [2]. Obviously, the situation may be improved
by refining the FE mesh. However, this, in consequence, makes the size of the FE model much
larger in the end the FEM becomes ineffective in predicting the crack position and depth. The
FEM can be utilized in the first stage of damage diagnosis, to determine zones where cracks may
appear. For specification of crack location in elements the analytical model of the element is more
useful. Thus, the idea that emerged involves the combining of the finite element approach with the
analytical method for crack detection in large structures. The original aim was to develop the
dynamic stiffness matrix (DSM) approach to crack detection in structures.
The DSM method was developed recently in studies [3–6], which among others, find the

mention of Moon and Choi [6]. In the above-mentioned paper, the authors have presented an
interesting comparison of natural frequencies computed by using the DSM method with
frequencies obtained from the experiment. The error of computation compared with the
experiment, as shown in Ref. [6], is about 1%. The DSM approach has been applied to study
cracked beam [7,8] and, as shown in referred papers, the DSM method is effective not only in
analysis but also in diagnosis of structures with cracks. In [9], the authors have used the DSM in
multi-crack detection in beams by measured static displacement. The structural damage
identification problem based on the DSM has been considered in general formulation by the
authors of Ref. [10].
The focus of this paper is mainly on the problem of multi-crack detection for one-dimensional

structures by natural frequencies. The procedure developed, hereby, is based on the DSM
model of structures considered in Ref. [8] and MatLab functions in the optimization toolbox,
so this can be extended to solve the problem of crack detection for more complete structures such
as frames.

2. Formulation of the problem

A beam of length L; cross-section area A ¼ b � h; second moment of area I and Young’s
modulus E is considered. Suppose the beam has been cracked at a number of positions x1; :::;xn;
where

x0 ¼ 0!x1!x2!?!xn�1!xn!L ¼ xnþ1:

The crack at xj are modelled, as shown in Fig. 1, by rotational spring of stiffness kj ¼ 1=aj;
where aj is calculated by the formulas [11]

aj ¼
6pð1� n2Þh

EI
Ic

aj

h

� �
;

IcðzÞ ¼ 0:6272z2 � 1:04533z3 þ 4:5948z4 � 9:973z5 þ 20:2948z6 � 33:0351z7

þ 47:1063z8 � 40:7556z9 þ 19:6z10 ð1Þ

with the Poisson coefficient n, beam height h and crack depth aj: Free vibration of the beam is
described by the equation

d4Fðx;oÞ
dx4

� l4Fðx;oÞ ¼ 0; ð2Þ
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where l4 ¼ o2rA=ðEIÞ or l ¼ c0
ffiffiffiffi
o

p
; c0 ¼ ½rA=ðEIÞ�1=4: Eq. (2) must be investigated with the

condition at the crack position xj

Fðxj � 0Þ ¼ Fðxj þ 0Þ; F00ðxj � 0Þ ¼ F00ðxj þ 0Þ; F000ðxj � 0Þ ¼ F000ðxj þ 0Þ;

F0ðxj � 0Þ þ bjF
00ðxj � 0Þ ¼ F0ðxj þ 0Þ; bj ¼ EIaj ¼

EI

kj

ð3Þ

and the boundary conditions, which can be expressed in the form

%
B0
1

Fðþ0Þ

F0ðþ0Þ

 !
þ

%
B0
2

EIF000ðþ0Þ

�EIF00ðþ0Þ

 !
¼ 0;

%
BL
1

FðL � 0Þ

F0ðL � 0Þ

 !
þ

%
BL
2

�EIF000ðL � 0Þ

EIF00ðL � 0Þ

 !
¼ 0 ð4Þ

with the 2� 2 dimension matrices ½B0;L
j �; j ¼ 1; 2; of boundary parameters

%
B0
1 ¼

B0
11 B0

12

B0
21 B0

22

" #
;

%
B0
2 ¼

B0
13 B0

14

B0
23 B0

24

" #
;

%
BL
1 ¼

BL
11 BL

12

BL
21 BL

22

" #
;

%
BL
2 ¼

BL
13 BL

14

BL
23 BL

24

" #
:

Using the transfer matrix method, as described in Ref. [7], and with known boundary
conditions, the frequency equation of the multiple cracked beams has the form

Dðo; %z; %aÞ ¼ det A½ � ¼ 0; ð5Þ

where %z ¼ x1; :::;xnf gT; %a ¼ a1; :::; anf gT are the vectors of cracks position and magnitude,
respectively, and A is a matrix of 4� 4 dimension

A ¼
B0

BLQ

" #
¼

B0
11 B0

12 B0
13 B0

14

B0
21 B0

22 B0
23 B0

24P4
i BL

1jQj1

P4
i BL

1jQj2

P4
i BL

1jQj3

P4
i BL

1jQj4P4
i BL

2jQj1

P4
i BL

2jQj2

P4
i BL

2jQj3

P4
i BL

2jQj4

2
66664

3
77775:

In the last equation, Qjk; j; k ¼ 1; 2; 3; 4; are elements of the matrix

Q ¼ Tnþ1QnQn�1yQ1 ¼ Tnþ1JnTnJn�1yJ2T2J1T1;
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Fig. 1. Modelling of multiple cracked beam.
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where Tj, j ¼ 1; 2;y; n þ 1; have the form

Tjðl; cjÞ ¼

K1ðlcjÞ l�1K2ðlcjÞ K4ðlcjÞ=EIl3 �K3ðlcjÞ=EIl2

lK4ðlcjÞ K1ðlcjÞ K3ðlcjÞ=EIl2 �K2ðlcjÞ=EIl

�l3EIK2ðlcjÞ �l2EIK3ðlcjÞ �K1ðlcjÞ lK4ðlcjÞ

l2EIK3ðlcjÞ lEIK4ðlcjÞ l�1K2ðlcjÞ �K1ðlcjÞ

2
66664

3
77775

and

Jj ¼ JðajÞ ¼

1 0 0 0

0 1 0 aj

0 0 �1 0

0 0 0 �1

2
6664

3
7775:

The notations KjðxÞ; j ¼ 1; 2; 3; 4; denote the functions

K1ðxÞ ¼ 1
2
ðcosh x þ cos xÞ; K3ðxÞ ¼ 1

2
ðcosh x � cos xÞ;

K2ðxÞ ¼ 1
2ðsinh x þ sin xÞ; K4ðxÞ ¼ 1

2ðsinh x � sin xÞ

and cj ¼ xj � xj�1; j ¼ 1; :::; n þ 1:With given crack and boundary parameters, solution of Eq. (5)
yields the natural frequencies of multiple cracked beams as oj ¼ ojð%z; %aÞ; j ¼ 1; 2; 3; :::: The
natural frequencies depending on the crack and boundary parameters were studied in Ref. [7]. In
the present paper, Eq. (5) will be used basically to determine the crack parameters with given
boundary conditions and natural frequencies. Let the known form of measurement of natural
frequencies be denoted by a vector %on ¼ on

1; :::;o
n
m

� �T
: The problem now is to find (1) the number

n of cracks that have possibly occurred in the beam, (2) the crack positions %z ¼ x1; :::;xnf gT; which
are constrained by condition 0!x1!x2!?!xn�1!xn!L and (3) the corresponding crack
depths %a ¼ a1; :::; anf gT related to the crack magnitude aj by Eq. (1). The last crack parameters in
combination make up a vector of unknowns %y ¼ y1; :::; y2nf gT¼ x1; :::;xn; a1; :::; anf gT for the crack
detection problem. The number of cracks is also an unknown, but it is not included in the
unknown vector because this parameter will be determined separately. Input for the problem is
the measured natural frequencies %on ¼ on

1; :::;o
n
m

� �T
: Because of the measurements and

modelling error, the multi-crack detection problem must be formulated in the form of a
constrained non-linear optimization problem. First, due to relationship (1), one will have

aj ¼
6pð1� n2Þh

EI
Icðaj=hÞ � gðajÞ � gjð %aÞ; j ¼ 1; :::; n:

Therefore, Eq. (5) can be rewritten as

Dðo; %z; %aÞ ¼ Dðo; %z; %gð %aÞÞ � #Dðo; %z; %aÞ ¼ 0:

Suppose that m first solutions of the last equation with respect to o are o1ð%z; %aÞ; :::;omð%z; %aÞ; i.e.,

#D ojð%z; %aÞ; %z; %a
� �

¼ 0; j ¼ 1; :::;m: ð6Þ
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Now, the objective function may be defined by

f ð %yÞ ¼
Xm

j¼1

½ojð%z; %aÞ � on

j �
2: ð7Þ

The inequality constraints can be expressed in the form

Gjðy1; :::; ynÞ ¼ yj � yjþ1p0; j ¼ 1; :::; n � 1: ð8Þ

The bounded domain for arguments is defined by 0pyjpL; 0pynþjph; j ¼ 1; :::; n: Thus, the
non-linear optimization problem can be established in the form

f ðy1; :::; y2nÞ ) min;

Gjðy1; :::; ynÞp0; j ¼ 1; 2; :::; n;

0pyjpL; 0pynþjph; j ¼ 1; 2; :::; n; ð9Þ

where function f and Gj are defined in Eqs. (6)–(8). This is really standard constrained non-linear
optimization problem of dimension 2n: Here, the objective function is defined in the numerical
form obtained each time by solving Eq. (6) regarding o:

3. Method for solution

Solution of the multi-crack detection problem, thus, leads to determining a number of cracks n

and then solving problem (9) with respect to the crack positions and depths. The procedure for
solution of the problem can be formulated as follows:

Step 1: Suppose that there are n cracks that have possibly appeared in the beam. So, problem
(9) would be available with m measured frequencies %on ¼ on

1; :::;o
n
m

� �T
:

Step 2: Using the MATLAB function fmincon to solve problem (9). In the process of solving
problem (9), m solutions of Eq. (6) are required for each iteration. Let the solution of problem (9)
be x

ðnÞ
1 ; :::;xðnÞ

n ; a
ðnÞ
1 ; :::; aðnÞ

n :
Step 3: The number of cracks is determined as follows: If among the a

ðnÞ
j ; j ¼ 1; :::; n; there is no

value close to zero and all x
ðnÞ
j ; j ¼ 1; :::; n; are clearly separated, then seeking number of cracks N

must be not less than n: In this case one has to increase the n and go to step 1. This procedure is
continued until recognition of a close to zero crack depth or some crack positions close to
eachother or to the free end. In that case, the number of cracks N would be chosen as the
minimum among the number of non-zero crack depths and the number of separate crack
positions.

Step 4: The different crack positions and corresponding depths recognized in Step 3 will be
accepted as a solution of the multi-crack detection problem.
Of course, the number of cracks N suggested depends mainly on the number of frequencies

measured, m: The assumed number of cracks should not exceed the number of measured
frequencies because proposed number N leads to 2N unknowns to be determined. The great
dimension compared to the quantity of input data may result in a poor solution of the problem.
Evaluation of the number of cracks, as described above, requires to detail the conception ‘‘close to
zero’’ of the estimated crack depths. To the author’s knowledge, crack depth less than 10% of
beam height is usually difficult to detect by natural frequencies. Therefore if detected, crack depth
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less than 10% of beam height is proposed to be ‘‘close to zero’’. The proposed procedure will be
illustrated and validated by a case study presented in the next section.

4. Numerical results

Numerical results presented in this section have been obtained in consideration of a cantilever
beam with the following parameter: beam length L ¼ 0:8m; cross-section area
A=b� h=0.01� 0.02 (m2); Young’s modulus E=2.1� 1011 (N/m2), the Poisson coefficient n ¼
0:25 and material density r ¼ 7800 ðkg=m3Þ: The so-called measured frequencies are obtained not
experimentally but from a simulation using the random number e uniformly distributed in the
interval [�0.5, +0.5]. Thus, pseudo-measured frequencies are taken as

on

j ¼ oc
j þ err:ej; j ¼ 1; 2; :::;m; ð10Þ

ARTICLE IN PRESS

Table 1

Solution of the optimization problem in the case of single crack

Proposed Measurement error

n m err=0% err=2% err=5% err=7%

x a x a x a x a

1 1 0.2700 (10%) 0.0062 (3.3%) 0.2650 (12%) 0.0061 (2%) 0.2494 (17%) 0.0059 (2%) 0.2760 (8%) 0.0068 (13%)

2 0.3001 (0%) 0.0060 (0%) 0.3095 (3%) 0.0064 (7%) 0.3187 (6%) 0.0083 (38%) 0.2895 (4%) 0.0090 (50%)

2 1 0.2585 (14%) 0.0053 (12%) 0.2750 (8%) 0.0053 (12%) 0.2487 (17%) 0.0054 (10%) 0.2563 (15%) 0.0053 (12%)

0.4069 (U) 0.0000 (U) 0.4415 (U) 0.0000 (U) 0.4998 (U) 0.0003 (U) 0.5074 (U) 0.0004 (U)

2 0.3000 (0%) 0.0060 (0%) 0.3498 (17%) 0.0067 (12%) 0.2673 (11%) 0.0070 (17%) 0.2717 (9%) 0.0090 (50%)

0.7512 (U) 0.0003 (U) 0.7902 (U) 0.0010 (U) 0.7970 (B) 0.0032 (B)

3 0.3000 (0%) 0.0060 (0%) 0.2351 (22%) 0.0077 (28%) 0.2342 (22%) 0.0086 (43%) 0.2107 (30%) 0.0112 (87%)

0.5068 (U) 0.0003 (U) 0.4102 (U) 0.0001 (U) 0.4201 (U) 0.0001 (U) 0.4003 (U) 0.0000 (U)

4 0.2663 (U) 0.00 (U) 0.2624 (13%) 0.0059 (2%) 0.3237 (8%) 0.0081 (35%) 0.3531 (18%) 0.0075 (25%)

0.3000 (0%) 0.0060 (0%) 0.5418 (U) 0.0002 (U) 0.4336 (U) 0.0003 (U) 0.4336 (U) 0.0003 (U)

3 1 0.2482 (17%) 0.0047 (22%) 0.2220 (26%) 0.0037 (38%) 0.2438 (19%) 0.0104 (73%) 0.2199 (27%) 0.0110 (83%)

0.4500 (U) 0.0 (U) 0.4422 (U) 0.0 (U) 0.4523 (U) 0.0 (U) 0.4522 (U) 0.0 (U)

0.7000 (U) 0.0000 (U) 0.7018 (U) 0.0000 (U) 0.7015 (U) 0.0000 (U) 0.7025 (U) 0.0000 (U)

2 0.2970 (1%) 0.0059 (2%) 0.2982 (1%) 0.0090 (50%) 0.1732 (42%) 0.0061 (2%) 0.3219 (7%) 0.0117 (95%)

0.6694 (U) 0.0006 (U) 0.5077 (U) 0.0 (U) 0.4535 (U) 0.0 (U) 0.4938 (U) 0.0 (U)

0.7383 (U) 0.0004 (U) 0.5494 (U) 0.0002 (U) 0.7000 (U) 0.0001 (U) 0.7125 (U) 0.0000 (U)

3 0.3000 (0%) 0.0060 (0%) 0.2515 (16%) 0.0054 (10%) 0.4790 (60%) 0.0076 (27%) 0.2407 (20%) 0.0096 (60%)

0.3907 (U) 0.0 (U) 0.4500 (U) 0.0 (U) 0.5380 (U) 0.0 (U) 0.4500 (U) 0.0 (U)

0.6083 (U) 0.0003 (U) 0.6000 (U) 0.0000 (U) 0.7689 (U) 0.0005 (U) 0.6000 (U) 0.0000 (U)

4 0.2999 (0%) 0.0059 (2%) 0.1850 (U) 0.0 (U) 0.3490 (16%) 0.0056 (7%) 0.2042 (32%) 0.0093 (55%)

0.3034 (R) 0.0059 (R) 0.2453 (18%) 0.0052 (13%) 0.3949 (U) 0.0 (U) 0.3915 (U) 0.0 (U)

0.5220 (U) 0.0002 (U) 0.5752 (U) 0.0001(U) 0.5161 (U) 0.0000 (U) 0.6774 (U) 0.0000 (U)

x—crack position, a—crack depth.

Notation in brackets: R—crack detected repeatedly; U—uncracked (zero depth); B—detected crack closed to

boundary; the numeral with percent-error of detection.
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where err denotes a measurement error rate in percent, ej are the random numbers generated by
the computer and oc

j are calculated frequencies with a simulated scenario of cracks. In this case
study, the measurement error rate err is running through 0%, 2%, 5%, 7% and three scenarios
have been thought of a cantilever with one, two and three cracks. The crack positions and depths
resulting from solving the optimization problem for each sample of the random numbers
ej; j ¼ 1; :::;m
� �

are averaged to be their mean values. The effect of the quantity of measured
frequencies on the accuracy of crack detection is also considered in this example. So, the
numerical solutions of the optimization problem obtained in the scenarios are presented in Tables
1–3. Numerals in brackets are percentages of error of detection and the letters in brackets imply
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Table 2

Solution of the optimization problem in the case of two cracks

Proposed Measurement error

n m err=0% err=2% err=5% err=7%

x a x a x a x a

2 4 0.2958 (1%) 0.0059 (2%) 0.2860 (5%) 0.0075 (25%) 0.2821 (6%) 0.0085 (42%) 0.2250 (25%) 0.0111 (85%)

0.4966 (1%) 0.0061 (2%) 0.5121 (2%) 0.0036 (40%) 0.5164 (3%) 0.0080 (33%) 0.5854 (17%) 0.0054 (10%)

3 0.3153 (5%) 0.0063 (5%) 0.3032 (1%) 0.0064 (7%) 0.3335 (11%) 0.0063 (5%) 0.1368 (54%) 0.0045 (25%)

0.5056 (1%) 0.0065 (8%) 0.5199 (4%) 0.0043 (28%) 0.4530 (9%) 0.0072 (20%) 0.4050 (19%) 0.0054 (10%)

2 0.2807 (6%) 0.0057 (5%) 0.3964 (32%) 0.0045 (25%) 0.2160 (28%) 0.0078 (30%) 0.1732 (42%) 0.0067 (12%)

0.5500 (10%) 0.0075 (25%) 0.5497 (10%) 0.0072 (20%) 0.5413 (8%) 0.0080 (33%) 0.5573 (11%) 0.0080 (33%)

1 0.2518 (16%) 0.0053 (12%) 0.2543 (15%) 0.0048 (20%) 0.2504 (17%) 0.0073 (22%) 0.2855 (5%) 0.0084 (40%)

0.5498 (10%) 0.0072 (20%) 0.5537 (11%) 0.0079 (32%) 0.5520 (10%) 0.0043 (28%) 0.4883 (2%) 0.0109 (82%)

3 5 0.2998 (0%) 0.0060 (0%) 0.3239 (8%) 0.0081 (35%) 0.2771 (8%) 0.0071 (18%) 0.3951 (32%) 0.0092 (53%)

0.4998 (0%) 0.0060 (0%) 0.5235 (5%) 0.0035 (42%) 0.5220 (4%) 0.0085 (42%) 0.6935 (39%) 0.0080 (33%)

0.6742 (U) 0.0001 (U) 0.7995 (B) 0.0123 (B) 0.7980 (B) 0.0041 (B) 0.7763 (U) 0.0000 (U)

4 0.2976 (1%) 0.0059 (2%) 0.3279 (9%) 0.0039 (35%) 0.2067 (31%) 0.0071 (18%) 0.2733 (9%) 0.0101 (68%)

0.4980 (0%) 0.0061 (2%) 0.4860 (3%) 0.0066 (10%) 0.6329 (27%) 0.0028 (53%) 0.5235 (5%) 0.0065 (8%)

0.7929 (B) 0.0057 (B) 0.7906 (B) 0.0001 (B%) 0.7817 (B) 0.0160 (B) 0.7030 (U) 0.0000 (U)

3 0.2152 (28%) 0.0045 (25%) 0.3108 (4%) 0.0085 (42%) 0.2429 (19%) 0.0101 (68%) 0.4183 (39%) 0.0042 (30%)

0.4903 (0%) 0.0072 (20%) 0.5582 (12%) 0.0058 (3%) 0.4304 (U) 0.0001 (U) 0.5189 (R) 0.0092 (R)

0.7877 (B) 0.0188 (B) 0.7999 (B) 0.0097 (B) 0.6585 (32%) 0.0013 (78%) 0.5190 (4%) 0.0069 (15%)

4 5 0.2998 (R) 0.0060 (R) 0.3083 (3%) 0.0085 (42%) 0.1490 (50%) 0.0062 (3%) 0.2942 (2%) 0.0107 (78%)

0.2999 (0%) 0.0060 (0%) 0.4835 (3%) 0.0040 (33%) 0.5761 (15%) 0.0066 (10%) 0.5758 (15%) 0.0183 (205%)

0.3003 (R) 0.0060 (R) 0.7967 (B) 0.0078 (B) 0.7915 (U) 0.0009 (U) 0.7941 (B) 0.0000 (B)

0.5000 (0%) 0.0060 (0%) 0.7967(B) 0.0074 (B) 0.7993 (B) 0.0128 (B) 0.7941 (B) 0.0200 (B)

4 0.2981 (1%) 0.0059 (2%) 0.2602 (13%) 0.0042 (30%) 0.2812 (6%) 0.0069 (15%) 0.2795 (7%) 0.0037 (38%)

0.4983 (0%) 0.0060 (0%) 0.5015 (0%) 0.0078 (30%) 0.5180 (4%) 0.0076 (27%) 0.5173 (3%) 0.0085 (42%)

0.6475 (U) 0.0002 (U) 0.7802 (B) 0.0063 (B) 0.7988 (B) 0.0000 (B) 0.7546 (U) 0.0000 (U)

0.7941 (B) 0.0100 (B) 0.8000 (B) 0.0200 (B) 0.7990 (B) 0.0140 (B) 0.7912 (B) 0.0000 (U)

3 0.3172 (6%) 0.0050 (17%) 0.2629 (12%) 0.0045 (25%) 0.4404 (47%) 0.0022 (63%) 0.5096 (70%) 0.0098 (63%)

0.5164 (3%) 0.0066 (10%) 0.4476 (10%) 0.0069 (15%) 0.4413 (R) 0.0093 (R) 0.6844 (37%) 0.0060 (0%)

0.8000 (B) 0.0178 (B) 0.7915 (B) 0.0067 (B) 0.7893 (R) 0.0139 (R) 0.6844 (U) 0.0002 (U)

0.8000 (B) 0.0193 (B) 0.7915 (B) 0.0096 (B) 0.7893 (58%) 0.0066 (10%) 0.6844 (R) 0.0059 (R)

x—crack position, a—crack depth.

Actual cracks at positions x� ¼ 0:3; 0:5m; with depths a� ¼ 0:006; 0:006m; n is the number of cracks assumed and m is

the number of frequencies measured (notation in brackets: R—crack detected repeatedly; U—uncracked (zero depth);

B—detected crack closed to boundary; the numerals—error of detection in percent).
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Table 3

Solution of the optimization problem in the case of three crack

Proposed Measurement error (err)

n m err=0% err=2% err=5% err=7%

x a x a x a x a

3 6 0.2000 (0%) 0.0070 (0%) 0.1926 (4%) 0.0063 (10%) 0.1701 (15%) 0.0055 (21%) 0.3705 (85%) 0.0066 (6%)

0.4001 (0%) 0.0060 (0%) 0.3640 (9%) 0.0078 (30%) 0.4192 (5%) 0.0053 (12%) 0.5324 (6%) 0.0100 (67%)

0.5000 (0%) 0.0050 (0%) 0.5983 (20%) 0.0044 (12%) 0.5283 (6%) 0.0092 (84%) 0.7481 (50%) 0.0076 (52%)

5 0.2006 (0%) 0.0070 (0%) 0.2153 (8%) 0.0057 (19%) 0.1388 (31%) 0.0072 (3%) 0.4367 (9%) 0.0101 (44%)

0.3957 (1%) 0.0060 (0%) 0.2571 (F) 0.0067 (F) 0.4774 (19%) 0.0055 (8%) 0.7293 (46%) 0.0108 (80%)

0.5003 (0%) 0.0050 (0%) 0.3576 (11%) 0.0059 (11%) 0.5892 (18%) 0.0074 (48%) 0.7954 (B) 0.0059 (B)

4 0.1792 (10%) 0.0066 (6%) 0.1854 (7%) 0.0062 (11%) 0.1385 (31%) 0.0035 (50%) 0.0838 (58%) 0.0043 (39%)

0.3866 (3%) 0.0059 (2%) 0.3826 (4%) 0.0054 (10%) 0.3935 (2%) 0.0069 (15%) 0.4252 (6%) 0.0041 (32%)

0.5125 (3%) 0.0057 (14%) 0.4563 (9%) 0.0073 (46%) 0.5773 (15%) 0.0083 (66%) 0.4253 (R) 0.0075 (R)

3 0.1497 (25%) 0.0057 (19%) 0.1498 (25%) 0.0034 (51%) 0.1541 (23%) 0.0033 (53%) 0.1375 (31%) 0.0061 (13%)

0.3391 (15%) 0.0067 (12%) 0.3817 (5%) 0.0068 (13%) 0.4179 (4%) 0.0082 (37%) 0.2976 (26%) 0.0073 (22%)

0.5362 (7%) 0.0056 (12%) 0.4733 (5%) 0.0060 (20%) 0.5989 (20%) 0.0070 (40%) 0.5796 (16%) 0.0068 (36%)

4 6 0.1985 (1%) 0.0070 (0%) 0.1720 (14%) 0.0056 (20%) 0.1876 (6%) 0.0058 (17%) 0.2290 (15%) 0.0124 (77%)

0.4134 (3%) 0.0061 (2%) 0.3975 (1%) 0.0047 (22%) 0.3586 (10%) 0.0069 (15%) 0.3943 (1%) 0.0055 (8%)

0.5044 (1%) 0.0048 (4%) 0.5145 (3%) 0.0025 (50%) 0.6061 (21%) 0.0020 (60%) 0.5384 (U) 0.0000 (U)

0.7637 (U) 0.0003 (U) 0.7468 (U) 0.0007 (U) 0.7999 (B) 0.0036 (B) 0.7970 (B) 0.0184 (B)

5 0.2109 (5%) 0.0073 (4%) 0.2382 (19%) 0.0062 (11%) 0.2468 (23%) 0.0029 (59%) 0.0926 (54%) 0.0069 (1%)

0.4407 (10%) 0.0072 (20%) 0.4034 (1%) 0.0080 (33%) 0.2468 (R) 0.0095 (R) 0.3962 (1%) 0.0098 (63%)

0.6925 (39%) 0.0082 (64%) 0.5538 (11%) 0.0015 (70%) 0.5528 (11%) 0.0052 (13%) 0.6067 (21%) 0.0034 (32%)

0.7582 (U) 0.0000 (U) 0.6820 (U) 0.0000 (U) 0.7245 (45%) 0.0071 (42%) 0.7969 (B) 0.0038 (B)

4 0.1914 (2%) 0.0065 (7%) 0.1799 (10%) 0.0047 (33%) 0.2632 (32%) 0.0091 (30%) 0.1738 (13%) 0.0086 (23%)

0.3475 (13%) 0.0061 (2%) 0.3522 (12%) 0.0053 (12%) 0.3497 (13%) 0.0059 (2%) 0.4349 (9%) 0.0032 (47%)

0.4805 (4%) 0.0054 (8%) 0.4667 (7%) 0.0050 (0%) 0.3986 (20%) 0.0062 (24%) 0.4899 (U) 0.0007 (U)

0.7169 (U) 0.0006 (U) 0.7293 (U) 0.0008 (U) 0.7017 (U) 0.0009 (U) 0.7308 (46%) 0.0076 (52%)

3 0.1599 (20%) 0.0058 (17%) 0.1651 (17%) 0.0080 (14%) 0.1144 (43%) 0.0076 (9%) 0.0036 (U) 0.0000 (U)

0.3114 (22%) 0.0057 (5%) 0.3263 (18%) 0.0031 (48%) 0.3323 (17%) 0.0074 (23%) 0.5565 (11%) 0.0077 (10%)

0.4818 (4%) 0.0063 (26%) 0.5533 (11%) 0.0055 (10%) 0.4366 (13%) 0.0059 (18%) 0.7788 (F) 0.0108 (F)

0.7291 (U) 0.0006 (U) 0.7182 (U) 0.0007 (U) 0.7146 (U) 0.0006 (U) 0.7846 (57%) 0.0067 (34%)

5 6 0.1888 (6%) 0.0066 (6%) 0.2033 (2%) 0.0044 (37%) 0.0936 (U) 0.0000 (U) 0.0829 (U) 0.0008 (U)

0.4299 (7%) 0.0064 (7%) 0.4021 (1%) 0.0032 (47%) 0.4036 (102%) 0.0057 (18%) 0.3791 (90%) 0.0033 (53%)

0.5396 (8%) 0.0047 (6%) 0.5970 (19%) 0.0075 (50%) 0.5749 (15%) 0.0098 (63%) 0.5298 (6%) 0.0089 (78%)

0.6518 (U) 0.0000 (U) 0.6664 (U) 0.0000 (U) 0.6890 (U) 0.0000 (U) 0.6138 (23%) 0.0059 (18%)

0.7994 (B) 0.0079 (B) 0.7996 (B) 0.0081 (B) 0.7859 (57%) 0.0200 (300%) 0.7962 (B) 0.0055 (B)

5 0.2055 (3%) 0.0067 (4%) 0.1804 (10%) 0.0070 (0%) 0.1988 (1%) 0.0034 (51%) 0.2167 (8%) 0.0065 (7%)

0.3684 (8%) 0.0067 (12%) 0.3308 (17%) 0.0022 (63%) 0.4149 (4%) 0.0064 (7%) 0.3993 (0%) 0.0071 (18%)

0.5115 (U) 0.0007 (U) 0.4269 (15%) 0.0054 (8%) 0.5757 (15%) 0.0069 (38%) 0.3993 (R) 0.0083 (R)

0.5195 (4%) 0.0043 (14%) 0.5512 (U) 0.0000 (U) 0.6857 (U) 0.0008 (U) 0.5828 (5%) 0.0037 (26%)

0.7996 (B) 0.0049 (B) 0.7998 (B) 0.0136 (B) 0.7935 (B) 0.0098 (B) 0.6813 (U) 0.0000 (U)

4 0.1359 (U) 0.0005 (U) 0.1871 (U) 0.0003 (U) 0.3238 (U) 0.0000 (U) 0.1521 (U) 0.0000 (U)

0.3402 (70%) 0.0066 (6%) 0.3425 (71%) 0.0073 (4%) 0.5194 (4%) 0.0030 (50%) 0.2421 (21%) 0.0033 (53%)

0.5120 (2%) 0.0044 (27%) 0.4475 (12%) 0.0052 (13%) 0.7119 (R) 0.0001 (R) 0.6052 (21%) 0.0096 (92%)

0.6422 (28%) 0.0052 (4%) 0.6307 (26%) 0.0055 (10%) 0.7119 (42%) 0.0128 (113%) 0.7966 (B) 0.0119 (B)

0.7983 (B) 0.0064 (B) 0.6915 (U) 0.0003 (U) 0.7734 (55%) 0.0169 (238%) 0.7969 (B) 0.0149 (B)

x—crack position, a—crack depth. n—number of cracks detected.

Actual cracks at positions x*=0.2, 0.4, 0.5m with depths a� ¼ 0:007; 0.006, 0.005m, n is number of cracks assumed and

m is the number of frequencies measured. Percentage-error of detection given in brackets, except the letters implying the

following: R—crack detected repeatedly; U—uncracked (zero depth); B—detected crack closed to boundary; F—false

detection.
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false detections (F), repeated result of detection (R), cracks of zero depth detected (U) and the
position of the detected crack close to the free end of the beam (B). Looking at Tables 1–3, it is
interesting to note that the number of cracks is more correctly detected in comparison with the
results of the crack position and depth detection, except in one case, where the measurement error
reaches 7%. The incorrect detection of the number of cracks caused from the lack of measured
frequencies compared with the number of unknowns is to be determined. The crack depth has
been detected with less accuracy than the crack position. The tables show also the well-known fact
that the more frequencies are measured the more exactly can crack positions be detected. In more
detail, in order to correctly detect a single crack, it must be measured at least at two frequencies
and the number of measured frequencies must be twice more than the number of cracks assumed.
Of course, the measurement error decreases the accuracy of crack detection.

5. Conclusion

In the present paper, the DSM model has been successfully applied to detect numerous cracks
in beams by natural frequencies. Especially, the problem of detecting the quantity of cracks is set-
up and solved initially. The most stable result of the detection presented above is the number of
cracks. The crack position diagnostics gives more accurate results in comparison with that of
crack depth detection. The more natural frequencies are measured the more accurate is the crack
position detected. But this fact does not come to the crack depth detection. The obtained results
show that the procedure developed here works effectively only for measurement errors not
exceeding 7%, but it is possible to extend it entirely for solving the multi-crack detection in more
complete structures.
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