Available online at www.sciencedirect.com

JOURNAL OF
SCIENC DIRECT®

- @ e SOUND AND
£ s VIBRATION

LSEVIER Journal of Sound and Vibration 273 (2004) 1031-1045

www.elsevier.com/locate/jsvi

Non-fragile H,, vibration control for uncertain
structural systems

Haiping Du?, James Lam®*, Kam Yim Sze”

# Department of Mechanical Engineering, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003,
People’s Republic of China
® Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,
People’s Republic of China

Received 14 October 2002; accepted 12 May 2003

Abstract

The paper deals with the robust non-fragile H,, control problem for uncertain structural systems with
additive controller gain variations. The parameter uncertainties for the mass, damping and stiffness of the
structural systems are unknown but norm bounded. Based on the H, control theory and a linear matrix
inequality formulation, a new method for designing a robust state-feedback control law is presented. The
objective is to reduce the disturbance on the controlled output to a prescribed level for all admissible
parametric uncertainties and controller gain variations. A four-degree-of-freedom building model subject
to seismic excitation is used to illustrate the effectiveness of the approach through simulation.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Active vibration control of structural systems such as large flexible space structures, tall and
slender buildings, long bridges, etc. has become an increasingly important area in engineering
practice. To date, a variety of control strategies based on H, (LQR) and H., theories, neural
networks, fuzzy logic, adaptive control, sliding mode, independent modal space, for instance, have
been developed to attenuate the effects of structural vibration. New types of devices have been
invented in order to implement these active control schemes in practical applications. Due to
modelling errors, variation of materials properties, component non-linearities, and changing load
environments, the system description for these structural systems inevitably contains uncertainties
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of different nature and levels [1]. These uncertainties can affect both the stability and performance
of a control system. To accommodate such possible degradation of stability and performance,
methods such as robust H,, control are often used. In many literature [1-4], the uncertainties in
the mass matrix are modelled in an additive form in the inverse mass matrix which is an indirect
and unnatural way to describe and reflect the structural uncertainty. Moreover, such an approach
may lead to uncertainties appearing in the input and disturbance matrices which complicate the
controller design procedures.

The application of the standard H. control theory has an implicit assumption that the
controller can be realized exactly. However, in practice, many physical limitations lead to a loss of
precision in controller implementation, for example, the effects of finite word length in any digital
systems, round-off errors in numerical arithmetic, inherent imprecision in analog devices, etc.
Consequently, even though controllers are robust with respect to system uncertainties, they may
be very sensitive to their own uncertainties (implementation errors). Recently, much attention
have been paid to the so-called fragility problems of controllers since its initial presentation in
Ref. [5], and then followed by many discussions in Refs. [6-10], and references therein. This
controller fragility problem is basically the problem of performance deterioration of a feedback
control system due to the inaccuracies in controller implementation [11]. In particular, several
examples are presented in Ref. [5] to show that the existing H», H ., [}, and p designs could lead to
very fragile controllers. Blanchini et al. [12] show that the searching for the optimal control
policies for an ATM network is fragile if the delay time allowed to vary (possibly an arbitrarily
small amount) with respect to the nominal value on which the design is based. Yee et al. [13]
demonstrate that using the non-fragile H., flight controllers are robustly stable and have H,
disturbance attenuation bounds with respect to some admissible controller gain variations while,
on the contrary, the standard H, flight controllers are unstable under the same controller gain
variations. As we know, one of the main shortcomings of active control for structural systems is
the possible failure of the controller, since it will cause serious damage even than that of no
control to be used. Hence, this brings a new control issue to controller synthesis such that, for a
given structural system, the resulting controller must be resilient or non-fragile with respect to its
gain variations. During the last few years, many efforts have been made to tackle the non-fragile
controller design problem for linear systems, see, e.g., Refs. [11,13-15], and references therein.
Specifically, Dorato [11] gave an overview of non-fragile controller design for linear systems. A
state feedback non-fragile H,, controller design method with respect to additive norm-bounded
controller gain variations is given in Ref. [16] by using the Riccati inequality approach and the
corresponding problem for designing output feedback controller is given in Ref. [17]. Non-fragile
H, controller problem for the case of multiplicative gain variations is addressed in Ref. [14], and
non-fragile guaranteed cost control for linear systems is studied in Refs. [18,19], respectively.
These efforts benefit us to further consider the controller fragility problems for active vibration
control of structural systems.

This paper is mainly concerned with two aspects of vibration control for structural systems.
One is that robust H, disturbance attenuation for structural systems with parametric
uncertainties, especially in the mass, damping, and stiffness matrices which are unknown but
bounded, is considered. The uncertainties in the mass matrix do not require a commonly used
inverse mass matrix perturbation description. Thus, the uncertainty can be described more
naturally and does not introduce uncertainties into the control and disturbance matrices
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unnecessarily. Another aspect is that a non-fragile H, state feedback controller is considered to
deal with additive controller gain variations. The results developed in this paper are given in terms
of the feasibility of some linear matrix inequalities (LMIs) which can be easily solved using
standard numerical software.

The rest of this paper is organized as follows. In Section 2, the structural system under
consideration is introduced. A non-fragile H ., state feedback controller design method (dealing
with parametric uncertainties in the structural system and additive gain variations in the
controller) based on LMIs is given in Section 3. A numerical example using seismic excitation data
is provided in Section 4 to illustrate the effectiveness of the proposed technique. Finally,
concluding remarks are given in Section 5.

Notation. R” denotes the n-dimensional Euclidean space and R™ the set of all n x m real
matrices, || - || refers to either the Euclidean vector norm or the induced matrix 2-norm. For a real
symmetric matrix W, the notation of W >0 (W <0) is used to denote its positive (negative)
definiteness. Also, /I is used to denote the identity matrix of appropriate dimensions. To simplify
notation, * is used to represent a block matrix which is readily inferred by symmetry.

2. Description of structural system

Now consider the following uncertain structural system:
(M + Ap)i(t) + (C + A¢0)x(t) + (K + Ax)x(t) = Bu(t) + B,w(?), (1)

where x(¢) e R" is the displacement, u(7) is the control input, and w(¢) is the external disturbance or
excitation. M e R™", CeR™" and K e R™" are the mass, damping, and stiffness matrices; 4,7, 4¢
and Ag are corresponding perturbations, BeR"" is the input matrix and B, eR"” is the

disturbance matrix. By using ¢(7) = [xT(¢) xT(5)]", Eq. (1) can be written as
’ 0+
u

—K—4x —-C—A4c¢

w(?). (2)

0
q(t) + |

B

w

q(1) = [

1 0

0 M+ A4y
Here, w(¢) is assumed to be an energy-bounded signal (i.e., w(¢)e [0, o0)). The output or
measurement signal z(¢) to be controlled is given by

z(t) = Cax(1) + Cox(1), 3)

where C;eR?" and C,eR?*". The system can be rewritten as
(& + A5)q(1) = (o + A.)q(0) + Bu(t) + Byw(1), “4)
2(t) = Gq(1), (5)

where

I 0 0 0 0 I
é’: , Aéa: 5 Jz{:
0 M 0 Aup -K -C
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[ 0
5 e@w =
B,

If all of the output signals can be chosen and measured independently, the matrix % could be
identity matrix. The uncertainty 4,, is assumed to satisfy the following bound:

A M HI<o<1, (6)

A , €=1[Cq G)

B

which implies that ||[44&67'||<d<1. Notice that the condition in Eq. (6) ensures that & + A is
non-singular. Also, we have

Ax = Ly FyEy, (7)

AC = LCFCEC, (8)

where [|[F||< 1, ||F <1, Ly, L., Ex, E. are known constant matrices which characterize how the
uncertain parameters in Fj, F. enter the nominal damping and stiffness matrices C and K,
respectively. The uncertainties in structural system (1) satisfying (6)—(8) are said to be admissible.
Therefore,

_O_
Ay = — I Fi[Ex 0] — F [0 E]= % Fi &+ L FeE. )
k ¢
with
Py = [0 b= E O, Zo=—| | 6.=10 E]
k — Lk > k — k > c LC ” c — cl-

The control input, utilizing both position and velocity feedback signals, is given by
u(t) = (Fa + Ap)x(0) + (Fy + 45)X(0), (10)

where F;e R™" F,eR"" are the feedback gain matrices for the displacement and the velocity,
respectively, and 4y, Ay their corresponding uncertainties. This can be rewritten as

ut) = (7 + 47)q(1), (11)

where # e R™*?" is the state feedback gain to be designed, # = [F; F,], and A5 = [4a Ap]is a
norm-bounded gain variation in the form of [15,16],

Ay = L Fiéy, (12)

where Zr, &7, are known constant matrices of appropriate dimensions describing the uncertainty
structure, and ||Fy|[<1.

Suppose T>,(s) denotes the closed-loop transfer function from disturbance w(¢) to measurement
z(¢). The objective of this paper is to determine a state feedback controller gain matrix % such that
the H.,, norm of ||T7,,(s)||,, is less than a prescribed level y > 0 for all admissible uncertainties in
the structural system and gain variations in & . Such a controller is referred to as a non-fragile H ,,
state feedback controller.
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3. Robust non-fragile H ., state feedback control

Here, we develop a solution for the problem of robust non-fragile H, state feedback control
for the structural system (4)—(5) in which both robust closed-loop stability and robust H.,
performance are achieved in spite of parametric uncertainties and controller gain variations.

System (4)—(5) with the state feedback control law (11) becomes

(& + 45)q(1) = (A + A.)q(1) + B(F + A7)q(1) + Byw(1), (13)

2(1) = €q(1). (14)
According to the assumption in Eq. (6), we can write Eq. (13) as

G(t) = (& + Ag) (A + A.)q(0) + (6 + A5) ' B(F + A7)q(t) + (& + Ag) ' Bow(t)
= [45% + @(97 + A7))q(t) + @’ww(t), (15)

where

A =(E+ ) WA+ 4, B=(E+A5)"'B, B, =(E+ As) ' B,

According to the Bounded Real Lemma [20], for systems (13) and (14), the following statements
are equivalent:

(D) [Tl <7, 7 >0, where T.p(s) = G[sI — . — B(F + A7) 'S, is the transfer function
from w to z.
(2) There exists a matrix P> 0 such that
[ +B(F + A7)|'P+ PlA + B(F + A7) PR, ECT
BLP —I 0 |<0. (16)

€ 0 —I
By using the uncertainty structure in Eq. (12) for 44 and considering Lemma 3 in Appendix A,
it follows that inequality (16) is implied by the existence of a constant ¢ > 0 such that
(A + BF) P+ P(A + BF)+ cPBL LTH P+ e 6] 6 PH, C"
3P —I 0 |<0. (17
A 0 —I

Define the new variable X2 P! in Eq. (17). Pre- and post-multiplying (17) by diag(X,1,1)
and its transpose, respectively, then substituting ¥ = # X, and then, pre- and post-multiplying
it by

diag(& + 44,1,1)
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and its transpose, respectively, and followed by applying the Schur complement, we obtain

2] By (6 + A)XET
B! — 0 <0, (18)
EX(E+ 45" 0 1
where
O =+ A)X(A + A ) + (A + A )NX(E + A) +(E+ A) YT BT + BY (& + Ag)"
+ eBL LA+ (E+ A)XE[EX(E + Ag)". (19)

Here, no matrix inverse of & 4+ A4, is involved in the inequality.
For a given scalar > 0, according to Lemma 1 in Appendix A, there always exists
(AL + ANX(E+ A) + (6 + A)X(A + A ) <A + A )X (A + A)"
+ 7N E + 40)X (6 + A6). (20)
Furthermore, notice that, for any scalars u; >0, 1, >0, u3>0, 9>0, u,l— &Xé”‘} >0,
U — gngE >0, usd — 5kQé’z >0, Lemma 1 in Appendix A also has

(L + A )X (A + A))" = (A + LiFi61) + LFENX (A + LiFi6i) + LFeb]
= (o + LhFEDX (A + LiFi6r) + (S + L)X E (] — 6 XE])
X EX(A + LiFi6) + L Ly
(A + LLFEDX (A + LiFib1)' + (oA + LiFi61) QA + LiFiebr) + L LT
SAXAT + AXEV (] — EXEN ' G X AT + 1,0 LT + A Q7T
+ A Q6] — ExQE 6 QA + s L1 LY+ L L

21)
where
XET (I - 6.x6DH'¢.X<0Q. (22)
For any scalar p, >0, u, ] — 6X&" >0, there exists
(E+A)X(E+ M) < EXET + EXET(ugd — EXEN) 'EXET + pyde ™ (As™ T
SEXET+ EXE (ud — EXEN)EXET + py0* T (23)

and similarly, for any & >0,

(E+A)Y "B+ BY(E+ M) =6Y "B + BYET + A Y BT + BY AT

SEY' B+ BYEY + ' BYEEYT BT 14567 6T A)

SEY B+ BYET + 6]\ BYETEY TR 4 1671 (24)
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By Lemma 2 in Appendix A, with any ¢, > 0, the following inequality also holds:

# (6 4+ A)XET #4eds6 67T AL EXET
CX(E+ Ag)T % ¢x&T x+ e, GXETEXET
#+ 0°1 EXET

; (25)

CXET  x+&'CXETEXET

where # and * denote some submatrices in Eq. (18). Therefore, by using the bounding results in
Eqgs. (20)—(25), to ensure Eq. (18), it suffices to have

O B, EXET (6 +45)XEf
B! —yI 0 0
. T . <0, (26)
CXE 0 —I+&'6XETEXE 0
ErX(E+ 45" 0 0 —¢l

where
O = AXAT + AQAT + 1, L LT+ 1Lk LT+ L LY+ AXEN (] — ExXEN) T G X AT
+ AQEF (s — ExQED) " E QA+ T [EXET + EXET(uud — EXET) T EXET + 11407

+ EYTB + BYET + ' BYETEY B + 015 ] + e20°] + eBL LT R (27)
Similarly, among Eq. (26), by Lemma 2 in Appendix A, with any &; > 0, there exists
# (6 + 45)X &} _ #+e3(4e6 (A& DT EXE] ]
E/X(6+ Ag)T x h & XET s tes 6 XETEXET
# 4 e30°1 EXES o8
| ExET sve'6xET6XET |

where # and * the corresponding submatrices in Eq. (26). Applying the results of Eq. (26) together
with Eq. (28), and the Schur complement followed by some rearrangement of matrix sub-blocks,
inequality Eq. (26) can be expressed as an LMI. Also, Eq. (22) can be expressed by an LMI by
using Schur complement. Therefore, we conclude that, for the uncertain system (4)—(5) with given
y >0 and 5 > 0, a state feedback control of form (11) can be constructed which could tolerate the
system uncertainties 4,;, 4¢, 4k, and controller gain variations 44 such that the resulting closed-
loop system is robustly stable with disturbance attenuation y provided that there exists matrices
X>0,0>0, Y and scalars ¢>0,¢>0,i=1,...,3, ;> 0, i =1, ...,4, satisfying the following
LMIs:
Qu Qun Qs Qu

0n 0 0
* 2 <0, (29)
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Qu=n(AIXA + L L]+ L L]+ 3L L+ A0A)
+  EXET + 8D+ EY B+ BYET + 610’1 + 25T + 630°] + eBL, LT R,

Qi =B, A8, ndXE, EXET BYET,
Q= diag[—y1, —n(usl — ExO8), —n(upd — Ex X ), —n(usd — EXEY), —e11),
Q3=[100000"¢X%"[I 0],

b

—I €X&T
Q33 =
* —82[

Quu=[00000"6X&[I 0],

—el 6, X8
Qqq =
* —831,

and

-0 Xé;

<o (30)
EX —(wl—-6E.XE,)

Moreover, a desired robust non-fragile H. state feedback control gain matrix is given by

F =YX

4. Simulation

This section gives a numerical example to demonstrate the applicability of the proposed
approach in Section 3. The robust stability of the steady state motion of an uncertain four-degree-
of-freedom 4-d.o.f. building model with controller gain variations is considered. The building
model is shown in Fig. 1, where x;, m;, ¢;, k;, i =1, ...,4 are the relative displacement, mass,
damping and stiffness of each storey, respectively, and m; = m> = 2 x 1.05 (10 kg), m3 = my =
1.05 (106 kg), k] = kz =2 x 350 (106 N/m), k3 = k4 = 350 (106 N/m), Cl =C = C3=C =
1.575 (10° N s/m). The basic structural system has been used in Refs. [1,21] for vibrational
control simulation. The dynamic equation of the system is given as in Eq. (1) with system matrices
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SR

Fig. 1. 4-d.o.f. building model.

C
©

given by
21 0 0 0 14 =07 0 0
0 21 0 0 6 -0.7 1.05 -0.35 0 9
M = (10° kg), K= (10" N/m),
0 0 105 0 0 -035 07 —-035
0 0 0 1.05 0 0 —-0.35 0.35
315 —1.575 0 0
—-1.575 315 —1.575 0 ¢
C= (10° N s/m).
0 —-1.575 315 —1.575
0 0 —-1.575  3.15

It is assumed that each storey of the building model has a controller and B =1 in (1) so that
% =10 I1" in Eq. (4). The external disturbance corresponds to the earthquake excitation force
given in Ref. [1] and

B, =100 000 1.250 1.250 0.625 0.625]"

in Eq. (4). The output variables are chosen to be the displacements and velocities of each storey,
therefore, € = 1.
The uncertainties in the mass, damping, and stiffness matrices are, respectively, modelled as

A M7 Y<d =01, Ax = LiFE = (0.1K)F(I), A.= L.F.E.= (0.1C)F(I).
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Assume that the controller gain variation has structure
Fr=afl 111", & =[11111111],

where a; is an adjustable parameter to describe the level of gain variation (in the range of +107).
In this simulation, a time history of acceleration from 1940 El Centro (California) earthquake is
applied to the base of the building model [1,3].

As a means for comparison, we design an H, state feedback controller for the nominal system
(i.e., the system has no parametric uncertainties) and no consideration is given to controller gain
variations. When y = 0.1, a controller gain matrix % is rounded to four decimal places to reflect
its finite word length implementation:

1.3961 —0.6994 —0.0005 0.0003 —0.0025 —0.0006 —0.0006 0.0004

o | —0.7000  1.0465 —0.5491 —0.0000 —0.0016 —0.0020 —0.2629  0.0000
0.0028  0.0024  0.6976 —0.3501 0.0039  0.5829  0.0004 —0.0018
—0.0006 0.0002 —0.3500 0.3477 —0.0010 0.0004 —0.0016 —0.0009

F =10

This results in an equivalent perturbation equals

42346 —1.7259 4.1840  2.6815 —3.6102 —0.4524 0.1069  3.0021
A — 10t 43950 —-3.8218 —0.2554 —3.9238 —1.1490 —-2.7658 —4.8989 —0.6790
7o —-2.6115 2.0351 —-2.0762 03787  4.3559  3.2244 —3.5548 0.7404
0.5419 29434 —1.8495 0.5553 1.3732  —1.7500 0.3116 —4.9466

such that 77 = 7+ 477 . When # is used (that is, a full-digit realization), the output of
uncontrolled and controlled displacements of the fourth storey and the first storey are shown in

0.25 T T T T T 0.08

T T T T T
=+++ uncontrolled =+++ uncontrolled
02} . . — controlled 4 — controlled
: H 3 .
N 4 [

o o
o o =
a - (5]
Magnitude (m)
o

Magnitude (m)
o

o
o
a

-0.02

-0.1F
-0.04

-0.06
0.2

-0.25

0 é 1‘0 1‘5 2‘0 2‘5 30 008 0 é 1‘0 1‘5 2‘0 2‘5 30
(a) Time (sec) (b) Time (sec)

Fig. 2. Displacements with % for nominal system: (a) displacements of the fourth storey and (b) displacements of the
first storey.
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0.25 T T T T 0.08 T T T T
++=+ uncontrolled -+++ uncontrolled
— controlled — controlled

0.06 |

0.2f

0.15

0.04}F
0.1F

o
Q
)

Magnitude (m)
)
o
N o
T z T

o
=)
o

Magnitude (m)
o

o
=)
5

I
2

o
1)
R

-0.15f

-0.06 -

02k

0.25 ! ! ! ! ! 0.08 ! ! ! ! !
5 10 15 20 25 30 0 5 10 15 20 25 30

0
(a) Time (sec) (b) Time (sec)

Fig. 3. Displacements with & for uncertain system: (a) displacements of the fourth storey and (b) displacements of the
first storey.

Figs. 2(a)—(b), respectively. The displacements of the other two storeys have the similar varying
trend, which are omitted here for brevity. In addition, the velocities output of the four storeys can
give us the same information to explain our results, which are also omitted here for brevity. It can
be seen that a very good reduction in the vibration can be obtained. When the full-digit controller
F o 1s used to control the structural system with above-mentioned parametric uncertainties and
additive controller gain variations, in which ay = 2.43 x 10%, the output of the simulation for the
uncontrolled and controlled displacements of the fourth storey and the first storey are shown in
Figs. 3(a)—(b), respectively. It can be observed that although the controller can control the
nominal system very well, it cannot attenuate the disturbance when these uncertainties occur. In
fact, the closed-loop control system becomes unstable when ay is further increased. When we use
the controller gain matrix |, instead of #, which is also equivalent to adding a perturbation on
the controller gain matrix, the output of the simulation for the uncontrolled and controlled
displacements of the fourth storey and the first storey are shown in Figs. 4(a)—(b), respectively. It
is obvious the ability to attenuate the vibration is significantly degraded and the level of vibration
is unacceptable.

Finally, we design a controller using the proposed approach by solving the LMIs described in
Egs. (29) and (30) for the same uncertain system and consider the controller gain variations.
When selecting y = 0.01, # = 17, 6 = 0.1, we obtain a non-fragile controller gain matrix % and a
four decimal place implementation is given by

—2.1994 —-2.4947 -2.1114 -2.1074 —-2.2323 —-2.2315 —-2.2697 —-2.2697
—0.3154 —-0.3539 -0.9165 —-0.8812 —0.6085 —0.6098 —0.5343 —0.5345
0.1986  0.2384  0.6472  0.5451 0.4018  0.4027  0.3523  0.3527
0.0004  0.0004 —0.0340 0.0329 —0.0001 —-0.0001 0.0002  0.0000

F' =10’
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Magnitude (m)
=)

-0.05F

++++ uncontrolled
— controlled

Magnitude (m)
o

-0.02

-0.04F

-0.06 -

0

-0.08

=+++ uncontrolled
— controlled

s s s s s s s s
5 10 15 20 25 30 0 5 10 15

Time (sec) (b) Time (sec)

s s
20 25 30

Fig. 4. Displacements with #, for uncertain system: (a) displacements of the fourth storey and (b) displacements of the

first storey.

0.25

0.2F

0.15

Magnitude (m)
. S
© =}
- a o

o
&

-0.2F

-0.25

++++ uncontrolled
—— controlled

Magnitude (m)
=

-0.02

-0.04

-0.06 -

0

@

-0.08

=+++ uncontrolled
—— controlled

1 1 1 1 1 1 1 1
5 10 15 20 25 30 0 5 10 15

Time (sec) (b) Time (sec)

L L
20 25 30

Fig. 5. Displacements with # for uncertain system: (a) displacements of the fourth storey and (b) displacements of the

first storey.

and the round-off error matrix is

/
Ay =

1.0809 —2.9042 —-0.2158 —3.8307 —-0.2163 —-3.4901 2.3760 —2.2790
—0.8093 0.6264 —3.4851 2.8223  3.8933 27184 28325 4.7743
—4.0923 42116 —3.4889 4.1823 1.8124  —1.7037 —1.9135 —1.5830 |’

09268 29315 —2.3546 0.0024  3.0497  3.1137 29147 —4.3585

where 7 = 7' + A'z. When # is used to control the vibration, the output of the uncontrolled
and controlled displacements of the fourth storey and the first storey are shown in Figs. 5(a)—(b),
respectively. It can be seen that although there are parametric uncertainties in the system and
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. T T T T
-+++ uncontrolled -+++ uncontrolled
— controlled — controlled
1 I 4
3
LI

0.2f
0.15

0.1f

o
=)
a

Magnitude (m)
o

Magnitude (m)
o

=3
=3
a

-0.02

S
&

-0.04
-0.15f

-0.06 -
02k

-0.25 . . : : : -0.08 . . : : .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
(a) Time (sec) (b) Time (sec)
Fig. 6. Displacements with .%' for uncertain system: (a) displacements of the fourth storey and (b) displacements of the

first storey.

controller gain variations, the non-fragile controller can still attenuate the vibration due to the
seismic disturbance very well in spite of uncertainties. As a matter of fact, a further increasing ay
does not lead to an unstable effect as seen in the previous case with % (. When the rounded-off
non-fragile controller gain matrix %’ is used, the output of the uncontrolled and controlled
displacements of the fourth storey and first storey are depicted in Figs. 6(a)—(b), respectively. It
can be observed that the effectiveness of vibration attenuation is still very well preserved. Thus,
the non-fragile controller is very robust towards uncertainties since they are considered in advance
in the design procedure, and this is important in practical engineering applications.

5. Conclusions

This paper presents a new approach to design a non-fragile H,, state feedback controller for
structural systems with mass, damping, and stiffness uncertainties and controller gain variations
based on a linear matrix inequality formulation. Due to no explicit inverse of mass matrix existing
in this approach, the uncertainties in mass, damping and stiffness can be described more naturally
and directly. Additive controller gain variations are also considered in this approach, which makes
the approach more robust and more applicable in vibration engineering practice. A numerical
example of four-degree-of-freedom building structure is used to illustrate the effectiveness of this
approach. It can be concluded that the proposed method can successfully deal with the
uncertainties in the structural system and its controller. Moreover, the control effectiveness is
significantly better than the controller designed simply according to the nominal system.
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Appendix A

The following lemmas used in this paper can be found in Refs. [22,23].

Lemma 1. Let A, L, E and F be real matrices of appropriate dimensions with ||F||<1. Then, for any
real matrix P> 0 and scalar u> 0 such that ul — EPET >0,

(A + LFE)P(A + LFE)' <APA™ + APE"(ul — EPEY) 'EPAT + uLL".

Lemma 2. Let M, N be real matrices of appropriate dimensions, for any scalar ¢ > 0,
0 NMT eNNT 0
MNT 0 0 MM

Lemma 3. Given matrices Y, M and N of appropriate dimensions, then
Y + MAN + N A" M" <0

for all A satisfying ||A||< 1 if and only if there exists a constant ¢ > 0 such that
Y +eMMT + & 'NTN<0.
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