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1. Introduction

Hollow bodies of revolution are of considerable engineering importance, finding applications in
pressure vessels, piping, machinery, etc. To find accurate values for the natural frequencies of
vibration for such bodies recourse must be made to the three-dimensional theory of elasticity.
Solutions for hollow circular cylinders have been obtained in a number of studies [1–4], but few
results are available for other hollow bodies of revolution.

In the present work the three-dimensional theory of elasticity is used to set up an accurate
solution for the natural frequencies of vibration of a hollow body of revolution of arbitrary
geometry. A semi-analytical approach is adopted, in which solutions are obtained for specified
circumferential harmonic modes of vibration. The new differential quadrature method (DQM)
[5,6], which is versatile with regards to boundary conditions, is used to obtain accurate numerical
results. Validation is through comparison with previously published results for simply supported
and fixed hollow cylinders. Finally results are presented for a hollow hemisphere, and conclusions
are drawn.

2. Theory

For a linear isotropic three-dimensional solid the equations of equilibrium are given [7] as

L11u1 þ L12u2 þ L13u3 þ K1=G ¼ 0;

L21u1 þ L22u2 þ L23u3 þ K2=G ¼ 0;

L31u1 þ L32u2 þ L33u3 þ K3=G ¼ 0; ð1Þ

where the differential operators Lij are functions of n;E;Hi: The material properties n;E;
respectively, are the Poisson ratio and Young’s modulus, and the Hi are the Lam!e coefficients
given by Hi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR;i:R;iÞ

p
: Here R is the position vector, and a comma subscript indicates

differentiation with respect to the variable that follows. The Ki are the body forces per unit
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volume, and G ¼ E=½2ð1þ nÞ� is the shear modulus. The position variables qi are chosen such that
q1 ¼ a; q2 ¼ b locate a point in the radial plane, while q3 ¼ y defines the angular position of that
plane about the axis of symmetry (Fig. 1). With the assumption of axisymmetry of geometry the
Hi are functions of the variables a; b only. The displacement components u1; u2; and u3 are,
respectively, in the a; b; and y directions.

With application of the D’Alembert principle the body forces Ki ¼ �r .ui introduce 2nd order
time derivatives of the displacements and the mass density r into Eq. (1). Assuming cyclical
vibrations the displacement components are taken as

u1 ¼ U1ða; bÞ cos ny cosot;

u2 ¼ U2ða; bÞ cos ny cosot;

u3 ¼ U3ða; bÞ sin ny cosot; ð2Þ

where n is the number of the circumferential harmonic, o the natural frequency, and t the time.
Substitution of the expressions (2) into Eq. (1) leads to three homogeneous differential equations
for the three displacement functions Ui; i ¼ 1; 2; 3; and the frequency o: Mathematically a two-
dimensional eigenvalue problem is defined, for each choice of n; in the variables a; b:

A solution is obtained for a hollow body whose radial surfaces are stress-free. For these
surfaces, defined by a ¼ cnst; the relations s1 ¼ s12 ¼ s13 ¼ 0 are satisfied. Conditions on the
ends of the body are considered herein as either simply supported or fixed. For the simply
supported end conditions, on an end defined by b ¼ cnst; the relations u2 ¼ s21 ¼ s23 ¼ 0 are
satisfied. For the fixed end conditions the relations u1 ¼ u2 ¼ u3 ¼ 0 are satisfied.

The boundary value problem is solved using the DQM for a typical harmonic n: A two-
dimensional mesh of sampling points is defined in the radial ða; bÞ plane, with spacing based on the
Chebyshev–Gauss–Lobatto system [5,6]. Domain relations are satisfied at interior sampling
points, and boundary relations at boundary sampling points. Derivatives of the displacement
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Fig. 1. Co-ordinates and displacements.
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functions in a given direction are replaced by the weighted sums of the values of the function at
the sampling points of the mesh in a line following the given direction [5,6]. The weighting
functions used herein correspond to the selection of a power series for the trial functions [5,6].

Application of the quadrature rules of the DQM allows the problem of differential equations to
be transformed into one of simultaneous linear equations. This set of equations leads to a matrix
equation of the form ½K �ðuÞ ¼ l½M�ðuÞ; where the unknowns ðuÞ are the values of the
displacements at the sampling points, l is the eigenvalue dependent on o; and ½K �; ½M� are
known matrices. The equation is solved using a general eigenvalue routine.

The derivation of the governing equation described herein, although lengthy, allows for the
analysis of hollow bodies of revolution of arbitrary shape. The appropriate values of the Lam!e
coefficients Hi are inserted only at the solution stage in enforcing either the domain or boundary
conditions at the sampling points. Thus the equations derived can readily be used for hollow
bodies of cylindrical, spherical, toroidal, etc. shape. Furthermore the DQM solution is not tied to
a specific set of boundary conditions, as is the case for most ‘series solutions’.

3. Validation and results

In this section two validation examples are presented which involve hollow circular cylinders,
and additionally results are given for a hollow hemisphere. For all solutions given herein a DQM
mesh of 19� 19 sampling points was used, and the material properties were taken as n ¼ 0:3;
E ¼ 0:2e12 Pa; and r ¼ 7800 kg=m2: Results given are for a frequency parameter O defined as
O ¼ Ko; where K is a constant defined in the following.

For the first validation example results are obtained for four geometric cases M; having
geometry as follows: M ¼ 1; h=R ¼ 0:2; h=L ¼ 0:3; M ¼ 2; h=R ¼ 0:2; h=L ¼ 0:7; M ¼ 3; h=R ¼
0:5; h=L ¼ 0:3; M ¼ 4; h=R ¼ 0:5; h=L ¼ 0:7: Here h; R; L are, respectively, the thickness, mean
radius, and length of the hollow cylinder. Boundary conditions on the ends are of the simply
supported kind. Results from a Fourier–Bessel ‘series solution’ have been given previously for
these hollow circular cylinders by Armenakas et al. [1]. Their results however did not include any
plane strain modes.

Table 1 gives a comparison of results obtained using the present method with results given in
Ref. [1]. For each of the four geometric cases M the frequency parameter O is given for the first six
modes for each of the first two circumferential harmonics n: Following Ref. [1] K was taken as
K ¼ h=ðpv2Þ; where v2 ¼

ffiffiffiffiffiffiffiffiffi
G=r

p
: It is seen that the present DQM approach gives, for each of the

natural frequencies cited in Ref. [1], results having differences less than 0:1%:
For the second validation example results are obtained for two geometric cases M; having

geometry as follows; M ¼ 1; L=R1 ¼ 3:0; R0=R1 ¼ 0:5; M ¼ 2; L=R1 ¼ 6:0; R0=R1 ¼ 0:5: Here L;
R0; R1 are, respectively, the length, inside radius, and outside radius of the cylinder. Results
identified by 1S, 2S give symmetric modes in the axial direction while results identified by 1A, 2A
give antisymmetric modes. Boundary conditions on the ends are of the fixed kind. A ‘series
solution’ for these hollow cylinders was determined previously by Zhou et al. [4] using a
Chebyshev–Ritz approach.

Table 2 gives a comparison of results from Zhou et al. [4] with results obtained using the DQM.
For each of the two geometric cases M the frequency parameter O is given for the first six
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symmetric and antisymmetric modes for each of the first two circumferential harmonics n: The
factor K was taken as K ¼ 2h=v2 where h ¼ R1 � R0: It is seen that the present method gives, for
each of natural frequencies cited in Ref. [4], results having agreement to four or five figures. A
comparison of truncated values from the present study rather than rounded values would lead to
even better agreement.

A final set of results is determined for the case of a hollow hemisphere. Results obtained
are compared with results determined using the finite element method (FEM). The results
are found for two geometric cases M; having geometry as follows; M ¼ 1; h=R ¼ 0:2; M ¼ 2;
h=R ¼ 0:5: Here h and R are, respectively, the thickness and mean radius of the hollow
hemisphere. Results identified by 1S, 2S are for simply supported end conditions (at b 	 f ¼ 0;
fu), while results identified by 1F, 2F are for fixed end conditions. To avoid the singularity
at f ¼ p=2; an upper boundary is assumed in the radial plane at fu ¼ p=2� d; where
d ¼ 10�3:

Table 3 gives a comparison of results from the present DQM method with results obtained
using the FEM. For each of the two boundary conditions of the geometric cases M the frequency
parameter O is given for the first six modes for each of the first two circumferential harmonics n:
The factor K was taken as K ¼ h=ðpv2Þ: It is seen that the results from the two methods differ
substantially for the first mode, especially for the M ¼ 1; 2 ðn ¼ 1Þ cases. Otherwise agreement to
within 2% is obtained, and agreement is generally excellent for the n ¼ 2 results. Frequencies
increase as the thickness is increased, and as the boundary conditions are changed from simply-
supported to fixed. For the cases considered the frequencies for the harmonic n ¼ 1 are lower than
those for the harmonic n ¼ 2:
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Table 1

Comparison of results for O with Fourier–Bessel (FB) method [1]

M n Method O1 O2 O3 O4 O5 O6

1 1 FB 0.15516 0.30799 0.51578 1.05309 1.14534 1.77791

1 DQM 0.15514 0.30798 0.51578 1.05308 1.14533 1.77791

2 FB 0.15826 0.32960 0.54745 1.05851 1.16291 1.77222

2 DQM 0.15827 0.32960 0.54745 1.05851 1.16290 1.77221

2 1 FB 0.48606 0.70302 1.11963 1.22879 1.55996 1.76830

1 DQM 0.48606 0.70302 1.11962 1.22879 1.55999 1.76830

2 FB 0.49337 0.71199 1.13000 1.23449 1.57037 1.77149

2 DQM 0.49337 0.71199 1.12999 1.23448 1.57037 1.77148

3 1 FB 0.20903 0.37185 0.57911 1.09336 1.20288 1.78139

1 DQM 0.20902 0.37184 0.57909 1.09343 1.20284 1.78257

2 FB 0.21091 0.46672 0.72316 1.12457 1.32894 1.75785

2 DQM 0.21091 0.46672 0.72315 1.12456 1.32894 1.75784

4 1 FB 0.52886 0.72299 1.13966 1.27719 1.59566 1.78233

1 DQM 0.52886 0.72299 1.13966 1.27720 1.59564 1.78228

2 FB 0.55149 0.78202 1.18072 1.32497 1.66703 1.80911

2 DQM 0.55149 0.78202 1.18072 1.32496 1.66702 1.80910
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Table 3

Results for O for hollow hemisphere

M n Theory O1 O2 O3 O4 O5 O6

1S 1 FEM 0.0337 0.1069 0.1411 0.1769 0.2122 0.2740

1 DQM 0.0247 0.1057 0.1378 0.1747 0.2113 0.2716

2 FEM 0.0780 0.1336 0.1996 0.2193 0.2827 0.3273

2 DQM 0.0780 0.1335 0.1996 0.2189 0.2876 0.3266

2S 1 FEM 0.0873 0.3286 0.3656 0.5004 0.6570 0.6830

1 DQM 0.0625 0.3244 0.3553 0.4959 0.6405 0.6532

2 FEM 0.2181 0.4778 0.4936 0.6490 0.7951 0.8129

2 DQM 0.2181 0.4757 0.4866 0.6466 0.7871 0.7927

1F 1 FEM 0.0876 0.1346 0.1918 0.2159 0.2503 0.3401

1 DQM 0.0821 0.1334 0.1873 0.2143 0.2481 0.3416

2 FEM 0.1138 0.1834 0.2306 0.2819 0.3121 0.3942

2 DQM 0.1137 0.1829 0.2304 0.2824 0.3115 0.3970

2F 1 FEM 0.2422 0.4028 0.5146 0.5774 0.8025 0.8226

1 DQM 0.2279 0.3992 0.5055 0.5753 0.7956 0.8130

2 FEM 0.3627 0.5362 0.6539 0.7264 0.9220 0.9570

2 DQM 0.3668 0.5360 0.6532 0.7259 0.9216 0.9549

Table 2

Comparison of results for O with Chebyshev–Ritz (CR) method [4]

M n Method O1 O2 O3 O4 O5 O6

1S 1 CR 1.6109 2.1297 3.3630 3.4760 4.4826 5.3087

1 DQM 1.6109 2.1297 3.3630 3.4760 4.4826 5.3087

2 CR 1.8288 3.0645 3.5645 4.4679 5.2467 5.4840

2 DQM 1.8288 3.0645 3.5645 4.4679 5.2467 5.4839

2S 1 CR 0.7054 1.5343 1.6318 2.4485 2.5355 3.0966

1 DQM 0.7054 1.5343 1.6319 2.4486 2.5356 3.0966

2 CR 1.1747 1.7648 2.5797 2.7846 3.3500 3.5180

2 DQM 1.1747 1.7649 2.5798 2.7846 3.3501 3.5185

1A 1 CR 0.8155 2.5304 2.8947 3.4640 4.3033 4.3915

1 DQM 0.8155 2.5304 2.8947 3.4640 4.3033 4.3915

2 CR 1.2396 2.6409 3.7995 4.5122 4.5569 5.3062

2 DQM 1.2396 2.6409 3.7995 4.5122 4.5569 5.3062

2A 1 CR 0.3395 1.1338 1.9880 2.0930 2.8775 2.9025

1 DQM 0.3395 1.1338 1.9880 2.0931 2.8776 2.9026

2 CR 1.0288 1.4286 2.1562 2.9908 3.0797 3.7107

2 DQM 1.0288 1.4286 2.1563 2.9908 3.0797 3.7107
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4. Conclusions

A solution based on the differential quadrature method has been developed for the free
vibration problem of arbitrary hollow bodies of revolution. The solution has an accuracy
approaching that of ‘series solutions’, but has greater flexibility with respect to boundary
conditions. With the semi-analytical approach that is used the numerical effort required is much
less than that needed for a full three-dimensional finite element approach. Work is currently
underway to extend the present approach to anisotropic hollow bodies of revolution.
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