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Abstract

The governing equation for the finite element analysis of the panel flutter of composite plates including
structural damping is derived from Hamilton’s principle. The first order shear deformable plate theory has
been applied to structural modelling so as to obtain the finite element eigenvalue equation. The unsteady
aerodynamic load in a supersonic flow is computed by using the linear piston theory. The critical dynamic
pressures for composite plates have been calculated to investigate the effects of structural damping on
flutter boundaries. The effects are dependent on fiber orientation because flutter mode can be weak or
strong in the fiber orientation of composite plates. Structural damping plays an important role in flutter
stability with low aerodynamic damping but would not affect the flutter boundary with high aerodynamic
damping.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Panel flutter is a dynamic instability of the thin skin of flight vehicles occurring at a critical
velocity of the airflow passing over it. Jordan [1] is known as the first person who was aware of
panel flutter on flight structures and suggested that a lot of early V-2 rocket failures might have
resulted from panel flutter. Many studies [2–8] on the panel flutter of isotropic plates have been
carried out since the 1950s. A lot of papers [9–11] attempted the panel flutter analysis of composite
plates after composite materials were broadly used in the aerospace structures of the 1980s.
Research on the effect of structural damping on the panel flutter of composite plates, to the

authors’ knowledge, has not been reported whereas many papers have investigated the effects on
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the panel flutter of isotropic plates. In general, damping in composite plates is a favorable
property in the aspect of passively controlling dynamic responses. However, the uniformly
distributed damping due to structural deformation such as bending may reduce the stability of
panel flutter. Ellen [5] illustrated that hysteretic damping igð@nw=@xnÞ and viscous damping
igoð@nw=@xnÞ where g is the structural damping coefficient can destabilize the system by making
the total amount of damping smaller. It means that the system is stabilized for n ¼ 0 but the
system can be destabilized for n > 0: Lottati [12] showed that viscous damping reduces the stability
of the isotropic beam. Though Oyibo [13] analyzed the panel flutter of composite plates, his taking
n ¼ 0 resulted in a neglect of the uniformly distributed damping due to bending deformation. It
can be said that his results did not reflect the correct damping mechanism of composite plates and
the effect of fiber orientation.
In this paper, the finite element method formulates the equation of motion for the damped

panel flutter of composite plates that is modelled using the first order shear deformable plate
theory. High Mach number approximation to the linear potential flow theory, i.e., the linear
piston theory that is suitable for M >

ffiffiffi
2

p
is utilized to compute the unsteady aerodynamic load

on the panel. Generally, there is no satisfactory model for damping. This paper adopts the
hysteretic damping model since it is more realistic than the viscous damping model in structural
vibration. The effect of structural damping on the flutter boundaries of composite plates is
investigated in relationship to the change of fiber orientation and the amount of aerodynamic
damping.

2. Governing equations

The displacement field in the first order shear deformable plate theory can be expressed in
the form
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where u; v; and w are the displacement components in the x , y , z directions, respectively; fx

and fy are the rotations about y and x axes, respectively; and the subscript 0 denotes the
mid-plane.
Hamilton’s principle formulates the finite element equation of damped panel flutter as follows:Z t2

t1

dðT � U þ WncÞ dt ¼ 0; ð2Þ

where T is the kinetic energy, U is the potential energy, Wnc is the work done by non-conservative
forces, and d is a variational operator.
The kinetic energy for symmetric laminated plate can be obtained:Z t2
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where r is the density of plate, uT ¼ fu v wg; #m ¼ rh and I ¼ ð
R h=2
�h=2 rz2 dzÞ=rh: The bending

strain energy for symmetric laminated plate is given byZ t2
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and D is the bending stiffness of laminated plates and defined as

Dij ¼
Z h=2

�h=2
ð %QijÞkz2 dz for i; j ¼ 1; 2; 3;

Dij ¼
Z h=2

�h=2
ð %QijÞk dz for i; j ¼ 4; 5; ð5Þ

where %Qk ¼ R�1
k QR

�T
k is the transformed reduced stiffness of the kth layer; R�1

k is the inverse of
the transformation matrix Rk and R�T

k is the transpose matrix of R�1
k ; Q is the reduced stiffness

matrix of an orthotropic lamina; and the definitions of Rk and Q can be found in Ref. [14].
The virtual work by non-conservative force dWnc is composed of the virtual work by

aerodynamic force, dWA and the virtual work by structural damping, dWD:

dWnc ¼ dWA þ dWD: ð6Þ

Using a first order high Mach number approximation to the linear potential flow theory, which is
suitable for M >

ffiffiffi
2

p
; dWA becomesZ t2
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where b ¼ raV2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p
; m ¼ raV ðM2 � 2Þ=ðM2 � 1Þ1:5; ra; V ; and M are the density,

velocity, and Mach number of free stream, respectively.
Assuming the structural damping to be hysteretic can make dWD expressed byZ t2

t1

dWD dt ¼ �
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Here %H is a diagonal matrix with non-zero components %h11 ¼ Zx; %h22 ¼ Zy; %h33 ¼ Zxy; %h44 ¼ Zyz;
%h55 ¼ Zxz and G is the damping matrix due to bending and defined as

Gij ¼
Z h=2

�h=2

%QH
ij z2 dz for i; j ¼ 1; 2; 3;

Gij ¼
Z h=2

�h=2

%QH
ij dz for i; j ¼ 4; 5; ð9Þ

where %QH
k ¼ R�1

k HQR
�T
k and H is a diagonal matrix with non-zero components h11 ¼ Z1;

h22 ¼ Z2 , h33 ¼ Z12; h44 ¼ Z23; h55 ¼ Z13: Z1 and Z2 denote the loss factors in 0� and 90� directions
of a lamina, and Z12; Z23; and Z13 are the loss factors by shear.
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Substitution of the expressions in Eqs. (3), (4), (7), and (8) into Eq. (2) derives a variational
formulation of the problem. The finite element method interpolates the displacements in a linear
combination of shape functions like

ðw;fx;fyÞ ¼
Xn

i¼1

ð %wi; %fxi; %fyiÞNiðx; yÞ; ð10Þ

where Niðx; yÞ is the Lagrange family of interpolation functions and n is the number of nodes per
element.
The finite element equation can be written substituting Eq. (10) into the variational formulation:

#mM.uþ
1

o
Cþ mM

� 

’uþ ðbAþ KÞu ¼ 0: ð11Þ

Assuming the vibration to be stationary, i.e., uðtÞ ¼ %ueiot; transforms the flutter equation into the
eigenvalue equation:

ðiCþ Kþ bA� lMÞ%u ¼ 0; ð12Þ

where an eigenvalue is defined as l ¼ o2 #m � iom: In the case for b ¼ 0; composite plate undergoes
a damped free vibration with C and an undamped free vibration without C: If the aerodynamic
damping m is considered, it is the critical dynamic pressure bcr at which the computed aerodynamic
damping m ¼ lI=

ffiffiffiffiffiffiffiffiffiffiffiffi
lR= #m

p
coincides with the aerodynamic damping assumed according to the flight

condition.

3. Numerical results

A nine-noded isoparametric element is employed and only the clamped square plate with the
length-to-thickness ratio of a=h ¼ b=h ¼ 200 is considered in this paper. Fig. 1 shows the
geometric definition of composite plate in airflow.
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Fig. 1. Geometric definition of composite plates in airflow.
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The non-dimensional natural frequency
ffiffiffiffiffiffi
lnR

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lRa4=E2h3

p
and non-dimensional critical

dynamic pressure bn

cr ¼ bcra
3=E2h

3 for a boron/epoxy clamped square plate with ½0=902
S are
given in Table 1 to show the accuracy of the present analysis. Since both the frequency parameter
and the flutter bounds with 6� 6 elements are in a good agreement with the results of Srinivasan
and Babu [8], all the plates in this analysis are divided into 6� 6 finite elements.
The composite material used in the analysis is HMS/DX-210 of which properties are

given as [15]

E1 ¼ 172:7 GPa; E2 ¼ 7:2 GPa; G12 ¼ 3:76 GPa; n12 ¼ 0:3; r ¼ 1550 kg=m3;

Z1 ¼ 7:162� 10�4; Z2 ¼ 6:716� 10�3; Z12 ¼ Z23 ¼ Z13 ¼ 1:122� 10�2: ð13Þ

3.1. Quasi-isotropic composite plate

Fig. 2 shows the non-dimensional real eigenvalue lnR ¼ lRa4=E2h
3 and imaginary one lnI ¼

lI a4=E2h
3 of the critical modes vs. the non-dimensional dynamic pressure bn for a quasi-isotropic

plate ½0=745=90
S: The solid line (—–) means the eigenvalues when the structural damping Zij is
neglected, i.e., Zij ¼ 0; the dashed line (- - - - - -) denotes the eigenvalues when the structural
damping Zij given in Eq. (13) is included; the centered line (– � – � –) is obtained by increasing the
structural damping Zij in Eq. (13) by 10 times, i.e., 10� Zij : In the case for Zij ¼ 0; two real
eigenvalues lnR approach to each other with increasing bn and then merge into a pair of complex
conjugate after the flutter occurs. This phenomenon is called frequency coalescence. In the case
for Zija0; the eigenvalues ln are complex for any value of bn except for zero. The real parts of two
eigenvalues, lnR approach to each other but do not coalesce. In this case, flutter occurs when an
imaginary part of an eigenvalue lnI changes from positive to negative. It is seen that the critical
dynamic pressure in the case for Zija0 is greatly reduced as compared to that for Zij ¼ 0: It is
observed in Fig. 2 that critical flutter occurs with relation to modes 9 and 10 for both Zij ¼ 0 and
Zij ; but to mode 1 and 2 for 10� Zij : It is noted that the flutter in relation to modes 9 and 10, which
will be designated the flutter of mode 9/10 hereafter, is a weak flutter instability which becomes
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Table 1

Non-dimensional frequencies and flutter bounds for ½0=902
S boron/epoxya clamped square plate

Solution
Non-dimensional frequency,

ffiffiffiffiffiffi
lnR

q
Flutter bounds

1 2 3 4 5 6
ffiffiffiffiffiffi
lnR

q
bn

cr

Present

6� 6 nine-noded elements 23.33 41.83 54.17 65.54 75.77 92.39 46.42 459.91

Srinivasan and Babu [8]

Integral equation method 23.33 42.36 53.77 65.56 76.52 92.76 46.09 446.36

Series solution 23.63 42.28 53.76 65.42 75.89 92.19 47.19 474.60

aE1 ¼ 213:7 GPa; E2 ¼ 18:6 GPa; G12 ¼ G13 ¼ 5:17 GPa; G23 ¼ 6:21 GPa; n12 ¼ 0:28; r ¼ 2052 kg=m3:
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stable with increments of structural damping. The natural mode shapes and flutter mode shapes
are illustrated in Fig. 3. It is shown that the flutter mode shapes look like a combination of two
related natural modes.
Fig. 4 shows the critical dynamic pressure bn

cr versus the magnification factor n of the
material loss factors Zij of HMS/DX-210 for the flutter of mode 1/2. Neglecting the aerodynamic
damping m; bn

cr decreases suddenly and then keeps constant as the loss factor increases. However,
the effect of aerodynamic damping makes the critical dynamic pressure decrease gradually as the
loss factor increases. The critical dynamic pressures bn

cr for the flutter of mode 1/2 in Fig. 5

ARTICLE IN PRESS

0 200 400 600 800 1000
1000 

2000 

3000 

4000 

27000 

28000

*
Rλ

*β

mode 9 &10 

mode 1 & 2

0 200 400 600 800 1000

-200 

0 

200

400

600

800

Mode 9 & 10

Mode 1 & 2

*
Iλ

*β

0 200 400 600 800 1000

-200 

0 

200

(a)

(b)

Fig. 2. (a) Real eigenvalue lnR and (b) imaginary eigenvalue lnI of ½0=745=90
S clamped square plate. ——, Zij ¼ 0;
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increases regardless of the magnitude of structural damping as the aerodynamic damping m
increases.
Fig. 6 illustrates the lowest critical dynamic pressures bn

cr versus the magnification factor n of
material loss factors Zij for several values of m: It is interesting that instability occurs in the flutter
of mode 9/10 when the structural damping is small but in the flutter of mode 1/2 when the
structural damping is large. Also, it is worthwhile noting that structural damping may stabilize or
destabilize the flutter instability depending on the type of flutter. The flutter of mode 1/2 is
destabilized with an increase of the structural damping and the flutter of mode 9/10 which is a
weak flutter is stabilized with increase of the structural damping. In comparison with the results in
Fig. 5, the lowest bn

cr versus m for various structural damping shown in Fig. 7 indicates that the
effect of aerodynamic damping on the stability of the flutter of mode 9/10 is different from that
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for the flutter of mode 1/2. The flutter of mode 9/10 shows a nearly constant stability at the large
values of aerodynamic damping whereas the flutter of mode 1/2 shows a high increasing rate of
stability at the low values of aerodynamic damping.
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3.2. Orthotropic composite plate

Fig. 8 shows the effects of structural damping on the critical dynamic pressure of ½y
S plate with
a variation of fiber orientation y for three values of aerodynamic damping, m ¼ 0; 10; 100: The
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lines in Fig. 8 denote the critical dynamic pressures of the flutter of mode 1/2 except for y ¼ 0�:
where the instability occurs in the flutter of mode 1/6. The symbols circle ðJÞ and triangle ðWÞ
mean the critical pressures of flutter modes other than mode 1/2. The critical dynamic pressure
decreases as the fiber orientation increases because the bending stiffness in the flow direction, D11

decreases with increasing fiber orientation. The critical dynamic pressures of the flutter of mode
1/2 with the structural damping (designated as ——) are much smaller than those without the
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structural damping (designated as - - - - - -) and the trends of those two cases are similar to each
other. The critical dynamic pressures using the structural damping approach to those without the
structural damping for m ¼ 0 as the aerodynamic damping m increases. This is because
aerodynamic damping becomes much bigger compared to structural damping. Flutter instability
occurs in different modes at some fiber orientations. For example, instability occurs in the flutter
of mode 8/9 at y ¼ 50�; which is weak and structural damping stabilizes the flutter.
The amount of decrement in bn

cr by the structural damping in flutter analysis for m ¼ 0; 10; 100
is shown in Fig. 9 with a variation of fiber orientation. The instability in Fig. 9 is the flutter of
mode 1/2 besides y ¼ 0� as is in Fig. 8. %bn

cr denotes the critical dynamic pressures normalized by
the dynamic pressure at y ¼ 0� when Zij ¼ 0 and m ¼ 0: It is observed that a reduction of %bn

cr by
structural damping is largest near y ¼ 45�: The modal loss factors of the natural modes 1, 2 and
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flutter mode are shown in Fig. 10 so as to understand the relationship between %bn
cr and y: The

modal loss factors of the natural modes 1 and 2 are relatively large near y ¼ 45�: The modal loss
factor of the flutter mode has a value between those of the natural modes 1 and 2. This illustrates
that the decrement in %bn

cr by the structural damping is large when the modal loss factors related to
flutter mode is large.
The lowest critical dynamic pressures bn

cr of ½y
S plate including structural damping are shown in
Fig. 11. The values without symbols are the critical dynamic pressure of the flutter of mode 1/2
and those with symbols denote the critical dynamic pressure of the flutter of other than the mode
1/2. There are discontinuities in bn

cr at y ¼ 0; 25; 50; 60; and 65�: The increment of aerodynamic
damping makes the flutter mode changed at y ¼ 0; 50; and 60�; too.
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The mode shapes of the free vibration and flutter for y ¼ 0� are plotted in Fig. 12. Two flutter
mode shapes for y ¼ 0�: are related to mode 6. The natural and flutter mode shapes for y ¼ 45�

and 90� are shown in Fig. 13. The flutter mode shapes show the typical frequency coalescence and
have a nodal line parallel to the fiber orientation.

4. Conclusion

The finite element method has been applied to study the effects of distributed structural
damping on the flutter boundaries of composite plates.

1. Structural damping may stabilize or destabilize the flutter instability of composite plates
depending on the type of flutter. This means that the effects of structural damping are
dependent on the fiber orientation of composite plates because the flutter mode can be weak or
strong according to the fiber orientation.

2. Aerodynamic damping always increases critical dynamic pressure and may make the flutter
mode change according to its magnitude if structural damping is included.

3. The effects of structural damping on the panel flutter of composite plates are important as
aerodynamic damping decreases, i.e., altitude increases.

4. The fiber orientation of composite plates has little influence on the reduction of the critical
dynamic pressure due to structural damping when aerodynamic damping is high.
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