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Abstract

The governing differential equations for the coupled bending–bending vibration of a rotating beam with
a tip mass, arbitrary pretwist, an elastically restrained root, and rotating at a constant angular velocity, are
derived by using Hamilton’s principle. The frequency equation of the system is derived and expressed in
terms of the transition matrix of the transformed vector characteristic governing equation. The influence of
the tip mass, the rotary inertia of the tip mass, the rotating speed, the geometric parameter of the cross-
section of the beam, the setting angle, and the pretwist parameters on the natural frequencies are
investigated. The difference between the effects of the setting angle on the natural frequencies of pretwisted
and unpretwisted beams is revealed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating pretwisted beams have been used in a lot of mechanical applications such as turbine
blades, helicopter rotor blades, and gear teeth. An interesting review of the subject was given by
Rosen [1]. Approximation methods are very useful tools to investigate the vibrations of rotating
pretwisted beams, where exact solutions are difficult to obtain even for the simplest cases. No
analytical solution for the vibration of a rotating pretwisted beam had been presented.
For the non-rotating pretwisted beam, approximation methods are very useful tools to

investigate the free vibrations of the pretwisted beams, where exact solutions are difficult to
obtain. Dawson [2] and Dawson and Carnegie [3] used the Rayleigh–Ritz method and
transformation techniques to study the effects of uniform pretwist on the frequencies of
cantilever blades. Carnegie and Thomas [4] and Rao [5–7] used the Rayleigh–Ritz method and
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Ritz–Galerkin method to study the effects of uniform pretwist and the taper ratio on the
frequencies of cantilever blades, respectively. Gupta and Rao [8] and Abbas [9] used the finite
element method to determine the natural frequencies of uniformly pretwisted tapered cantilever
blading. Subrahmanyam and Rao [10] used the Reissner method to determine the natural
frequencies of uniformly pretwisted tapered cantilever blading. Celep and Turhan [11] used the
Galerkin method to investigate the influence of non-uniform pretwist on the natural frequencies
of uniform cross-sectional cantilever or simply supported beams. Rosard and Lester [12] and Rao
and Carnegie [13] used the transfer matrix method to determine the frequencies of vibration of the
cantilever beam with uniform pretwist. Rosard and Lester [12] assumed that the displacements at
each element are linear, Rao and Carnegie [13] used an iteration procedure to determine the
displacements at each element while the initial displacements were assumed to be linear. Lin [14]
used transfer matrix method to determine the natural frequencies and the associated mode shapes
of any non-uniform beam with arbitrary pretwist. The exact transfer matrix was obtained.
For a rotating pretwisted beam, Subrahmanyam and Kaza [15] used the Ritz method and finite

difference method to study the vibration of a cantilever tapered pretwisted beam. Sisto and Chang
[16] proposed a finite element method for the vibration analysis of a rotating pretwisted beam.
Hernried [17] used the finite difference method to determine the natural frequencies of a cantilever
beam. Surace et al. [18] derived the approximate method based on the use of structural influence
function to determine the natural frequencies of a rotating cantilever pretwisted Bernoulli–Euler
beam. Young and Lin [19] used the Galerkin method to study the stability of a cantilever tapered
pretwisted beam with varying speed. Lin [20] derived the frequency equation of the system which
was expressed in terms of the transition matrix of the vector governing equation. Moreover, the
influence of the rotary inertia and the phenomenon of divergence instability were investigated.
Yoo et al. [21] used the Rayleigh–Ritz method to study the vibration of a rotating pretwisted
blade with a concentrated mass. No research has been devoted to the vibration of rotating non-
uniform beam with arbitrary pretwist, an elastically restrained root and tip mass.
In this paper, the governing differential equations for the coupled bending–bending–extensional

vibration of a rotating non-uniform beam with a tip mass, arbitrary pretwist, an elastically
restrained root, setting angle, hub radius, and rotating at a constant angular velocity, are derived
by using Hamilton’s principle. For an inextensional beam, without considering the Coriolis force
effect, three coupled bending–bending–extensional governing differential equations are reduced to
two coupled bending–bending equations and the centrifugal force is obtained. The reduced
coupled governing differential equations are transformed to be a vector characteristic differential
equation. The frequency equation of the system is derived and expressed in terms of the transition
matrix of the vector governing equation. The efficient algorithm for determining the semi-
analytical transition matrix of the system derived by Lin [20] is proposed. Finally, the influence of
the tip mass, the rotating speed, the geometric parameter, the setting angle, and the pretwists on
the natural frequencies are investigated.

2. Governing equations and boundary conditions

Consider the coupled bending–bending vibration of a rotating non-uniform beam with
arbitrary pretwist, a tip mass and an elastically restrained root. The beam is mounted with setting
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angle y on a hub with radius R and rotates with constant angular velocity O; as shown in Fig. 1.
The displacement fields of the beam are

u ¼ u0ðx; tÞ � z
@w

@x
� y

@v

@x
; v ¼ vðx; tÞ; w ¼ wðx; tÞ; ð1Þ

where x; y; and z are the fixed frame co-ordinates shown in Fig. 1. t is the time variable. The
velocity vector of a point ðx; y; zÞ in the beam is given by

V
,

¼
@u

@t
þ O sin yðz þ wÞ þ O cos yðy þ vÞ

� �
#i

þ
@v

@t
� O cos yðx þ R þ uÞ

� �
#j þ

@w

@t
� O sin yðx þ R þ uÞ

� �
#k: ð2Þ

The potential energy %U and the kinetic energy %T of the beam are

%U ¼
1

2

Z L

0

Z
A

sxex dA dx þ Kzy
@wð0; tÞ

@x

� �2
þ 1

2
KzT w2ð0; tÞ

þ 1
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@vð0; tÞ
@x
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2
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Fig. 1. Geometry and co-ordinate system of a rotating pretwisted beam.
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and

%T ¼
1

2

Z L

0

Z
A

rV
,
�V
,

dA dx þ 1
2

Mn½V
,
�V
,
�x¼L; y¼0; z¼0

þ 1
2

Jn

yy O sin y�
@2wðL; tÞ
@x@t

� �2
þ 1

2
Jn

zz �O cos y�
@2vðL; tÞ
@x@t

� �2
; ð4Þ

where AðxÞ is the cross-sectional area of the beam. EðxÞ is the Young’s modulus of the material.
Jn

yy and Jn
zz are the rotary inertia of the tip mass about the y- and z-axis, respectively.

KyT ; Kyy; KzT ; and Kzy are the translational and rotational spring constants at the left end of the
beam in the y and z directions, respectively. L is the length of the beam. Mn is the tip mass
attached at the free end of the beam. rðxÞ is the mass per unit volume of the beam. sx and ex are
the normal stress and strain in the x direction, respectively. Application of Hamilton’s principle
yields the coupled governing differential equations and the elastic boundary conditions.
Consider the free bending–bending vibration of the beam without taking account of the effect

of the Coriolis force and the axial neutral displacement. The dimensionless variables and
parameters are defined as follows:

BijðxÞ ¼ EðxÞIijðxÞ=½Eð0ÞIyyð0Þ�; mðxÞ ¼ rðxÞAðxÞ=½rð0ÞAð0Þ�;

%nðxÞ ¼ a2
R 1

x mðwÞðr þ wÞ dwþ d3a2ð1þ rÞ; r ¼ R=L;

%vðx; tÞ ¼ vðx; tÞ=L; %wðx; tÞ ¼ wðx; tÞ=L;

a2 ¼ rð0ÞAð0ÞO2L4=½Eð0ÞIyyð0Þ�; b1 ¼ KzyL=½Eð0ÞIyyð0Þ�;

b2 ¼ KzT L3=½Eð0ÞIyyð0Þ�; b3 ¼ KyyL=½Eð0ÞIyyð0Þ�;

b4 ¼ KyT L3=½Eð0ÞIyyð0Þ�; gi1 ¼ bi=ð1þ biÞ; i ¼ 1; 2; 3; 4;

gi2 ¼ 1=ð1þ biÞ; i ¼ 1; 2; 3; 4; d1 ¼ Jyyn=½rð0ÞAð0ÞL3�;

dn1 ¼ JYYn=½rð0ÞAð0ÞL3�; d2 ¼ Jzzn=½rð0ÞAð0ÞL3�;

dn2 ¼ JZZn=½rð0ÞAð0ÞL3�; d3 ¼ Mn=½rð0ÞAð0ÞL�;

x ¼ x=L; t ¼ t=L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð0ÞIyyð0Þ=rð0ÞAð0Þ

p
;

L2 ¼ rð0ÞAð0Þo2L4=½Eð0ÞIyyð0Þ�; ð5Þ

where IyyðxÞ and IzzðxÞ are the area moment of inertia of the beam section about the y- and z-axis,
respectively. Consider the free vibration of the beam. The harmonic solutions can be assumed to
take the form

%wðx; tÞ ¼ W ðxÞeiLt; %vðx; tÞ ¼ V ðxÞeiLt: ð6Þ

The corresponding dimensionless governing differential equations of motion for harmonic
vibration with circular frequency L can be written as

�
d2

dx2
Byy

d2W

dx2
þ Byz

d2V

dx2

� �
þ

d

dx
%n
dW

dx

� �
þ mða2 sin yþ L2ÞW

þ ma2 sin y cos yV ¼ 0; ð7Þ
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�
d2

dx2
Byz

d2W

dx2
þ Bzz

d2V

dx2

� �
þ

d

dx
%n
dV

dx

� �
þ mða2 cos yþ L2ÞV

þ ma2 sin y cos yW ¼ 0; xAð0; 1Þ ð8Þ

and the associated dimensionless elastic boundary conditions are as follows: At x ¼ 0;

g12 Byy

d2W

dx2
þ Byz

d2V

dx2

� �
� g11

dW

dx
¼ 0; ð9Þ

g22
d

dx
Byy

d2W

dx2
þ Byz

d2V

dx2

� �
� %n

dW

dx

� �
þ g21W ¼ 0; ð10Þ

g32 Byz

d2W

dx2
þ Bzz

d2V

dx2

� �
� g31

dV

dx
¼ 0; ð11Þ

g42
d

dx
Byz

d2W

dx2
þ Bzz

d2V

dx2

� �
� %n

dV

dx

� �
þ g41W ¼ 0: ð12Þ

At x ¼ 1

Byy
d2W

dx2
þ Byz

d2V

dx2
� d1L2 dW

dx
¼ 0; ð13Þ

d

dx
Byy

d2W

dx2
þ Byz

d2V

dx2

� �
� %n

dW

dx

þ d3½ða2 sin
2 yþ L2ÞW þ a2 sin y cos yV � ¼ 0; ð14Þ

Byz

d2W

dx2
þ Bzz

d2V

dx2
� d2L2 dV

dx
¼ 0; ð15Þ

d

dx
Byz

d2W

dx2
þ Bzz

d2V

dx2

� �
� %n

dV

dx

þ d3½a2 sin y cos yW þ ða2 cos2 yþ L2ÞV � ¼ 0: ð16Þ

3. Solution method

Defining the state variables as

x1 ¼ W ; x2 ¼
dW

dx
; x3 ¼

d2W

dx2
; x4 ¼

d3W

dx3
;

x5 ¼ V ; x6 ¼
dV

dx
; x7 ¼

d2V

dx2
; x8 ¼

d3V

dx3
: ð17Þ

ARTICLE IN PRESS

S.Y. Lee et al. / Journal of Sound and Vibration 273 (2004) 477–492 481



Substituting it back to the governing characteristic differential equations (7) and (8), one obtains
as follows:

a1
dx4

dx
þ a2

dx3

dx
þ a3

dx2

dx
þ a4

dx1

dx3
þ a5x1

þ a6
dx8

dx
þ a7

dx7

dx
þ a8

dx6

dx
þ a9

dx5

dx3
þ a10x5 ¼ 0; ð18Þ

a11
dx4

dx
þ a12

dx3

dx
þ a13

dx2

dx
þ a14

dx1

dx3
þ a15x1

þ a16
dx8

dx
þ a17

dx7

dx
þ a18

dx6

dx
þ a19

dx5

dx3
þ a20x5 ¼ 0; ð19Þ

where

a1 ¼ Byy; a2 ¼ 2
dByy

dx
;

a3 ¼
d2Byy

dx2
� %n; a4 ¼ a19 ¼ �

dn

dx
;

a5 ¼ �mða2 sin2 yþ L2
nÞ; a6 ¼ a11 ¼ Byz;

a7 ¼ a12 ¼ 2
dByz

dx
; a8 ¼ a13 ¼

d2Byz

dx2
;

a9 ¼ a14 ¼ 0; a10 ¼ a15 ¼ �ma2 sin y cos y;

a16 ¼ Bzz; a17 ¼ 2
dBzz

dx
;

a18 ¼
d2Bzz

dx2
� %n; a20 ¼ �mða2 cos2 yþ L2

nÞ: ð20Þ

Multiplying Eq. (18) by a16 and Eq. (19) by a6 and subtracting the latter from the former, one
obtains

dx4

dx
¼

X8
j¼1

cjxj; ð21Þ

where

c1 ¼ �ða5a16 � a15a6Þ=s; c2 ¼ �ða4a16 � a14a6Þ=s;

c3 ¼ �ða3a16 � a13a6Þ=s; c4 ¼ �ða2a16 � a12a6Þ=s;

c5 ¼ �ða10a16 � a20a6Þ=s; c6 ¼ �ða9a16 � a19a6Þ=s;

c7 ¼ �ða8a16 � a18a6Þ=s; c8 ¼ �ða7a16 � a17a6Þ=s;

s ¼ a1a16 � a11a6: ð22Þ
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Similarly, multiplying Eq. (18) by a11 and Eq. (19) by a1 and subtracting the latter from the
former, one obtains

dx8

dx
¼

X8
j¼1

%cjxj; ð23Þ

where

%c1 ¼ �ða5a11 � a15a1Þ=%s; %c2 ¼ �ða4a11 � a14a1Þ=%s;

%c3 ¼ �ða3a11 � a13a1Þ=%s; %c4 ¼ �ða2a11 � a12a1Þ=%s;

%c5 ¼ �ða10a11 � a20a1Þ=%s; %c6 ¼ �ða9a11 � a19a1Þ=%s;

%c7 ¼ �ða8a11 � a18a1Þ=%s; %c8 ¼ �ða7a11 � a17a1Þ=%s;

%s ¼ a6a11 � a16a1: ð24Þ

Based on relations (17), (21), and (23), the transformed vector characteristic governing equation
can be obtained as follows:

dXðxÞ
dx

¼ AðxÞXðxÞ; ð25Þ

the state vector XðxÞ and system matrix AðxÞ are

XðxÞ ¼ ½x1 x2 x3 x4 x5 x6 x7 x8�T;

AðxÞ ¼

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

%c1 %c2 %c3 %c4 %c5 %c6 %c7 %c8

2
666666666666664

3
777777777777775

; ð26Þ

the superscript T in the matrix XðxÞ is the transpose of a matrix.
The solution of Eq. (25) can be expressed as

XðxÞ ¼ Tðx; 0ÞXð0Þ; ð27Þ

where Tðx; 0Þ is the transition matrix from 0 to x: After applying the composition property of the
transition matrix:

Tðxiþ1; xi�1Þ ¼ Tðxiþ1; xiÞTðxi; xi�1Þ; ð28Þ

the transition matrix from the first subsection to the jth subsection is obtained

Tðx; 0Þ ¼
Y1
i¼j

Tðxi; xi�1Þ; xAð0; xjÞ: ð29Þ
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The state variables at x ¼ 1 can be written as

xið1Þ ¼
X8
j¼1

Tijð1; 0Þxjð0Þ; i ¼ 1; 2; 3;y; 8; ð30Þ

where Tij is the elements of the transition matrix Tðx; 0Þ: The semi-analytical transition matrix
derived by Lin [20] is proposed. Expressing the boundary conditions (9)–(12) in terms of the
state variables fx1ð0Þ;x2ð0Þ;y; x8ð0Þg; and substituting Eq. (30) into the boundary conditions
(13)–(16), the frequency equation of the system is obtained as

jcij j8�8 ¼ 0; i; j ¼ 1; 2; 3;y; 8; ð31Þ

where

c11 ¼ c14 ¼ c15 ¼ c16 ¼ c18 ¼ 0; c12 ¼ �g11;

c13 ¼ g12Byyð0Þ; c17 ¼ g12Byzð0Þ;

c21 ¼ g21; c22 ¼ c25 ¼ c26 ¼ 0;

c23 ¼ g22B
0
yyð0Þ; c24 ¼ g22Byyð0Þ;

c27 ¼ g22B
0
yzð0Þ; c28 ¼ g22Byzð0Þ;

c31 ¼ c32 ¼ c34 ¼ c35 ¼ c38 ¼ 0; c33 ¼ g32Byzð0Þ;

c36 ¼ �g31; c37 ¼ g32Bzzð0Þ;

c41 ¼ c42 ¼ c46 ¼ 0; c43 ¼ g42B
0
yzð0Þ;

c44 ¼ g42Byzð0Þ; c45 ¼ g41;

c47 ¼ g42B
0
zzð0Þ; c48 ¼ g42Bzzð0Þ;

c5j ¼Byyð1ÞT3jð1; 0Þ þ Byzð1ÞT7jð1; 0Þ � L2
nd1T2jð1; 0Þ; j ¼ 1; 2; 3;y; 8;

c6j ¼ � nð1ÞT2j þ B0
yyð1ÞT3jð1; 0Þ þ Byyð1ÞT4jð1; 0Þ þ B0

yzð1ÞT7jð1; 0Þ

þ Byzð1ÞT8jð1; 0Þ þ d3ða2 sin
2 yþ L2

nÞT1jð1; 0Þ

þ d3a2 sin y cos yT5j; j ¼ 1; 2; 3;y; 8;

c7j ¼Byzð1ÞT3jð1; 0Þ þ Bzzð1ÞT7jð1; 0Þ � L2
nd2T6jð1; 0Þ; j ¼ 1; 2; 3;y; 8;

c8j ¼ � nð1ÞT6j þ B0
yzð1ÞT3jð1; 0Þ þ Byzð1ÞT4jð1; 0Þ þ B0

zzð1ÞT7jð1; 0Þ

þ Bzzð1ÞT8jð1; 0Þ þ d3a2 sin y cos yT1jð1; 0Þ

þ d3ða2 cos2 yþ L2
nÞT5jð1; 0Þ; j ¼ 1; 2; 3;y; 8: ð32Þ

4. Numerical results and discussion

To illustrate the previous analysis, the performance of a rotating doubly tapered beam
with arbitrary pretwist and a tip mass is studied. The corresponding parameters are
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as follows:

ByyðxÞ ¼ Zð1þ l1xÞ
3ð1þ l2xÞ sin

2 jþ ð1þ l1xÞð1þ l2xÞ
3 cos2 j;

BzzðxÞ ¼ Zð1þ l1xÞ
3ð1þ l2xÞ cos2 jþ ð1þ l1xÞð1þ l2xÞ

3 sin2 j;

ByzðxÞ ¼ 0:5½Zð1þ l1xÞ
3ð1þ l2xÞ � ð1þ l1xÞð1þ l2xÞ

3� sin2ð2jÞ; ð33Þ

dn2 ¼ k2d3; dn1 ¼ k1d
n

2;

d1 ¼ dn2 sin
2 Fþ dn1 cos

2 F; d2 ¼ dn2 cos
2 Fþ dn1 sin

2 F; ð34Þ

where Z is the square of the ratio of the width of the cross-section at the root of the beam in the y

and z directions. l1 and l2 are variable rate of the width of the cross-section of the beam in the Y
and Z directions, respectively. dn1 and dn2 are the dimensionless rotary inertia of the tip mass about
the Y - and Z-axis, respectively.
In Table 1, the natural frequencies of rotating pretwisted beams obtained by the present method

are compared with those given by Ramamurti and Kielb [22] and Yoo et al. [21] by using the
Zienkiewicz’s approach and the Rayleigh–Ritz method, respectively. In Table 2, the natural
frequencies of unpretwisted beams obtained by the present method are compared with those given
by Wright et al. [23] and Yoo et al. [21] studied the vibration of a rotating beam with a
concentrated tip mass by using the Frobenius method and the Rayleigh–Ritz method,
respectively. The first modes are very consistent. But the second and third modes presented are
lightly smaller than those determined by the Rayleigh–Ritz method. Because the numerical result
determined by the Rayleigh–Ritz method is upper bounded, the proposed method is accurate.
It should be noted that when the tip mass constant d3 is increased, the centrifugal force is

increased. The effect of the centrifugal force is to increase the stiffness of the blade and the natural
frequencies. However, the opposite effect of the tip mass constant d3 is to increase the total mass
of the blade and to decrease the natural frequencies. The coupled effect of the tip mass and the
rotational speed on the frequencies is studied here. The influence of the angular velocity a on the
natural frequencies of a uniformly pretwisted cantilever beam with a concentrated tip mass is
shown in Figs. 2 and 3. When tip mass constant d3 increases, the first and second natural
frequencies decrease, and they become close as a increases. When a is smaller than a critical value,
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Table 1

Comparison of the first three natural frequencies (Hz) of a rotating cantilever pretwisted beam without tip mass

470 rpm 940 rpm

o1 o2 o3 o1 o2 o3

Present 18.011 90.177 261.824 24.469 97.835 271.127
a 19.718 91.369 263.852 28.159 100.690 272.755
b 19.567 90.746 28.079 100.085

L ¼ 0:1524 m; R ¼ 0:1016 m; h ¼ 0:0254 m; b ¼ 0:00127 m; IYY ¼ bh3=12; IZZ ¼ hb3=12; E ¼ 206:85 GPa;
r ¼ 802:73 kg=m3; y ¼ 0; l1 ¼ 0; l2 ¼ 0; j ¼ xp=6:

aGiven by Ramamurti and Kielb [22].
bGiven by Yoo et al. [21].
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the third natural frequency decreases as d3 increases. However, when a is larger than the critical
value, the third natural frequency increases as d3 is increased. The reason is that for a small
rotational speed the influence of the inertia on the frequencies is greater than that of the
centrifugal force. However, the centrifugal force includes the term of the product of the rotating
speed and the tip mass constant. For a large rotational speed the centrifugal force is increased
greatly and the natural frequencies will be increased. Figs. 3 shows that for a small rotating speed
when d3 is increased, the first three natural frequencies are decreased. But for a large rotating
speed if d3 exceeds a critical value, the influence of centrifugal force on the third natural frequency
is greater than that of the inertia of tip mass d3: In other words, when d3 is increased over the
critical value, the third frequency is increased.
In Figs. 4a and b, the influence of the angular velocity a on the natural frequencies of a

cantilever beam pretwisted uniformly and non-uniformly are shown, respectively. It can be
observed in Fig. 4a that for a uniformly pretwisted beam the influence of F on the third natural
frequency is greater than on the first and second ones. The influence on the second and third
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Table 2

Comparison of the first three natural frequencies of a rotating unpretwisted beam with a concentrated tip mass

a ¼ 1 a ¼ 2 a ¼ 3

L1 L2 L1 L2 L1 L2

Present 1.9017 16.7272 2.6696 18.0807 3.5823 20.1280
a 1.9017 16.7570 2.6696 18.1910 3.5823 20.3504
b 1.9017 16.7595 2.6696 18.1932 3.5823 20.3524

r ¼ 0; b1; b2; b3; b4-N; d3 ¼ 1; Z ¼ 1; y ¼ 0; l1 ¼ 0; l2 ¼ 0; j ¼ 0; k1 ¼ 0; k2 ¼ 0:
aGiven by Wright et al. [23].
bGiven by Yoo et al. [21].
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δ3 = 0.1  
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 Λ1
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Fig. 2. The influence of the angular velocity a on the natural frequencies with various tip mass d3 ðr ¼ 1;
b1; b2; b3; b4-N; Z ¼ 10; y ¼ 0; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ:

S.Y. Lee et al. / Journal of Sound and Vibration 273 (2004) 477–492486



natural frequencies will decrease as a is increased. It can be observed in Fig. 4b that for non-
uniform pretwist when a is increased, the influence of F on the first natural frequency increases,
but the influence on the third natural frequency decreases. Moreover, the veering phenomenon of
second natural frequency is observed: when a is less than 5, the influence of F on the second
natural frequency decreases, but the influence increases if a is greater than 5.
In Table 3, the influence of the setting angle y and the total pretwist angle F on the first two

natural frequencies of a cantilever beam is shown. When the setting angle is increased, the
frequencies of the unpretwisted beam, i.e., F ¼ 00; are decreased. The phenomenon is the same as
that studied by Lee and Lin [24]. However, when the setting angle is increased, the first frequencies
of the pretwisted beams are initially increased and then decreased. Meanwhile, the second
frequencies are increased. The reason is given as following:
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Fig. 3. (a) The influence of the tip mass d3 on the first and second natural frequencies with various angular velocity

a ðr ¼ 1; b1; b2; b3; b4-N; Z ¼ 10; y ¼ p=2; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ: (b) The influ-

ence of the tip mass d3 on the third natural frequency with various angular velocity a ðr ¼ 1; b1; b2; b3; b4-N;
Z ¼ 10; y ¼ p=2; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ:
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Without the account of pretwist, Eq. (7) becomes the governing equation of an unpretwisted
beam given by Lee and Lin [24]

d2

dx2
Byy

d2W

dx2

� �
�

d

dx
%n
dW

dx

� �
� mða2 sin2 yþ L2ÞW ¼ 0: ð35Þ

The last term of Eq. (35) is an inertial one. When the setting angle is increased, the coupling inertia
effect of the mass and the setting angle is increased and the natural frequencies are decreased [24].
For a rotating pretwisted beam the last second term of Eq. (7) ma2 sin2 y are two coupling inertia
of the mass and the setting angle. When the setting angle y increases, the coupling inertia effect
increases. However, when the setting angle y increases, the coupling inertia term of Eq. (8)
ma2 cos2 y decreases. Moreover, when the setting angle y increases from zero to p=4; the last
inertia terms of Eqs. (7) and (8) ma2 sin y cos y increases. When the setting angle y increases from
p=4 to p=2; the inertia terms decreases. The difference between the coupling inertia term of a
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unpretwisted beam and those of a pretwisted beam is revealed. Further, it is found that when the
setting angle is increased, the natural frequencies of a unpretwisted beam must be decreased, but
those of a pretwisted beam may be increased.
Fig. 5 shows the influence of the setting angle y on the natural frequencies of a cantilever beam

pretwisted uniformly, with various parameters of the rotary inertia of the tip mass, k1 and k2: It
can be observed that there is almost no effect of the setting angle on the first natural frequency.
When the setting angle is increased, the second and third frequencies are increased. When the
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Table 3

Effect of the setting angle y on the dimensionless frequencies of a rotating pretwisted cantilever beam

y L1 (deg) L2 (deg)

F ¼ 0 F ¼ 45 F ¼ 60 F ¼ 0 F ¼ 45 F ¼ 60

0 4.210 4.285 4.420 22.575 18.146 16.092

10 4.206 4.289 4.426 22.574 18.272 16.239

20 4.196 4.289 4.430 22.572 18.645 16.685

30 4.180 4.284 4.431 22.569 19.260 17.450

40 4.160 4.275 4.429 22.566 20.099 18.555

50 4.139 4.264 4.423 22.562 21.108 19.998

60 4.120 4.250 4.415 22.558 22.186 21.701

70 4.103 4.237 4.406 22.555 23.169 23.434

80 4.093 4.226 4.396 22.553 23.866 24.784

90 4.089 4.218 4.388 22.553 24.118 25.299

Byy ¼ ð1� 0:1xÞ4 cos2 xFþ 200ð1� 0:1xÞ4 sin2 xF; Bzz ¼ 200ð1� 0:1xÞ4 cos2 xFþ ð1� 0:1xÞ4 sin2 xF;
Byz ¼ 49:5ð1� 0:1xÞ4 sin 2xF; r ¼ 1; a ¼ 1:
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Fig. 5. The influence of the setting angle y on the first three frequencies with various parameters of rotary inertias of tip

mass k1; k2 ðr ¼ 1; a ¼ 1; b1; b2; b3; b4-N; Z ¼ 200; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; d3 ¼ 0:05Þ:
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rotary inertia constants k1 and k2 are increased, the natural frequencies are decreased. Moreover,
the rotary inertia about the Y -axis will greatly decrease the effect of the setting angle on the
frequencies.
Fig. 6 shows the influence of the root spring constants bi on the first three natural frequencies of

a pretwisted beam with the parameters fr ¼ 1; d3 ¼ 0:05; Z ¼ 10; y ¼ 0; l1 ¼ �0:1; l2 ¼ �0:1;j ¼
xp=4; k1 ¼ 0; k2 ¼ 0g: Figs. 6a and b show that the influence of the rotational root spring
constants on the natural frequencies is very small. However, Figs. 6c and d show that the influence
of the translational root spring constants on especially the fundamental frequency is large. It is
well known [22] that if the fundamental frequency is decreased to zero, the divergence instability
will happen. Lin [22] revealed that the divergence instability will not happen to a pretwisted
Bernoulli–Euler beam with r > 0; yop=4; b2; b4-N; b1 > 0; and b3 > 0 and a unpretwisted
Bernoulli–Euler beam with b2; b4-N and r > 0: However, the divergence instability will happen
to both pretwisted and unpretwisted beams with infinite rotational root spring constants b1; b3
when the translational root spring constants b2 and b4 are smaller than some critical values. Fig. 6
verifies the facts that the effects of the translational root spring constants on the frequencies are
greatly larger than those of the rotational root spring constants.

5. Conclusion

In this paper, a solution procedure for the bending–bending vibration of a rotating non-
uniform beam with arbitrary pretwist and an elastically restrained root is derived. A simple and
efficient algorithm for deriving the semi-analytical transition matrix of the general system with
non-uniform pretwist is proposed. The accurate natural frequencies and mode shapes of the beam
with elastic root can be obtained. Based on the facts, one can derives the analytical solution for
the forced vibration of the system by using the method of mode superposition. However, it is
difficult to determine the frequencies and the mode shapes of a beam with elastic root by using the
approximate methods such as Ritz method and FEM. The influence of the tip mass, the rotary
inertia of the tip mass, the rotating speed, the geometric parameter, the setting angle, and the
pretwist angle on the natural frequencies are investigated. It is shown that

1. For a small rotating speed when the tip mass parameter d3 is increased, the first three natural
frequencies are decreased. But for a large rotating speed when d3 exceeds a critical value, the
influence of centrifugal force on the third natural frequency is greater than that of the inertia of
tip mass d3: In other words, when d3 is increased over the critical value, the third frequency is
increased.

2. The effects of the pretwist angle on the natural frequencies of lower modes of the beam with
uniform pretwist and on those of the beam with non-uniform pretwist are almost same. But the
effects of the pretwist angle on the natural frequencies of higher modes of the beam with
uniform pretwist and on those of the beam with non-uniform pretwist are different greatly.

3. Lee and Lin [24] found that the natural frequencies of a rotating unpretwisted beam would
decrease as the setting angle is increased. However, the natural frequencies of a rotating pretwisted
beam may be increased or decreased as the setting angle is increased. Moreover, the rotary inertias
of the tip mass will decrease the influence of the setting angle on the natural frequencies.
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Fig. 6. (a) The influence of the angular velocity a and the rotational root spring constant b1 on the natural frequencies

ðr ¼ 1; b2; b3; b4-N; d3 ¼ 0:05; Z ¼ 10; y ¼ 0; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ: (b) The influ-
ence of the angular velocity a and the translational root spring constant b2 on the natural frequencies

ðr ¼ 1; b1; b3; b4-N; d3 ¼ 0:05; Z ¼ 10; y ¼ 0; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ: (c) The influ-

ence of the angular velocity a and the rotational root spring constant b3 on the natural frequencies

ðr ¼ 1; b1; b2; b4-N; d3 ¼ 0:05; Z ¼ 10; y ¼ 0; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ: (d) The influ-
ence of the angular velocity a and the translational root spring constant b4 on the natural frequencies

ðr ¼ 1; b1; b2; b3-N; d3 ¼ 0:05; Z ¼ 10; y ¼ 0; l1 ¼ �0:1; l2 ¼ �0:1; j ¼ xp=4; k1 ¼ 0; k2 ¼ 0Þ:
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